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We consider a generalized Thirring model in 0þ 1 dimensions at finite density. In order to deal with

the resulting sign problem we employ stochastic quantization, i.e., a complex Langevin evolution.

We investigate the convergence properties of this approach and check in which parameter regions

complex Langevin evolutions are applicable in this setting. To this end we derive numerous analytical

results and compare directly with numerical results. In addition we employ indirect indicators to check for

correctness. Finally, we interpret and discuss our findings.
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I. INTRODUCTION

Despite all efforts, one of the outstanding problems of
lattice field theory until this day is the sign problem. The
introduction of a finite chemical potential �> 0 renders
the path integral measure complex and rapidly oscillating
in many theories of interest, like quantum chromodynam-
ics (QCD) in 3þ 1 dimensions. The oscillatory behavior
significantly increases the numerical costs, in particular in
the continuum limit. A hard sign problem exists for theo-
ries where the costs grow more than polynomially with the
volume. This obstacle hinders numerical ab initio studies
of strongly interacting matter under extreme conditions
and the understanding of the phase diagram of QCD.
There is no satisfactory solution known to the sign prob-
lem, despite the large number of proposed solutions.

Among the proposed solutions we can find reweighting
techniques, Taylor expansions about� ¼ 0, extrapolations
from imaginary chemical potential, the introduction of
dual variables and a canonical ensemble approach. For
recent reviews see e.g., Refs. [1,2]. However, due to the
overlap problem reweighting techniques are computation-
ally expensive and can only be used for small �, while
the numerical determination of Taylor coefficients is noisy
and the expansion converges slowly [3]. Also the continu-
ation from imaginary chemical potential is a nontrivial
task [4]. The application of dual variables and the canoni-
cal ensemble approach is still under active research, see
e.g., Refs. [5,6] for dual observables and Refs. [7,8] for
simulations with canonical ensembles.

In this paper we employ a different approach. Parisi

proposed already in 1983 that stochastic quantization

[9]—for a review see e.g., Ref. [10]—could circumvent

the sign problem in terms of a complex Langevin evolution

[11]. However, it is well known that the Langevin evolution

may converge towards unphysical fixed points. It has been
successfully applied to the SU(3) spin model [12,13], to an
effective theory of QCD in the strong-coupling limit [14],
simple models of quantum chromodynamics [15,16]
and to the relativistic Bose gas [17,18] at finite density.
Furthermore it has been applied to quantum fields in
Minkowski time [19,20], also in nonequilibrium [21].
Counterexamples are given by the three-dimensional XY
model at finite chemical potential for small � [22] and in
cases of gauge theories with static charges [23]. Early
investigations of complex Langevin evolutions can be
found in Refs. [24–26], while for reviews see e.g.,
Refs. [27,28]. Recently, a set of consistency conditions
indicating correct convergence could be derived [29–31].
When truncating this infinite tower of identities, one
obtains necessary conditions for correctness.
In this work we apply a complex Langevin evolution to a

generalized Thirring model at finite density. Here it serves
us as a model theory to check for the applicability of this
method. Our results extend the studies carried out in
Ref. [32], which led to ambiguous results. In this paper
we restrict ourselves to the case of 0þ 1 dimensions and
deal with the question of whether a complex Langevin
evolution can enable finite density calculations in this
setting. Further investigations of this approach in the
2þ 1-dimensional generalized Thirring model are pre-
sented in Ref. [33]. The 2þ 1-dimensional model appears
for example in effective theories of high temperature
superconductors and graphene, see e.g., Ref. [34] and
references given therein. It is also worth mentioning that
in the case of the three-dimensional massless Thirring
model, a fermion bag approach was successfully applied
in Ref. [35].
We organized the paper as follows: In Sec. II we intro-

duce a generalized Thirring model and its formulation on
the lattice. We discuss the Langevin equation and its
numerical implementation. In Sec. III we present a closed
expression for the partition function of the lattice theory
and derive some observables of interest. We also discuss
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additional indicators to evaluate the convergence proper-
ties of the complex Langevin evolution. In Sec. IV we
discuss the results of the numerical part of this work and
aim to answer the question in which parameter regime
results are reliable. We end this paper with concluding
remarks in Sec. V.

II. THE GENERALIZED THIRRING MODEL

A. Continuum formulation

We consider a generalization of the Thirring model.
The historical model was introduced in 1958 by Walter
E. Thirring and is one of the rare examples of an exactly
solvable quantum field theory [36]. While the original
model describes self-interaction fermions in 1þ 1 dimen-
sions, we consider Nf fermion flavors at finite density.

We begin with a generalization to d dimensions and then
later specialize to the case of 0þ 1 dimensions. The
Euclidean Lagrangian in the continuum reads

L� ¼ XNf

i¼1

��ið6@þmi þ�i�0Þ�i þ g2

2Nf

 XNf

i¼1

��i���i

!
2

:

(1)

The index i ¼ 1; . . . ; Nf enumerates fermion flavors, mi

and �i denote the bare mass and bare fermion chemical
potential of the respective flavor and g2 is the bare coupling
strength. The � matrices satisfy the Clifford algebra
f��; ��g ¼ 2���1.

The model shows breaking of chiral symmetry at � ¼ 0
in 2þ 1 dimensions [37]. For the 1þ 1-dimensional
Thirring model, the equivalence to the sine-Gordon model
can be shown [38,39].

The four-point interaction can be resolved with the
introduction of an auxiliary field A�. This formulation
reads

L ¼ X
i

��ið6@þ i 6Aþmi þ�i�0Þ�i þ Nf�A
2
�: (2)

Here we introduced the inverse coupling � ¼ 1=ð2g2Þ.
When integrating A� out, we recover (1). Although the
auxiliary field A� is not a gauge field, the model can be
interpreted as a more general gauge theory after gauge
fixing, see e.g., Ref. [40]. After integrating out the fermi-
onic degrees of freedom we find

Z ¼
Z

DA

�Y
i

detKi

�
e�SA ¼

Z
DAe�Seff ;

SA ¼ Nf�
Z 1=T

0
dt
Z

dd�1xA2
�:

(3)

Here we introduced the temperature T and Ki ¼ 6@þ i 6Aþ
mi þ�i�0. Including the fermion determinant in the
exponential term yields

Seff ¼ SA �
X
i

Tr logKi: (4)

For the fermion determinant the relation

detKið�Þ ¼ ½detKið��?Þ�? (5)

holds, thus rendering the path integral measure complex
for �> 0. At vanishing or purely imaginary chemical
potential, the determinant is real and the theory is free of
a sign problem. If the fermion determinant is replaced by
its modulus, we refer to this as the phase-quenched case.
Physically this corresponds to the introduction of an iso-
spin chemical potential.
Like quantum chromodynamics, the Thirring model

exhibits Silver Blaze behavior [41,42]. It implies that at
vanishing temperature there is a threshold �c, so that
observables are independent of the chemical potential �
for�<�c.While in the full theory the onset is given by the
physical fermion massmphys, in the phase-quenched theory

we have �c ¼ m�=2, where m� is the physical pion mass.

B. Lattice formulation

We consider the case of 0þ 1 dimensions—
corresponding to a quantum mechanical system—with
lattice spacing a and Nt lattice points. We employ stag-
gered fermions [43–46] and denote the number of lattice
flavors, i.e., the number of staggered fermion fields, byN .
Furthermore, we assume that Nt is even, as otherwise
the formulation of staggered fermions is conceptually
problematic and (5) is violated. In order to introduce a
finite chemical potential �, we use the prescription by
Hasenfratz and Karsch [47]. For notational ease we refer
to the one-component auxiliary field as At ¼ A0ðx ¼ tÞ
and all dimensionful quantities are scaled dimensionless
by appropriate powers of a. Furthermore, we introduce the
hopping parameter � ¼ 1=ð2mÞ. The temperature corre-
sponds to the inverse temporal extension T ¼ N�1

t .
Using this formulation the lattice partition function

reads

Z ¼
Z 1

�1

YNt

t¼1

dAt

�Y
i

detKi

�
e�SA (6)

with SA ¼ 1
2N �

P
tA

2
t and flavor index i ¼ 1; . . . ;N .

The fermion matrix takes the form

Kiðt; �Þ ¼ 1

2
ð1þ iAtÞe�i�tþ1;�

� 1

2
ð1� iA�Þe��i�t�1;� þmi�t�; (7)

where we impose antiperiodic boundary conditions,
cf. Refs. [32,48]. In our analysis we focus on a few observ-
ables, namely the fermion density and condensate, the
energy density and the phase factor of the fermion determi-
nant. In the following, sums over the flavor index i are not
implied. The fermion density of a given flavor is given by
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hnii ¼ 1

Nt

�
@ logZ

@�i

�
T
¼ 1

Nt

�
Tr

�
@Ki

@�i

K�1
i

��
: (8)

The fermion condensate follows from

h �	i	ii ¼ 1

Nt

�
@ logZ

@mi

�
T;�i

¼ 1

Nt

hTrK�1
i i (9)

and the energy density reads

h"ii ¼ �
�
@ logZ

@Nt

�
�i

þ�ihnii; (10)

which we normalize to h"iið� ¼ 0Þ ¼ 0.
The phase factor of the determinant is defined by

exp ði
Þ ¼ detK=j detKj. It can be expressed in terms of
the partition function

ZN ¼
Z 1

�1

Y
t

dAtðdetKÞN e�SA ; (11)

for N degenerated flavors and Zpq
N for the phase-

quenched case, where the fermion determinant in (11) is
replaced by its modulus. The expectation value of
exp ðiN
Þ follows in the N flavor phase-quenched
theory [49,50] as

heiN
ipqN ¼ ZN

Zpq
N

2 ½0; 1�: (12)

A value close to zero indicates a rapidly oscillating path
integral measure with a severe sign problem.

C. Complex Langevin evolution

The idea of stochastic quantization is that observables in
a Euclidean quantum field theory can be obtained as the
equilibrium values of a statistical system coupled to a heat
bath [10]. The problem of quantizing a field theory is then
reduced to finding the static solutions of an associated
Langevin equation. If the action is real and bounded
from below, correctness of this approach can be ensured.
We can also formally generalize to the case of a complex
action [11]. This situation naturally arises when consider-
ing field theories at finite density. Until this day there is a
lack of rigor mathematical understanding regarding the
validity of this procedure. However, in cases where it is
converging correctly one has a very elegant solution for the
sign problem at hand.

We aim to check for the applicability of complex
Langevin evolutions to the Thirring model. To this end
we have to find the static solution of the Langevin equation

@

@�
Atð�Þ ¼ ��Seff½A�

�Atð�Þ þ
ffiffiffi
2

p
�tð�Þ; (13)

where � denotes a fictitious time. The noise term �tð�Þ
follows a Gaussian distribution with

h�tð�Þi ¼ 0; h�tð�Þ�t0 ð�0Þi ¼ �ðt� t0Þ�ð���0Þ:
(14)

A simple approach to solve the Langevin equation numeri-
cally is a first order integration scheme with fixed stepsize

�L. Higher order integration schemes ofOð�3=2L Þ have been
employed in the literature too [13,51]. However, in some
models fixed stepsize integration schemes fail due to the
occurrence of run-away trajectories, which can be avoided
by the use of an adaptive stepsize [52,53]. Although a
constant stepsize proved here to be sufficient [32], we
employ an adaptive stepsize algorithm due to better
convergence properties. For N degenerated flavors our
discretization of (13) reads

Atð�þ �LÞ ¼ Atð�Þ þ �LDtð�Þ þ ffiffiffiffiffiffiffiffi
2�L

p
�tð�Þ (15)

with drift term

Dtð�Þ ¼ �N �Atð�Þ þN i

2
½K�1ðtþ 1; tÞe�

þ K�1ðt; tþ 1Þe���: (16)

After each integration step the stepsize �L will be updated
according to

�L � �Lð�Þ ¼ �

max tjDtð�Þj (17)

with stepsize parameter � ¼ 10�3 (compare to Ref. [32]).
It is possible to generalize the real noise term in (15) to

an imaginary one [32] via the replacement

�tð�Þ ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ 1

p
Re�tð�Þ þ i

ffiffiffiffi
I

p
Im�tð�Þ (18)

with I � 0. The noise correlators then read

hRe�tð�ÞRe�t0 ð�0Þi ¼ hIm�tð�ÞIm�t0 ð�0Þi
¼ �ðt� t0Þ�ð���0Þ (19)

and hRe�tð�ÞIm�t0 ð�0Þi ¼ 0. Assuming correctness of the
complex Langevin evolution and numerical stability, we
expect expectation values to be independent of I .

III. ANALYTICAL RESULTS

A. Exact partition function

We begin with the partition function for one staggered
fermion field, i.e., N ¼ 1. We incorporate antiperiodic
boundary conditions and for brevity we introduce

B� ¼ 1

2ð2�ÞNt

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Bc=�

q �
Nt

;

Bc ¼ �þ 4ð�þ 1Þ�2:
(20)

Then the partition function (6) reads

Z1 ¼ 2

�
�

2�

�
Nt=2½Bþ þB� þ cosh ðNt�Þ�: (21)
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This can be shown for example by systematic saturation of
the Grassmann integral or the help of the determinant
identities in Ref. [54]. For the fermion density we find

hni ¼ sinh ð�=TÞ
Bþ þB� þ cosh ð�=TÞ ; (22)

while the fermion condensate is given by

h �		i ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=Bc

p ðBþ �B�Þ
Bþ þB� þ cosh ð�=TÞ : (23)

The expression for the energy density is rather lengthy and
we will not quote it here explicitly. Figure 1 shows the
dependence of these observables on both � and �. For
large�we find a condensed phase, which is well separated
for large Nt.

As it turns out, we can take the continuum limit of the
density hni analytically. To this end we recover the physical

units of all dimensionful quantities by reintroducing the
lattice spacing a. We fix the dimensionful temperature
T�1 ¼ aNt, express the lattice spacing a as a function of
the number of lattice points Nt and take the limit Nt ! 1.
We obtain

hnicont ¼
sinh ð�TÞ

1
2 exp ð���

2T��Þ½1þ exp ð 1
T�Þ� þ cosh ð�TÞ

; (24)

where all units are explicitly dimensionful. In the zero
temperature limit T ! 0 we find hnicont ¼ �ð��mphysÞ
with physical fermion mass mphys ¼ mþ g2 and bare

mass m.

B. Several flavors

We also considered the case of more than one lattice
flavor, but only quote here the simplest case of (11) for
Nt ¼ 2 lattice points and N ¼ 2 staggered fermion fields

Z2 ¼ �

32�3�4
½2�2 þ 4��2 þ 8�2�2 þ 5�4 þ 12��4

þ 12�2�4 þ 8�2�2 cosh ð2�Þ þ �4 cosh ð4�Þ
þ 8��4 cosh ð2�Þ � 4��4 cosh ð4�Þ
þ 16�2�4 cosh ð2�Þ þ 4�2�4 cosh ð4�Þ�: (25)

We observe that for two flavors the density, condensate and
energy density have plateaus in the range of � � 0:3–1:2,
see also Fig. 9. They appear between the onset to the
condensed phase and saturation of the density. The height
of the plateau depends on the masses of the flavors, and in
the case of degenerated flavors it is exactly at half of the
maximum value of hni or h �		i, respectively. If � is very
small or large, the plateaus eventually disappear. For large
� this can be understood from the weak coupling limit, see
Sec. III C. The existence of these plateaus on the lattice is
further confirmed by a heavy dense limit [33] and the
Monte-Carlo studies in Sec. IVD. In the general case of
N flavors, we can find up toN � 1 intermediate plateaus
in these observables. We give a natural explanation of these
structures in the Appendix.

C. Weak coupling limit

In the limit of � � 1 the path integral measure has a
strong peak at the origin and can be approximated by a
Dirac � function. For N flavors we find

Zweak
1 ¼

�
2�

N �

�Nt
2

�
2

2Nt

�
N �Y

i

½Bþ
i þB�

i þ cosh ðNt�Þ�

(26)

for the partition function in the weak coupling limit. Here
we introduced

B�
i ¼ 1

2ð2�iÞNt

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

i

q �
Nt

: (27)

FIG. 1. In the phase structure in d ¼ 0þ 1 we find a con-
densed phase for large �; (a) plot of the fermion density hni;
(b) plot of the fermion condensate h �		i.
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This can be shown again using the identities in Ref. [54].
Note that in this limit the contribution from different
flavors factorize and the phase-quenched case equals the
full theory. ForN degenerated flavors, i.e.,B�

i ¼ B�, the
total fermion density is given by

hni ¼ N sinh ð�=TÞ
Bþ þB� þ cosh ð�=TÞ (28)

and the fermion condensate by

h �		i ¼ 2�N ðBþ �B�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

p
ðBþ þB� þ cosh ð�=TÞÞ : (29)

While approaching the noninteracting limit, the plateau
structures observed for N > 1 disappear.

D. Analyticity in �2

An observable O which is even in � can be interpreted
as a function of �2. Assuming analyticity in �2, we can
analytically continue O to purely imaginary chemical
potential, i.e.,�2 	 0. In this case the fermion determinant
is real and free of a sign problem due to (5) and we can
employ a real Langevin evolution. For �2 > 0 we employ
a complex Langevin evolution.

Assuming the correctness of the complex Langevin
evolution, O should be analytic at �2 ¼ 0. Any nonanaly-
ticity would be an indicator for incorrect convergence. This
criterion was previously employed in Ref. [13] and in this
work we apply it to the condensate h �		i.

E. Consistency conditions

In Ref. [31] the authors derived a set of identities
indicating correct convergence of expectation values
obtained by a complex Langevin evolution. These consis-
tency conditions state that for all entire holomorphic
observables O the expectation value hLOi ¼ 0 has to
vanish. Here

Lt ¼
�
d

dAt

þDt

�
d

dAt

(30)

denotes the Langevin operator and Dt ¼ �dSeff=dAt the
drift term.

As this defines an uncountable number of identities, we
restrict the analysis to a finite subset. We follow Ref. [31]
and consider here observables Oðt; kÞ ¼ exp ðikAtÞ. The
resulting conditions take the form

hLtOðt; kÞi ¼ hik½ikþDt�eikAti ¼ 0; (31)

which have to hold for8t and8k. Without loss of general-
ity we set t ¼ 1. Besides Oðt; kÞ, we also check the
consistency conditions for the fermion density and the
condensate.

F. Propagator at finite density

We define the propagator at finite temperature T ¼ N�1
t

and chemical potential � by

h	ðt1Þ �	ðt2Þi ¼ 1

Z1

hK�1ðt1; t2Þi (32)

with partition function Z1 given by (21). It is helpful to
introduce the notation

Gð�Þ ¼ h	ð1Þ �	ð1þ �̂Þi (33)

with �̂ ¼ �modNt. For small lattices, the inversion of the
fermion matrix and the calculation of the expectation
value can be done analytically. A typical example can be
found in Fig. 2. For small distances the propagator
Gð�Þ falls off exponentially, but due to the finite lattice
extension eventually rises again. The introduction of a
finite chemical potential � shifts the minimum and results
in Gð�Þ � Gð��Þ.

IV. NUMERICAL RESULTS

A. Implementation

In the previous section we derived numerous analytical
results, which allow us to benchmark the complex
Langevin evolution and check for its correctness. For
the numerical simulations we implemented an adaptive
numerical integration scheme of the associated Langevin
equation as described in Sec. II C. Using a computer alge-
bra system, we can determine the inverse of the fermion
matrix in (7) and find an analytical expression of the drift
term in (16) for small lattices in order to minimize numeri-
cal errors.
The evaluation of the observables for a given set of

parameters begins with a hot start, i.e., the random initial-
ization of the auxiliary field, followed by typically 104

steps for thermalization. The field configuration is then
sampled about Oð105Þ times and used to evaluate the
observables. To reduce potential autocorrelation effects,
two subsequent samples are separated by ten dummy steps.
In all following plots, numerical values obtained by a
complex Langevin evolution will be denoted by ‘‘CLE,’’

103

104

105

106

 0  1  2  3  4  5  6

P
ro

pa
ga

to
r 

|G
(∆

)|
2

Distance ∆

Full theory - β = 1, m = 1, Nt = 4

µ = 0.0
µ = 0.1
µ = 0.2

FIG. 2 (color online). The propagator at different values of �.
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while analytical results are denoted by ‘‘Theory.’’ A simple
method to estimate the error is to take the standard devia-
tion of the different samples of a given observable in a
particular run. However, the resulting errors are much
larger than the empirical observed statistical fluctuations
between different runs and are overestimated, see Fig. 3 for
a typical example. In order to obtain more reliable error
bounds, we employ a bootstrap analysis [55]. Besides the
statistical error, we also have to deal with systematic errors
induced by a finite stepsize. To this end we checked that the
stepsize parameter � in (17) is sufficiently small.

As an additional test we used an adaptive quasi-
Monte Carlo strategy [56] for the direct evaluation of
expectation values, which works well for sufficiently small
Nt and �. On larger lattices the sign problem is severe
and the algorithm fails. As the path integral measure falls
off rapidly for large field configurations, we replace the
numerically difficult noncompact integration over the
auxiliary field by a compact domain ½��;��Nt . We
parametrize this ad hoc cutoff � by

� ¼
ffiffiffiffiffiffiffiffiffiffiffi
2


N �

s
: (34)

If the geometric mean of the field configuration is �, then
the path integral measure is dampened by a factor of
exp ð�
Þ. If we choose 
 too small, we introduce a large
cutoff effect. If 
 is very large, we still have the problem
that the integrand is close to zero in most of the integration
region. As a compromise here we use 
 ¼ 10. In figures,
we refer to numerical results obtained by this method
as ‘‘MC.’’

B. Comparison of results

We can see the results of a typical run for two different
sets of parameters in Figs. 4 and 5. Because of the high
sample size, the error bars tend to be very small. We see
that the results obtained with an adaptive Monte-Carlo
method are in good agreement with analytical results.

The numerical results obtained with a complex Langevin
evolution show some deviations for intermediate �.
We systematically observe that the gap widens for decreas-
ing values of �, i.e., stronger couplings. In addition
the numerical evaluation becomesmore noisy as the relative
magnitude of the noise term �t increases. For large
� the agreement becomes better and the numerics are
very stable.
From the phase factor of the fermion determinant, we

see how the sign problem gets more severe for increasing
lattice sizes. However, our approach is not affected by this.
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FIG. 3 (color online). Typical errors estimated by the standard
deviation.
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FIG. 4 (color online). Benchmarking results for � ¼ 3:
(a) fermion density hni; (b) fermion condensate h �		i; and
(c) phase factor of determinant hei
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It is interesting to note that the sign problem seems to be
less pronounced when using complex Langevin evolutions.

In Fig. 5 we can already see how in the limit T ! 0 the
Silver Blaze behavior becomes apparent. In the limit
Nt ! 1 the observables will eventually become indepen-
dent of the chemical potential � up to some threshold �c.
It seems that the position of this onset differs slightly from
analytical predictions. However, for large � they are in
good agreement.

That the observed deviations are not just an effect of a
finite stepsize can be seen in Fig. 6. For a typical set of

parameters we calculate the fermion density and conden-
sate for varying stepsize factors �. The extrapolation shows
that also in the limit � ! 0 there is a discrepancy between
theory and complex Langevin evolutions.

C. Coupling parameter dependence

In the weak coupling limit of Sec. III C, we observe very
good agreement of all numerical and analytical results. For
increasing � the numerical results are asymptotically
approaching analytical results. In Fig. 7 we see that for
� * Oð100Þ the method is then able to deliver reliable
results. In the XY model at finite density [57] a similar
behavior was observed. For small � the authors observed
incorrect convergence, while for large � they found agree-
ment. However, in the XY model there is a clear separation
between both regimes.
As already pointed out, the applicability of complex

Langevin evolutions depend on the magnitude of �. In
Fig. 8 we find the density and condensate as a function
of �. We observe that for weak couplings, i.e., in the
limit � ! 1, it slowly converges towards the analytical
results. For � ¼ Oð100Þ and above we then find good
agreement. Contrariwise for strong couplings we ob-
serve a large discrepancy. Moreover, for � & 1 the
evaluation of observables is very noisy, resulting in
large error bars.
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D. Several flavors

In Sec. III B we found that in a certain range of �,
the density, the condensate, and the energy density show
up to N � 1 intermediate plateaus when considering N
flavors.

We give an example for N ¼ 2 flavors at a coupling of
� ¼ 0:6 in Fig. 9. For small lattice sizes and small �
Monte Carlo studies confirm these predictions. Because
of the sign problem we are restricted to � & 2 with these
particular parameters, before the numerical evaluation
breaks down.

When trying to reproduce the plateaus with a complex
Langevin evolution, we notice that for every value of � the
result qualitatively resembles the N ¼ 1 case. Directly
after the onset the fermion density rises until it reaches
saturation. Only in the limit of large � the plateaus dis-
appear in the analytical solution and there is agreement
with numerical results.

E. Analyticity at �2 ¼ 0

As described in Sec. III D, we check for possible
nonanalytic behavior of the condensate h �		i at �2 ¼ 0.
In Fig. 10 we see that for �2 	 0 the real Langevin
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evolution is, as expected, in agreement with theory.
Because of the absence of a sign problem numerical
results are reliable in this regime. Also for small �2 * 0
there is no statistically significant deviation. Hence,
the condensate h �		i is analytic within our numerical
accuracy.

If we increase� further, we observe that at some point a
disagreement becomes apparent. The resulting gap is more
pronounced for small �. It does not appear suddenly, but
develops smoothly and is visible for all nonlarge �.

F. Consistency conditions

We checked the consistency conditions of Sec. III E for
the density hni, the condensate h �		i, and Oðt ¼ 1; kÞ for
different sets of parameters at � ¼ 10�3. Before we begin
with the interpretation of the consistency conditions, we
point out again the problem of using the standard deviation
to estimate error bounds. The resulting error is much
larger than the actual observed statistical fluctuations and
typically we obtain results like e.g., RehLOð1; 1Þi ¼
0:0152� 6:1221 for Nt ¼ 4, I ¼ 0, N ¼ � ¼ m ¼
� ¼ 1. Here Nt denotes the temporal extension of the
lattice,N the number of degenerated flavors, I the imagi-
nary noise, � the inverse coupling constant, m the mass,
and � the chemical potential. The overestimation of the
error makes a meaningful interpretation of the conditions
impossible. Hence, we estimate the error with a bootstrap
analysis.

We begin with the consistency conditions of the density
and the condensate. The evaluation is extremely noisy
and only becomes slightly more stable for large values
of �. Without loss of generality we restrict ourselves to
the case of t ¼ 1. As an example we quote RehLni¼
ð143�305Þ�103 and RehL �		i¼ ð�52�167Þ�103

for Nt ¼ 4, I ¼ 0, N ¼ � ¼ m ¼ � ¼ k ¼ 1. The
resulting expressions seem to be numerically ill-defined
and despite large sample sizes, we are unable to draw
any conclusions about the validity of the conditions.
In our case both observables proved to be unsuitable to
check for the correctness of the complex Langevin
evolution.

The evaluation of the conditions for the observable
hOðt; kÞi on the other hand is stable for all checked
parameter sets. If we take the error bounds seriously, we
have to conclude that some conditions are not compatible
with a vanishing value and are violated. We quote here
RehLOðt; kÞi ¼ �0:1395� 0:0110 for Nt ¼ 4, I ¼ 0,
N ¼ � ¼ m ¼ k ¼ 1, � ¼ 3 as a typical example of a
violated condition and RehLOðt; kÞi ¼ 0:0061� 0:0208
for Nt ¼ 4, I ¼ 0, N ¼ � ¼ m ¼ � ¼ k ¼ 1 as one
which is compatible with a vanishing value. We also
checked the conditions for k ¼ 2, 3, which turned out to
be more noisy compared to the k ¼ 1 case. We interpret the
violated conditions as an indicator for incorrect conver-
gence of the complex Langevin evolution.

When considering the distributions of the evaluated
consistency conditions, we can gain further insights. In
Fig. 11 we find histograms of Ln, L �		, and LOð1; 1Þ. In
general, the distributions are asymmetrical and non-
Gaussian. In the case of the density and condensate we
saw that the distribution falls off extremely slowly and we
observed values with an absolute value of up to Oð109Þ,
resulting in a very noisy evaluation. In contrast the distri-
bution of LOð1; 1Þ falls off rapidly.
It is also interesting to check the distribution of the

imaginary part of the auxiliary field itself. In the derivation
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of the consistency condition, one assumes that boundary
terms of the field would vanish. It is then important to
check that the imaginary part falls off rapidly enough. In
Fig. 12 we find a typical histogram of the average imagi-
nary part Im �A ¼ N�1

t

P
tImAt with 105 samples. We see

that the resulting distribution appears to be compatible with
our hypothesis.

G. Eigenvalues of the fermion matrix

In Fig. 13 we find a scatter plot of the eigenvalues of the
fermion matrix K defined in (9). We sampled approxi-
mately 6� 104 eigenvalues during a complex Langevin
evolution. Eigenvalues come in point-reflected pairs at
point ðm; 0Þ, where m denotes the mass of the fermion.
For a vanishing chemical potential � ¼ 0 all eigenvalues
lie on the line Re� ¼ m.

H. Imaginary noise

Assuming correct convergence of the complex Langevin
evolution, observables should turn out independent of the

imaginary noise term controlled by I . However, in Fig. 14
we actually observe such a dependence. This was observed
previously in other systems too [30]. Attempts to fine-tune
I so that the complex Langevin evolution is deformed and
correctly reproduces analytical results did not succeed. In
almost all cases an imaginary noise I > 0 caused a more
severe disagreement between numerical and analytical
results.

I. Periodic continuation of the imaginary part

A necessary condition for the correctness of the complex
Langevin evolution is that the distributions of the imagi-
nary parts of the fields have to fall off rapidly enough.
Although in the generalized Thirring model this seems to
be the case, we can restrict the imaginary part of the field to
the interval ½��;þ�� and make a periodic continuation.
A similar approach was employed in Ref. [30] (see also
Ref. [29]), where a fine-tuning of the cutoff enabled simple
toy models to reproduce correct results. However, in
Fig. 15 we see that every finite value of � widens the
gap to the correct results. Hence, in this simple form this
approach cannot be applied to the generalized Thirring
model.
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FIG. 13 (color online). Eigenvalues of the fermion matrix.
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V. CONCLUSIONS

In this paper we applied a complex Langevin evolu-
tion to a generalized Thirring model in 0þ 1 dimen-
sions in order to deal with the resulting sign problem
for �> 0. For intermediate values of the chemical
potential we found a gap between analytical and
numerical results, which size depends on the inverse
coupling �. While for small � the discrepancy is large,
we observe agreement for large �. In particular, for
� * Oð100Þ we are usually able to reproduce analytical
results with high accuracy. Furthermore for small � * 0
we did not observe any significant deviations to theo-
retical predictions and the fermion condensate is analytic
at �2 ¼ 0.

However, in the case of more than one flavor we ob-
served a qualitative disagreement. Our approach seems to
be unable to reproduce the plateaus we found for certain
ranges of �. Another interesting observation is the viola-
tion of several consistency conditions, indicating that the
complex Langevin evolution might not converge correctly
in general. Attempts to force correct convergence by an
ad hoc fine-tuning of a periodic cutoff � or an imaginary
noise term I did not succeed.

In a subsequent paper, we will present our findings for
the generalized Thirring model in 2þ 1 dimensions [33].
Further investigations have to deal with the question of
how to address the aforementioned problems. In particular,
coordinate transformations as suggested in Ref. [58]
and gauge cooling procedures like the one employed in
Ref. [59] might allow a stabilization of the complex
Langevin evolution.

ACKNOWLEDGMENTS

We thank I.-O. Stamatescu for uncountable discussions
and useful remarks on the manuscript. We also thank
C. Gattringer for a proof of (21) by systematic saturation
of the Grassmann integral and V. Kasper for a proof using
the determinant identities in Ref. [54]. Furthermore we
acknowledge E. Seiler’s derivation of the plateau structures
as presented in the Appendix. Finally, we thank G. Aarts
and D. Sexty for discussions. This work is supported by the
Helmholtz Alliance HA216/EMMI and by ERC-AdG-
290623. C. Z. thanks the German National Academic
Foundation for financial support.

APPENDIX: PLATEAUS

As previously discussed, in the case of N > 1 flavors
we observe intermediate plateaus in the considered observ-
ables. In the nonlinear O(2) sigma model, the authors of
Ref. [60] found similar structures. They explained this
finite size behavior with the crossing of energy levels at
finite chemical potential. However, here we reproduce
them with the help of a continuum model, which corre-
sponds to the 0þ 1 dimensional generalized Thirring
model. To this end we consider the Hamiltonian

H ¼ XNf

i¼1

miðni þ �niÞ þ g2
 XNf

i¼1

Qi

!
2

(A1)

with flavor index i ¼ 1; . . . ; Nf and bare masses mi. We

introduced Qi � ni � �ni, the particle number operator

ni ¼ ayi ai and the antiparticle number operator �ni ¼
byi bi, which are given in terms of ladder operators. From
the grand canonical partition function

Z ¼ Tr exp

�
��T

�
H �X

i

�iQi

��
(A2)

with �T ¼ T�1 and temperature T, we can derive the
fermion densities

hnii ¼ 1

�T

@ logZ

@�i

; hnitotal ¼
X
i

hnii: (A3)

The plateaus are a result of the competition between theQi

and Q2
i terms. A typical plot for Nf ¼ 2 can be found in

Fig. 16. Like in the Thirring model they appear for inter-
mediate values of g2 and eventually disappear in the limit
of small and large values.
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