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We calculate the energies of quarkonium bound states in the presence of a medium of nonzero isospin

density using lattice QCD. The medium, created using a canonical (fixed isospin charge) approach, induces

a reduction of the quarkonium energies. As the isospin density increases, the energy shifts first increase and

then saturate. The saturation occurs at an isospin density close to that where previously a qualitative change

in the behavior of the energy density of the medium has been observed, which was conjectured to

correspond to a transition from a pion gas to a Bose-Einstein condensed phase. The reduction of the

quarkonium energies becomes more pronounced as the heavy-quark mass is decreased, similar to

the behavior seen in two-color QCD at nonzero quark chemical potential. In the process of our analysis,

the �b-� and �-� scattering phase shifts are determined at low momentum. An interpolation of the

scattering lengths to the physical pion mass gives a�b;� ¼ 0:0025ð8Þð6Þ fm and a�;� ¼ 0:0030ð9Þð7Þ fm.

DOI: 10.1103/PhysRevD.87.094504 PACS numbers: 12.38.Gc

I. INTRODUCTION

An important probe of exotic phases of QCD matter is
the way in which heavy quarkonium propagation is modi-
fied by the presence of that matter. The heavy quarks can in
some sense be viewed as separable from the medium which
is predominantly composed of light-quark and gluonic
degrees of freedom. At nonzero temperature, the suppres-
sion of the propagation of J=c particles is a key signature
for the formation of a quark-gluon plasma [1]. This sup-
pression has been observed for charmonium in various
experiments at SPS, RHIC, and the LHC and recently in
the� spectrum at the LHC [2]. Quarkonium propagation is
naturally also expected to be a sensitive probe of other
changes of phase, such as those that occur at high density
or large isospin density.

Since the effects of QCD matter on quarkonia are es-
sentially nonperturbative in origin, a systematic evaluation
requires input from lattice QCD. At some level, these
effects can be distilled to a change in the potential between
the quark-antiquark (Q �Q) pair that binds them into quark-
onium. At nonzero temperature but zero density, this has
been studied extensively using lattice QCD (see Ref. [3]
for a recent overview) where strong screening effects are
seen near the deconfinement scale. Significant effects are
also seen in investigations of the properties of charmonium
and bottomonium spectral functions at nonzero tempera-
ture (see Refs. [3,4]).

Modifications of the potential or quarkonium properties
will also occur for nonzero density. Reference [5] has
investigated the static potential in the presence of a gas
of pions and below we briefly address how the medium
affects the binding of quarkonium through solving the
Schrödingier equation for the modified potential. As the
main focus of this work, however, we explore the effects of

isospin charge density on quarkonium bound-state energies
more directly by using lattice nonrelativistic QCD
(NRQCD) to compute quarkonium correlation functions
in the presence of a medium of varying isospin chemical
potential. At low isospin densities, and correspondingly
low chemical potentials, we find that the ground-state
energy of the quarkonium systems decreases with increas-
ing density, showing qualitative agreement between the
potential model calculation and the QCD calculation.
However, at an effective isospin chemical potential
�I ��I;peak ¼ 1:3m� (where previous calculations of the

energy density of the isospin medium have suggested a
transition to a Bose-Einstein condensed state [6] in line
with theoretical expectations [7]), the effect of the medium
on the quarkonium energy appears to saturate to a constant
shift. At large isospin densities, the determination of the
energy shift becomes statistically noisy.
Our study is presented as follows. In Sec. II, we con-

struct an isospin density-dependent potential model of
quarkonium states, and calculate the expected shift of the
quarkonium energies in the medium. Section III presents
the methodology of the lattice QCD calculation of these
energy shifts, with results presented in Secs. IV and V. We
conclude with a discussion of the results and possible
extensions to the current work.

II. MODIFICATION OF THE STATIC
QUARK-ANTIQUARK POTENTIAL

Here we briefly review the results obtained in Ref. [5] on
the screening of the static potential by a pion gas and
ascertain the expected effects of these modifications on
quarkonium spectroscopy. Reference [5] presented a so-
phisticated calculation of the static quark-antiquark poten-
tial in a pionic medium as a function of the separation of
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theQ �Q pair, r, and as a function of the isospin charge, n, of
the medium. This required the measurement of Wilson
loops of various extents in space and in time, and to obtain
signals for large loops different levels of hypercubic smear-
ing [8] were used in overlapping regions of r, complicating
the analysis. As will be discussed below, constructing
appropriate ratios of correlation functions was also critical
in order to obtain statistically clean measurements. The
central results of this work were that the potential is
screened by the presence of the medium and that this
screening effect is small. For the relatively low pion den-
sities investigated in Ref. [5], the dominant effect corre-
sponded to a change in the potential in the linearly rising
region that was approximately linearly dependent on both r
and n. This form, �Vð�I; rÞ ¼ ��Ir, corresponds to the
physical expectation of a gas of weakly interacting pions
permeating a flux tube of constant radius between the
static quark and antiquark, and is a picture in which the

appearance of the isospin density,�I, is natural. Performing
a correlated fit to the results presented in Ref. [5] using this
form, we are able to describe the data well, as shown in
Fig. 1, and find that � ¼ �8ð3Þ MeV fm2. This result is for
a pion mass of m� � 320 MeV [5].
To estimate the effects on quarkonium spectroscopy, we

use the Cornell potential VCornellðrÞ ¼ �ð4=3Þ�s=rþ �r
with �s ¼ 0:24 and

ffiffiffiffi
�

p ¼ 468 MeV (values fixed in vac-
uum from Ref. [9]) and augment it with the small screening
shift discussed above. We then solve the radially symmet-
ric Schrödinger equation numerically for angular momen-
tum ‘ and reduced mass mred ¼ m=2 (where m is the
heavy-quark mass),

�
� 1

2mred

d2

dr2
þ ‘ð‘þ 1Þ

2mredr
2
þ VCornellðrÞ þ �Vð�I; rÞ

�
u‘ðrÞ

¼ Eu‘ðrÞ; (1)
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FIG. 1 (color online). Shifts in the static potential computed in Ref. [5] fitted to the simple form discussed in the text.
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to establish the wave functions and eigenstate energies for
the various quantum numbers. The energy shift is then
defined simply as the difference of the resulting energy
from that where �Vð�I; rÞ is omitted. We calculate this
shift for both the 1S and 1P states and various different
values of the heavy-quark mass, as shown in Fig. 2. We
note that one could use only the Cornell potential to
determine the wave functions and include the additional
small shift from the screening as a perturbation, calculating

�Eð�IÞ �
Z

dr uð0Þ�‘ ðrÞ�Vð�I; rÞuð0Þ‘ ðrÞ; (2)

where uð0Þ‘ ðrÞ are the solutions to Eq. (1) when �Vð�I; rÞ is
omitted. As the shift is small, we expect that this will give
consistent results.

Since P-wave states are more extended in size, they
probe regions of the potential where the shift is larger,

and consequently we find that the energy shift is larger
for these states than for the S-wave states. The effect also
increases as the heavy-quark mass decreases, again be-
cause of the larger size of the lighter systems.
In the following, we determine quarkonium eigenener-

gies in (NR)QCD at nonzero isospin density and investi-
gate to what extent they are predicted by the potential
model described above based on a screening pion gas.

III. LATTICE METHODOLOGY

A. Lattice details

In this study, we make use of anisotropic gauge configu-
rations generated by the Hadron Spectrum and NPLQCD
collaborations. The full details of the action and algorithms
used to generate the configurations are discussed in the
original works, Refs. [10,11]; here we summarize the
salient features of the configurations and the measurements
that we perform. A tree-level, tadpole-improved gauge
action [12], and nf ¼ 2þ 1-flavor clover fermion action

[13] are used. Two levels of stout smearing [14] with
weight � ¼ 0:14 are applied in spatial directions only in
order to preserve the ultra-locality of the action in the
temporal direction. The gauge action is constructed with-
out a 1� 2 rectangle in the time direction for the same
reason. In this study, we make use of a single spatial lattice
spacing, as ¼ 0:1227ð8Þ fm [11], and have a renormalized
anisotropy of � ¼ as=at ¼ 3:5, where at is the temporal
lattice spacing. We also work at a single value of the light-
quark mass for this exploratory investigation and use a
strange-quark mass that is close to its physical value; these
values correspond to a pion mass of m� � 390 MeV and a
kaon mass of mK � 540 MeV. For these parameters, we
investigate three different ensembles, corresponding to
different physical volumes and temporal extents, as shown
in Table I. The different physical volumes allow us to
access a large range of isospin densities in our study, and
the different temporal extents provide control of thermal
effects, as discussed in Ref. [6]. On these gauge configu-
rations we calculate correlation functions involving light
quarks and use the colorwave propagator basis introduced
in Ref. [6], fixing to Coulomb gauge and using plane-wave
sources and sinks for a range of low momenta (Nmom in
total on each ensemble; see Table I). For each case, we
calculate light-quark propagators on Ncfg configurations

from Nsrc time slices, equally spaced throughout the

FIG. 2 (color online). Shifts in the energies of the 1S (upper)
and 1P (lower) states in quarkonium as a function of the isospin
density, computed in a potential model. Results are shown for
four different values of the heavy-quark mass with the uncer-
tainty shown only for the mass closest to the physical bottom-
quark mass, m ¼ 4:676 GeV (uncertainties for the other masses
are of similar size).

TABLE I. Details of the ensembles and measurements used in
this work. u0s is defined as the fourth root of the spatial
plaquette.

N3
s � Nt L½fm� m�L m�T u0s Ncfg Nsrc Nmom

163 � 128 2.0 3.86 8.82 0.7618 334 8 33

203 � 256 2.5 4.82 17.64 0.7617 170 16 7

243 � 128 3.0 5.79 8.82 0.7617 170 8 19
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temporal extent. Details of the NRQCD heavy-quark
propagator calculations are discussed below.

B. Multipion lattice correlators

In order to produce the medium that will modify the
propagation of the quarkonium states, we use the canonical
approach of constructing many-pion correlation functions
that is described in detail in Ref. [6], using methods
developed there and in earlier works [15–19]. As discussed
therein, correlators of a fixed isospin charge, n ¼ P

N
i¼1 ni,

and total momentum, Pf, making use of N sources, are

given by

Cn1;...;nN ðt;PfÞ ¼ hOn�þðtÞOy
n�þð0Þi

¼
�YN
i¼1

�X
xi;x

0
i

e�iðpi
1
xi�pi

2
x0
iÞ �dðx0

i; tÞ	5uðxi; tÞ
�
ni

�Yn
j¼1

�X
yj

e
ipfj

yj �uðyj; 0Þ	5dðyj; 0Þ
��

; (3)

where Pf ¼ P
n
i¼1 pfi , and, for momentum conservation,P

N
i¼1ðpi

1 � pi
2Þ ¼

P
n
j¼1 pfj . In what follows, we will set

Pf ¼ 0 but the pfi and pi
1;2 take various values subject to

these constraints: different choices of the momenta defin-
ing the interpolating operators will have different overlaps
onto the eigenstates of the chosen Pf but provide additional

statistical resolution in the determination of the energy of
the system.

To construct these correlation functions, we work in
Coulomb gauge and compute light-quark colorwave
propagators,

Su=dðp; t;p0; 0Þ ¼ X
x

e�ipxSu=dðx; t;p0; 0Þ; (4)

where

Su=dðx; t;p0; 0Þ ¼ X
y

eip
0ySu=dðx; t; y; 0Þ

is a solution of the lattice Dirac equation,

X
x;t

Dðy;~t;x; tÞSu=dðx; t;p0; 0Þ ¼ eip
0y�~t;0:

The contractions implicit in Eq. (3) can be written in

terms of a matrix ~A, the 12� 12 sub-blocks of which are
given by

~A k;iðtÞ ¼
X
p

Sðpk
1;pÞSyð�pi

2;pfi � pÞ; (5)

where k, i label the source and sink, and the dependence on
pk
1, p

i
2, and Pf is suppressed. The correlators above can be

extracted by noting that combinations of the Cn1;...;nN for a

given n ¼ PN
i¼1 ni are the coefficients of the expansion of

det ½1þ 
 ~A� ¼ 1þ 
C1� þ 
2C2� þ � � � þ 
12NC12N�;

(6)

and can be computed efficiently using the methods of
Ref. [6]. The different Cn1;...;nN for a given n occur in

complicated combinations in this expansion; however, we
are explicitly only interested in the energies of the system,
so the particulars of the combination are irrelevant.
These correlators have been studied in detail in a pre-

vious work [6] and we do not present them again here. As
investigated in detail in Ref. [6], many-pion correlations
contain thermal contributions in which parts of the system
propagate around the temporal boundary. In our choice of
fitting ranges in the analysis presented below, we are care-
ful to remain away from the regions in Euclidean time that
are contaminated by either excited states or by these
thermal effects.

C. NRQCD for quarkonium correlators

To implement the heavy quarks in our quarkonia sys-
tems, we use a lattice discretization of nonrelativistic
QCD. Since our light-quark and gluon degrees of freedom
are defined on an anisotropic lattice, we require lattice
NRQCD [20,21] formulated on an anisotropic lattice as
first set out in Ref. [22]. As the nonrelativistic nature of the
theory already separates space and time, using a temporal
lattice spacing that differs from the spatial lattice spacing is
a very natural choice for NRQCD. Anisotropic lattice
NRQCD has been used for example to calculate the spec-
trum of quarkonium hybrid states [23,24], and recently also
to study quarkonium at nonzero temperature [4,25].
The Euclidean action for the heavy-quark field, c , can

be written as

Sc ¼ a3s
X
x;t

c yðx; tÞ½c ðx; tÞ � KðtÞc ðx; t� atÞ�; (7)

where KðtÞ is the operator that evolves the heavy-quark
Green function forward one step in time. Here we use the
form

KðtÞ ¼
�
1� at�Hjt

2

��
1� atH0jt

2n

�
n
Uy

0 ðt� atÞ

�
�
1� atH0jt�at

2n

�
n
�
1� at�Hjt�at

2

�
; (8)

where U0 are the temporal gauge links. In this expression,

H0 ¼ ��ð2Þ

2m
(9)

is the order-v2 term in the NRQCD velocity expansion, and
�H is a correction term given by

WILLIAM DETMOLD, STEFAN MEINEL, AND ZHIFENG SHI PHYSICAL REVIEW D 87, 094504 (2013)

094504-4



�H ¼ �c1
ð�ð2ÞÞ2
8m3

þ c2
ig

8m2
ðr � ~E� ~E � rÞ

� c3
g

8m2
� � ð~r� ~E� ~E� ~rÞ � c4

g

2m
� � ~B

þ c5
a2s�

ð4Þ

24m
� c6

atð�ð2ÞÞ2
16nm2

� c7
g

8m3
f�ð2Þ;� � ~Bg

� c8
3g

64m4
f�ð2Þ;� � ð~r� ~E� ~E� ~rÞg

� c9
ig2

8m3
� � ð~E� ~EÞ (10)

(the notation is as in Ref. [26]). The operators with coef-
ficients c1 through c4 are the relativistic corrections of
order v4, and the operators with coefficients c7 through
c9 are the spin-dependent relativistic corrections of order
v6. The operator with coefficient c5 removes the order-a2s
discretization error ofH0, and the operator with c6 removes
the leading order-at error in the time evolution. Four-
fermion operators, which arise beyond tree level in the
matching to QCD, are not included. We set the coefficients
of the spin-dependent order-v4 terms to c3 ¼ 1:28 and
c4 ¼ 1:05 to achieve the best possible agreement of the
bottomonium 1P and 1S spin splittings in vacuum with the
experimental values. We use the tree-level values
ci ¼ 1 for the other matching coefficients. For tadpole
improvement [27] of the derivatives and field strengths,
we set u0s equal to the fourth root of the spatial plaquette
(see Table I), and set u0t ¼ 1.

To avoid instabilities in the time evolution with the
operator in Eq. (8), the parameter n must be chosen such
that max ½atH0=ð2nÞ�< 2 [21]. On an anisotropic lattice,
this requires

n > 3at=ð2a2smÞ ¼ 3=ð2�asmÞ (11)

(interactions with gluons weaken this requirement slightly
[21]). In this work, we set the bare heavy-quark mass
to asm ¼ 2:75 (which is near the b-quark mass) as well
as to the lower values asm ¼ 2:0, 1.5, 1.2. Because we
have � ¼ 3:5, a stability parameter of n ¼ 1 is sufficient in
all cases.

When using NRQCD, all quarkonium energies are
shifted by an unknown constant (which is approximately
equal to two times the heavy-quark mass). This shift is
state independent and cancels in energy splittings as well
as in differences between energies extracted at zero and
nonzero isospin density. For the purpose of tuning the
heavy-quark mass, we measure the kinetic masses of the
�b and � states, defined as

atMkin ¼ ðaspÞ2=�2 � ½atEðpÞ � atEð0Þ�2
2½atEðpÞ � atEð0Þ� ; (12)

with one unit of lattice momentum, jpj ¼ 2�=L. The spin-
averaged values of the 1S kinetic massses, Mkin ¼
ð3M�

kin þM�b

kinÞ=4 computed on the 163 � 128 ensemble

(at �I ¼ 0), are given in Table II. As a check of discretiza-
tion errors, we have also calculated the kinetic masses
using larger lattice momenta. For example, the kinetic
masses computed using jpj ¼ 2 � 2�=L differ from those
computed using jpj ¼ 2�=L by only 0.4% at asm ¼ 2:75
and by 2% at asm ¼ 1:2.
In the main calculations of this work, we use zero-

momentum smeared quarkonium interpolating fields of
the form

O �bbðtÞ ¼
X
y0

X
y

�yðy0; tÞ�ðy � y0Þc ðy; tÞ (13)

at the sink and

~O �bbð0Þ ¼
X
x

�yð0; 0Þ�ðxÞc ðx; 0Þ (14)

at the source. Here, � is the heavy-antiquark field and
�ðrÞ is the smearing function, which is a 2� 2 matrix in
spinor space. Note that antiquark propagators can be ob-
tained from quark propagators through G�ðx; x0Þ ¼
�Gc ðx0; xÞy. The quantum numbers of the quarkonium

interpolating fields considered in this work are listed in
Table III. To optimize the overlap with the 1S and 1P
ground states we use wave functions from a lattice poten-
tial model (see Appendix D of Ref. [26]) in the construc-
tion of �ðrÞ (as already mentioned in the previous section,
the gauge configurations are fixed to Coulomb gauge). The
heavy-quark mass used in the potential model is adjusted to
match the mass used in the lattice QCD calculation. We use
�ðxÞ as the source for the quark propagator and a point
source for the antiquark. At the sink, the convolution in

TABLE II. Spin-averaged quarkonium kinetic masses on the
163 � 128 ensemble.

asm atMkin Mkin (GeV)

1.2 0.7698(81) 4.333(54)

1.5 0.9377(16) 5.277(36)

2.0 1.2259(12) 6.900(46)

2.75 1.6667(12) 9.380(62)

TABLE III. Smearing functions �ðrÞ used in the quarkonium
interpolating fields for the given representation of the cubic
group, R, and values of parity, P, and charge conjugation, C.
The functions �1SðrÞ and �1Pðr; jÞ are eigenfunctions from a
lattice potential model.

Name RPC �ðrÞ
�b A�þ

1 �1SðrÞ
� T��

1 �1SðrÞj

hb Tþ�
1 �1Pðr; jÞ

�b0 Aþþ
1

P
j�1Pðr; jÞj

�b1 Tþþ
1

P
k;l�jkl�1Pðr; kÞl

�b2 Tþþ
2 �1Pðr; jÞk þ�1Pðr; kÞj (with j � k)
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Eq. (13) is performed efficiently using fast Fourier
transforms.

In order to reach the high statistical accuracy needed to
extract the small effects of the isospin charge density, we
compute quarkonium two-point functions for 64 different
spatial source locations (distributed on a cubic sub-lattice
with spacing L=4) on each of the source time slices, and
average over these source locations. Examples of free
quarkonium two-point functions with the smearing tech-
nique discussed above are given in Figs. 3 and 4. Note that
ground-state plateaus are reached already at a distance of
�0:4 fm in Euclidean time, which demonstrates the effi-
ciency of the smearing technique used here.

In Table IV, we show results for the bottomonium spec-
trum in vacuum, from the 163 � 128 ensemble at asm ¼
2:75. To extract the energies of the 2S states, we included
additional quarkonium interpolating fields with the �2SðrÞ
smearing in the basis. The lattice results for the energy
splittings are in good agreement with experiment, confirm-
ing the successful tuning of the parameters in the NRQCD
action. The remaining discrepancies are in line with the

expected systematic errors (e.g., discretization errors,
missing radiative and higher-order relativistic corrections
in the NRQCD action, and the unphysical pion mass).

D. Correlator ratios for energy shifts

To investigate the effect of the medium on quarkonium
propagation, we consider the correlators

Cðn; �bb; tÞ ¼ hO �bbðtÞOn�þðtÞ ~Oy
�bb
ð0ÞOy

n�þð0Þi; (15)

where h. . .i denotes path integrationvia the average over our
ensembles of gauge configurations, and the interpolators

Oy
n�þ andOy

�bb
produce the quantum numbers of n-pion and

�bb states as discussed in the preceding subsections. States
with the combined quantum numbers of the given quark-
onium state ( �bb ¼ �b,�, hb, �b0, �b1, �b2) and the n-pion
system propagate in this correlator, and naturally the spec-
trum of this system is different from the sum of the spectra
of n pions and of quarkonium because of interactions. At
Euclidean timeswhere only the ground state of the system is
resolved (after excited states have decayed and before
thermal states are manifest), this correlator will decay
exponentially as

FIG. 3 (color online). �b and � correlators (upper) and
effective energies (lower) on the 203 � 256 ensemble, for
asm ¼ 2:75. The vertical ordering of the legend in each panel
is the same as that of the data.

FIG. 4 (color online). hb correlator (upper) and effective
energy (lower) on the 163 � 128 ensemble, for asm ¼ 2:75.
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Cðn; �bb; tÞ ! ~Zn; �bb exp ð�En; �bbtÞ; (16)

where En; �bb is the ground-state energy of the combined

system.
To access the change in the quarkonium energy as a

function of isospin density or chemical potential, we fur-
ther construct the ratios

Rðn; �bb; tÞ ¼ hO �bbðtÞOn�þðtÞ ~Oy
�bb
ð0ÞOy

n�þð0Þi
hO �bbðtÞ ~Oy

�bb
ð0ÞihOn�þðtÞOy

n�þð0Þi
: (17)

Since the two terms in the denominator decay exponen-
tially at large times as exp ð�E �bbtÞ and exp ð�En�þtÞ,
respectively, the ratio will behave as

Rðn; �bb; tÞ ! Zn; �bb exp ð��En; �bbtÞ þ � � � ; (18)

where �En; �bb ¼ En; �bb � En�þ � E �bb is the quantity of

central interest in our investigation.
As a check of our methods, we constructed ratios in

which we artificially removed the correlations between the
�bb system and the many-pion state by evaluatingP
cC �bbðcÞCn�ðcþ �cÞ, where CXðcÞ represents the corre-

lation function for the quantity X measured on configura-
tion c, and �c is either a constant displacement or a random
shift. In both cases, the removal of the correlation elimi-
nates the signal for an energy shift. This is shown for the�b

with n ¼ 5 in Fig. 5 for random shifts, and the same
qualitative effect is seen for all choices of the density and
quarkonium state that are considered.

IV. QUARKONIUM-PION SCATTERING

The quarkonium state in the presence of a single pion
allows us to study the scattering phase shift of this two-
body system using the finite-volume formalism developed
by Lüscher [33,34]. The S-wave quarkonium states we
consider have angular momentum J ¼ 0, 1 and define
the total angular momentum of the entire system since
the pion is spin-zero. Since the pion and �bb states have
different masses, the appropriate generalization of the
Lüscher relation to asymmetric systems [35] is required.
We can define a scattering momentum p through
the relation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaspÞ2=�2 þ a2t M

2
�bb

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaspÞ2=�2 þ a2t M

2
�

q
¼ at�E �bb;� þ atM �bb þ atM�; (19)

where M �bb � M
�bb
kin is the kinetic mass of the �bb state. The

energy shifts �E �bb;� are extracted from fits to the ratios

Rð1; �bb; tÞ; see Sec. VA for details of the fitting method
and the results for �E �bb;�.

The scattering momentum then determines the eigen-
value equation,

p cot� �bb;�ðpÞ ¼
1

�L
S

�
p2L2

4�2

�
; (20)

S ðxÞ ¼ lim
�!1

� Xjnj<�

n�0

1

jnj2 þ x
� 4��

�
; (21)

which is satisfied by the �bb-� scattering phase shift,
� �bb;�ðpÞ, at the scattering momentum.

Since we have three different lattice volumes, we can
extract the phase shift at multiple momenta. In Fig. 6, we
show the phase shifts that we extract for the �b-� and�-�
scattering channels. These interactions necessarily vanish
in the chiral limit as the quarkonium states are chiral
singlet objects [36]. We therefore expect only small scat-
tering phase shifts at the quark masses considered in our
study. The measured values of the S-wave phase shifts are
given in Tables V and VI, while for the P-wave states we

TABLE IV. Bottomonium energy splittings in vacuum, from
the 163 � 128 ensemble, for asm ¼ 2:75. All results are in MeV;
only statistical uncertainties are given for the lattice data. The
experimental results for the �ð1SÞ, �ð2SÞ, and �bf0;1;2gð1PÞ
masses are taken from the Particle Data Group [28]. The experi-
mental results for the hbð1PÞ and �bð2SÞ masses are taken from
Ref. [29], and the experimental �bð1SÞ mass is the weighted
average of the results from Refs. [29–32], with a scale factor of
1.9 for the uncertainty (following the Particle Data Group
procedure for averages).

Energy splitting Lattice Experiment

1P� 1S 473.0(3.5) 455.00(92)

2S� 1S 569.4(5.0) 572.5(1.4)

�ð1SÞ � �bð1SÞ 63.32(42) 62.5(3.6)

�ð2SÞ � �bð2SÞ 29.04(59) 24.3(4.5)

�b1ð1PÞ � �b0ð1PÞ 26.31(37) 33.34(66)

�b2ð1PÞ � �b1ð1PÞ 21.12(41) 19.43(57)

13P� hbð1PÞ 1.12(22) 0.8(1.1)
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FIG. 5 (color online). The ratio Rð5; �b; tÞ computed with and
without the correct correlation between the �b and many-pion
system on the 203 � 256 ensemble, as discussed in the main text.
The time dependence, which is related to the energy shift
through Eq. (18), only appears when correlations are included.
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are unable to extract statistically meaningful results. Since
the measured scattering momenta are small, it is possible to
perform a fit to the effective-range expansion,

p cot�ðpÞ=m� ¼ � 1

m�a
þm�r

2

p2

m2
�

þ � � � ; (22)

to extract the scattering length and effective range for these
interactions. This extrapolation is shown in Fig. 6 and
results in m�a�b;� ¼ 0:039ð13Þ and m�r�b;� ¼ 4:7ð3:7Þ
for the �b state, and m�a�;� ¼ 0:047ð14Þ and m�r�;� ¼
5:8ð3:3Þ in the case of the �, both channels corresponding
to a weak attractive interaction.

The pion-quarkonium scattering length depends ap-
proximately quadratically on the pion mass [37–39], and

hence we can estimate the scattering length at the physical
pion mass as

a
ðphysÞ
�bb;�

� ðmðphysÞ
� =m�Þ2a �bb;�; (23)

where a �bb;� is our lattice result for the scattering length at

m� ¼ 390 MeV. This gives

aðphysÞ�b;� ¼ 0:0025ð8Þð6Þ fm; aðphysÞ�;� ¼ 0:0030ð9Þð7Þ fm;

(24)

where the first uncertainty is statistical and the second
uncertainty corresponds to missing higher-order correc-
tions to Eq. (23), which we estimate to be smaller than
the leading-order term by a factor of m�=ð4�f�Þ � 0:24.
Related lattice QCD calculations of charmonium-pion
scattering lengths were reported in Refs. [37–39], and
model-dependent studies of quarkonium-pion interactions
can be found in Refs. [40–43]. In general, similarly small
attractive interactions were found there.

V. ISOSPIN DENSITY DEPENDENCE
OF QUARKONIUM

For larger isospin charge, we interpret the system of
pions in terms of a medium of varying isospin charge
density once the ground state is reached. In the correlators
Cðn; �bb; tÞ, the quarkonium state exists in this medium,
interacting with it. We consider first the S-wave quark-
onium states as they are statistically better resolved than
P-wave states.

A. S-wave states

The correlators Cðn; �bb; tÞ are shown in Fig. 7 for
�bb ¼ � at representative values of the isospin charge
and for asm ¼ 2:75 on the 203 � 256 and 163 � 128 en-
sembles. The in-medium correlators on the 203 � 256
ensemble exhibit a long region of Euclidean time in which
they decay as a single exponential. This region overlaps
with the regions in which the multipion correlators and the
individual quarkonium correlators are saturated by their
respective ground states. This gives us confidence that by
considering the correlator ratios of Eq. (17) we can legiti-
mately extract the quarkonium energy shifts in medium.
On the ensembles with T ¼ 128, thermal contamination is
more significant and restricts the range of useful time
slices, particularly for large isospin charge.
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FIG. 6 (color online). Extracted inverse phase shifts for �b-�
and �-� scattering (at m� � 390 MeV). Fitting the phase shift

to p cot�ðpÞ=m� ¼ � 1
m�a

þ m�r
2

p2

m2
�
, as shown by the shaded

band, we can extract the scattering length shown by the point at
p2=m2

� ¼ 0.

TABLE V. The �b-� phase shifts (at m� � 390 MeV)
extracted using the Lüscher method.

N3
s � Nt p2=m2

� ðp cot�ðpÞÞ�1 [fm] m�=ðp cot�ðpÞÞ
163 � 128 �0:0055ð6Þ 0.0138(18) 0.0274(36)

203 � 256 �0:0032ð3Þ 0.0148(15) 0.0294(31)

243 � 128 �0:0022ð4Þ 0.0192(38) 0.0381(75)

TABLE VI. The �-� phase shifts (at m� � 390 MeV)
extracted using the Lüscher method.

N3
s � Nt p2=m2

� ðp cot�ðpÞÞ�1 [fm] m�=ðp cot�ðpÞÞ
163 � 128 �0:0062ð7Þ 0.0153(20) 0.0303(40)

203 � 256 �0:0037ð4Þ 0.0172(18) 0.0341(36)

243 � 128 �0:0027ð4Þ 0.0220(42) 0.0435(83)
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The correlator ratios Rðn; �bb; tÞ, discussed above, are
shown for both � and �b at a heavy-quark mass asm ¼
2:75 on the 203 � 256 ensemble for a range of different
isospin charges, n ¼ 6, 12, and 18, in Figs. 8 and 9 along
with fits to time dependence using Eq. (18). Fits are
performed over a range of times where both the individual
multipion correlation functions and quarkonium correla-
tion functions exhibit ground-state saturation and are free
from thermal (backward-propagating) state contamination.
This is ensured by choosing the central fit range ½tmin ; tmax �
such that a fit over the range [tmin � 5, tmax þ 5] has an
acceptable quality of fit. On the 203 � 256 ensemble, we

choose tmin ¼ 20 and tmax ¼ 60, beyond which thermal
contributions are apparent. For the ensembles with
T ¼ 128, we choose tmax ¼ 40. Statistical uncertainties
are estimated using the bootstrap procedure. To estimate
the systematic uncertainties of the fits, we calculate the
standard deviation between the three energies extracted
from fits with the ranges [tmin � 5, tmax � 5], ½tmin ; tmax �,
and [tmin þ 5, tmax þ 5] on each bootstrap sample. The
systematic uncertainty is then obtained as the average of
this standard deviation over the bootstrap samples. On the
203 � 256 ensemble, the correlator ratios show some
long-range oscillations at large t, and there we use the
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FIG. 7 (color online). The correlators for the� in a medium corresponding to isospin charge n for n ¼ 6, 12, and 18 are shown. Data
are presented for asm ¼ 2:75 on the 203 � 256 (upper) and 163 � 128 (lower) ensembles. Correlators for the �b in medium behave
similarly.
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show the statistical uncertainties of fits of the form given in Eq. (18). Data are shown for asm ¼ 2:75 on the 203 � 256 (upper) and
163 � 128 (lower) ensembles.
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three ranges [tmin � 5, tmax � 20], ½tmin ; tmax �, and [tminþ5,
tmax þ 20] to estimate the systematic fitting uncertainty.

The extracted energy shifts and uncertainties are shown
in Table VII. For larger values of n, the energy shifts
become noisier and we limit our analysis to the range of
isospin densities where a successful fit could be performed
for a given ensemble.

To summarize the analysis of the correlator ratios for the
S-wave quarkonium states, Fig. 10 shows the isospin
denggsity dependence of the energy shifts, �En; �bb, for

both the � and �b channels. Figure 11 additionally shows
the derivative dð�EÞ=d�I, approximated by the finite dif-
ference ð�En; �bb ��Eðn�1Þ; �bbÞL3, taking into account the

strong correlations between the energies at different n.

TABLE VII. Energy shifts in MeV from fits to the S-wave correlator ratios on the various ensembles, for asm ¼ 2:75. For each
combination, we report the mean and the statistical and systematic uncertainties.

�En;�b
�En;�

n 163 � 128 203 � 256 243 � 128 163 � 128 203 � 256 243 � 128

1 �1:12ð11Þð08Þ �0:62ð06Þð02Þ �0:46ð06Þð06Þ �1:23ð12Þð09Þ �0:72ð07Þð03Þ �0:53ð07Þð06Þ
2 �1:95ð21Þð14Þ �1:20ð12Þð06Þ �0:89ð13Þð10Þ �2:15ð23Þð15Þ �1:38ð14Þð07Þ �1:01ð15Þð11Þ
3 �2:51ð30Þð18Þ �1:74ð19Þð12Þ �1:26ð21Þð13Þ �2:75ð34Þð20Þ �1:99ð22Þð13Þ �1:44ð23Þð14Þ
4 �2:83ð40Þð21Þ �2:25ð28Þð19Þ �1:57ð29Þð14Þ �3:08ð45Þð23Þ �2:54ð31Þð21Þ �1:80ð31Þð16Þ
5 �2:97ð51Þð26Þ �2:73ð37Þð28Þ �1:81ð37Þð16Þ �3:23ð58Þð29Þ �3:04ð40Þð28Þ �2:08ð41Þð18Þ
6 �2:99ð61Þð31Þ �3:17ð47Þð37Þ �1:97ð47Þð18Þ �3:23ð70Þð37Þ �3:47ð51Þð36Þ �2:27ð51Þð20Þ
7 �2:89ð71Þð37Þ �3:53ð58Þð46Þ �2:05ð58Þð22Þ �3:10ð81Þð45Þ �3:81ð61Þð45Þ �2:37ð63Þð24Þ
8 �2:69ð81Þð41Þ �3:80ð70Þð54Þ �2:05ð71Þð29Þ �2:86ð92Þð51Þ �4:03ð73Þð53Þ �2:38ð77Þð31Þ
9 �2:40ð89Þð44Þ �3:95ð83Þð62Þ �1:97ð86Þð38Þ �2:5ð1:0Þð0:6Þ �4:12ð86Þð62Þ �2:31ð93Þð41Þ
10 �2:05ð97Þð47Þ �3:95ð96Þð72Þ �1:8ð1:0Þð0:5Þ �2:1ð1:2Þð0:6Þ �4:1ð1:0Þð0:7Þ �2:2ð1:1Þð0:5Þ
11 �1:7ð1:1Þð0:5Þ �3:8ð1:1Þð0:8Þ �1:6ð1:2Þð0:6Þ �1:7ð1:3Þð0:7Þ �3:8ð1:2Þð0:9Þ �1:9ð1:3Þð0:7Þ
12 �1:3ð1:2Þð0:7Þ �3:5ð1:2Þð1:0Þ �1:3ð1:4Þð0:8Þ �1:2ð1:4Þð0:8Þ �3:4ð1:4Þð1:1Þ �1:6ð1:5Þð0:8Þ
13 �0:9ð1:3Þð0:8Þ �3:1ð1:4Þð1:2Þ �1:0ð1:6Þð1:0Þ �0:8ð1:6Þð1:0Þ �2:8ð1:7Þð1:3Þ �1:3ð1:8Þð1:0Þ
14 �0:6ð1:4Þð1:0Þ �2:5ð1:6Þð1:5Þ �0:6ð1:9Þð1:1Þ �0:4ð1:8Þð1:2Þ �2:1ð2:0Þð1:6Þ �1:0ð2:0Þð1:2Þ
15 �0:3ð1:5Þð1:3Þ �1:9ð1:8Þð1:8Þ �0:3ð2:1Þð1:3Þ �0:0ð2:0Þð1:4Þ �1:3ð2:4Þð1:9Þ �0:6ð2:3Þð1:4Þ
16 �0:0ð1:6Þð1:5Þ �1:2ð2:1Þð2:1Þ 0.1(2.4)(1.5) 0.3(2.1)(1.7) �0:5ð2:8Þð2:2Þ �0:2ð2:6Þð1:6Þ
17 0.2(1.7)(1.8) �0:6ð2:3Þð2:4Þ 0.4(2.7)(1.7) 0.6(2.3)(1.9) 0.2(3.1)(2.4) 0.2(2.9)(1.8)

18 0.5(1.8)(2.0) 0.0(2.6)(2.7) 0.7(3.0)(1.8) 0.8(2.4)(2.2) 0.9(3.5)(2.6) 0.5(3.2)(2.0)

19 0.7(1.9)(2.3) 0.6(2.8)(2.9) 0.9(3.3)(2.0) 1.1(2.5)(2.4) 1.5(3.8)(2.8) 0.8(3.5)(2.2)

20 0.9(1.9)(2.5) 1.1(3.0)(3.0) 1.1(3.6)(2.2) 1.3(2.5)(2.6) 2.1(4.0)(2.9) 1.0(3.8)(2.4)
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FIG. 9 (color online). The correlator ratios for the �b in a medium corresponding to isospin charges n ¼ 6, 12, 18. The shaded bands
show the statistical uncertainties of fits of the form given in Eq. (18). Data are shown for asm ¼ 2:75 on the 203 � 256 (upper) and
163 � 128 (lower) ensembles.
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Results are presented for the ranges of isospin charge
density where a statistically meaningful extraction of the
energy shift can be made. As can be seen in Fig. 10, there is
a significant negative energy shift for much of the range of
isospin density that we have investigated. The magnitude
of this shift first increases as the isospin density is in-
creased, before flattening off at a value of about 3 MeV
and possibly decreasing for large �I, albeit with increasing
uncertainty. A consistent picture is found from the deriva-
tives shown in Fig. 11. It is interesting to note that the
saturation occurs at the point at which a marked change in
the energy density of the many-pion system was observed
in Ref. [6], and is likely caused by the changing nature of
the screening medium at this point. The increase of the
energy shift at low densities is in line with the expectations
of the potential model discussed earlier, but the energy
shift is numerically larger than in the model (note that
the potential model was based on lattice results for the
screening of the static potential at m� � 320 MeV [5],
whereas the present NRQCD calculations were done with
m� � 390 MeV). The saturation effect was not predicted

by the model; since the model was developed using the
measured shifts in the potential in the low-density region,
this is not surprising.
We have performed these calculations for all three

ensembles of configurations but have only been able to
access a limited range of densities with the current
statistical precision. The 163 � 128 ensemble provides
the largest density range. The results from all of the en-
sembles are consistent in the region in which they overlap.
The zero-crossings of the derivatives in Fig. 11 on the
243 � 128 ensemble are at a slightly lower isospin density
than on the other two ensembles, but the difference is not
significant.
We also consider the shifts in the splitting between the

�b and � energies in medium as a function of the density.
We extract these shifts by calculating the correlated differ-
ences between the individual energies using the bootstrap
method. A summary of the isospin charge dependence of
this splitting is shown in Fig. 12. It can be seen that the �
energy is shifted slightly more than the �b energy by the
presence of the medium.
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FIG. 10 (color online). The dependence of the energy shift on the isospin charge density is shown for the three lattice volumes for the
�b (left panel) and� (right panel). The results are for asm ¼ 2:75. The shaded vertical band in each plot shows the region where there
is a peak in the ratio of the pionic energy density to the Stefan-Boltzmann expectation (see Fig. 22 of Ref. [6]).
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FIG. 11 (color online). The slope dð�EÞ=d�I of the �b energy shift (left panel) and � energy shift (right panel), approximated using
correlated finite differences. The data sets and shaded bands are as described in Fig. 10.
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B. P-wave states

We also analyze the lowest-energy P-wave quarkonium
states, hb, �b0, �b1, and �b2, in medium. We find that we
cannot resolve differences between the medium effects for
these different states and so consider a spin average of their
energies. In order to extract the spin-averaged in-medium
energy shift

�En;1P ¼ 3

12
�En;hb þ

1

12
�En;�b0

þ 3

12
�En;�b1

þ 5

12
�En;�b2

; (25)

we construct the following product of fractional powers of
the individual ratios:

Rðn; 1P; tÞ ¼ Rðn; hb; tÞ 3
12Rðn; �b0; tÞ 1

12Rðn; �b1; tÞ 3
12

� Rðn; �b2; tÞ 5
12; (26)

which at large t will behave as

Rðn; 1P; tÞ ! Z
3
12

n;hb
Z

1
12
n;�b0

Z
3
12
n;�b1

Z
5
12
n;�b2

exp ð��En;1PtÞ:
(27)

We also consider the analogous S-wave spin-average
combination

Rðn; 1S; tÞ ¼ Rðn;�b; tÞ14Rðn;�; tÞ34: (28)

Since the P-wave quarkonium correlators are themselves
statistically noisier than the S-wave correlators (see Figs. 3
and 4), the precision with which we can extract the P-wave
energy shifts is reduced.
Figure 13 shows representative correlator ratios

Rðn; 1P; tÞ, and Fig. 14 summarizes the extracted energy
shifts. Here we only show results from the 163 � 128 and
203 � 256 ensembles, because the P-wave results on the
243 � 128 ensemble were too noisy. The potential-model
expectation is that the P-wave shift will be larger than the
S-wave shift, and our lattice results confirm the expecta-
tion. In the lower panel of Fig. 14 we show the correlated
differences between the spin-averaged P-wave and S-wave
energy shifts.

C. Heavy-quark mass dependence

As discussed in Sec. III C, we have performed calcula-
tions for four different values of the heavy-quark mass,
asm, ranging from the bottom-quark mass down to �1:5
times the charm-quark mass. The analysis of the in-
medium correlators and ratios is very similar for all masses
and we do not present it in detail. To investigate the
variation of the energy shifts as a function of the heavy-
quark mass we compute �En; �bbðasmÞ ��En; �bbðasm ¼
2:75Þ using the bootstrap method. Because of correlations
between the measurements for different values of the
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FIG. 12 (color online). Isospin density dependence of the shift
of the S-wave hyperfine splitting between the � and �b states in
medium. The results are for asm ¼ 2:75.
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FIG. 13 (color online). The correlator ratios corresponding to the spin-averaged P-wave energy in a medium corresponding to
isospin charges n ¼ 3, 6, and 12. Data are shown for asm ¼ 2:75 on the 203 � 256 (upper) and 163 � 128 (lower) ensembles.
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heavy-quark mass, this provides a more statistically
precise determination of the difference than would be
evident from a naive comparison. Figure 15 shows these
energy differences for the different values of asm. It is
apparent that the strength of the energy shift in both �b

and � increases as the heavy-quark mass decreases, in
line with expectations from the potential model discussed
above. Since the quarkonium states for lower heavy-quark
masses are physically larger, they probe regions of larger
quark-antiquark separation where the potential shift is
more significant.

VI. DISCUSSION

Heavy-quark bound states provide an important probe of
the properties of amediumandhave been used in thiswork to
investigate systems of large isospin charge density created by
many-pion correlators. Specifically, we have used lattice
QCD to investigate how the presence of this medium modi-
fies the NRQCD energies of various quarkonium states. Our
calculations make use of ensembles of lattices with three

different physical volumes at a single lattice spacing and at a
single light-quark mass corresponding to m� � 390 MeV.
We have found a measurable decrease in the energy of both
the�b and� states and in the spin-averagedP-wave energy.
This decrease grows as the isospin charge increases before
flattening at a charge density at which Ref. [6] previously
observed strongly nonmonotonic behavior of the energy
density of the medium. The saturation of the energy shift
provides further support to the conjecture that a transition
from a pion gas to a Bose-Einstein condensate of pions
occurs at this point. In the region of low isospin density, the
energy shift shows an increase with the density, as expected
from a potential model augmented with the hadronic screen-
ing effect found in Ref. [18], but the effect is larger than
predicted by the model.
We have investigated how the observed energy shifts

depend on the mass of the heavy quark-antiquark pair,
finding an enhanced effect for lighter masses. Given the
phenomenological interest in J=� suppression in medium,
it will be interesting to investigate the analogous behavior in
the charmonium sector using alternative formulations of the
heavy-quark action more appropriate for the charm quark.
However, this is beyond the scope of the current work.
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FIG. 14 (color online). Upper panel: the shift in the spin-
averaged 1P energy as a function of the isospin charge density.
Lower panel: the shift of the spin-averaged 1P� 1S splitting.
The vertical band shows the isospin density at which the pionic
energy density is peaked relative to the Stefan-Boltzmann
expectation. The results are for asm ¼ 2:75.
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A similar study of NRQCD quarkonium correlators in
two-color QCD (QC2D) at nonzero quark chemical poten-
tial was recently presented by Hands et al. in Ref. [44]. In
contrast to QCD with three colors, in QC2D the addition of
a quark chemical potential does not result in a complex
action and numerical calculations can be performed effi-
ciently [45–47]. In Ref. [6] it was pointed out that the phase
structure of QCD at nonzero�I has an intriguing similarity
to that of QC2D at nonzero quark chemical potential. It is
apparent that the similarities persist to the case of quark-
onium energy shifts in medium as an at least qualitatively
similar dependence on the charge density/chemical poten-
tial is observed in the two-color QCD case. Recent work
[48–50] has probed the connections between different
gauge theories with nonzero (isospin) chemical potentials
and, as the extent of this similarity is surprising, this
warrants further investigation.

Finally, by looking at quarkonium-pion correlation func-
tions on three different volumes, we have extracted the

�b-� and �-� scattering lengths. Our results, interpolated

to the physical pion mass, are a
ðphysÞ
�b;� ¼ 0:0025ð8Þð6Þ fm

and aðphysÞ�;� ¼ 0:0030ð9Þð7Þ fm.
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B. Joó for development of the QDP++ and CHROMA software

suites [51]. We acknowledge computational support from

the National Energy Research Scientific Computing Center

(NERSC, Office of Science of the US DOE, DE-AC02-

05CH11231), and the NSF through XSEDE resources

provided by NICS. This work was supported in part by

DOE Grants No. DE-AC05-06OR23177 (JSA) and

No. DE-FG02-94ER40818. W.D. was also supported by

DOEOJI Grant No. DE-SC0001784 and Jeffress Memorial

Trust, Grant No. J-968.

[1] T. Matsui and H. Satz, Phys. Lett. B 178, 416

(1986).
[2] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett.

107, 052302 (2011).
[3] P. Petreczky, J. Phys. G 39, 093002 (2012).
[4] G. Aarts, C. Allton, S. Kim, M. P. Lombardo, M.B. Oktay,

S.M. Ryan, D. K. Sinclair, and J.-I. Skullerud, J. High

Energy Phys. 03 (2013) 084.
[5] W. Detmold and M. J. Savage, Phys. Rev. Lett. 102,

032004 (2009).
[6] W. Detmold, K. Orginos, and Z. Shi, Phys. Rev. D 86,

054507 (2012).
[7] D. Son and M.A. Stephanov, Phys. Rev. Lett. 86, 592

(2001).
[8] A. Hasenfratz and F. Knechtli, Phys. Rev. D 64, 034504

(2001).
[9] G. S. Bali, K. Schilling, and A. Wachter, Phys. Rev. D 56,

2566 (1997).
[10] R. G. Edwards, B. Joo, and H.-W. Lin, Phys. Rev. D 78,

054501 (2008).
[11] H.-W. Lin et al. (Hadron Spectrum Collaboration), Phys.

Rev. D 79, 034502 (2009).
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