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We apply the relative weights method [J. Greensite, Phys. Rev. D 86, 114507 (2012)] to determine the

effective Polyakov line action for SU(2) lattice gauge theory in the confined phase, at lattice coupling

� ¼ 2:2 and Nt ¼ 4 lattice spacings in the time direction. The effective action turns out to be bilinear in

the fundamental representation Polyakov line variables, with a rather simple expression for the finite range

kernel. The validity of this action is tested by computing Polyakov line correlators, via Monte Carlo

simulation, in both the effective action and the underlying lattice theory. It is found that the correlators in

each theory are in very close agreement.
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I. INTRODUCTION

The Polyakov line action (PLA) is an action obtained
from lattice gauge theory when all degrees of freedom are
integrated out, under the constraint that the Polyakov line
holonomies are held fixed. There are some indications
[1–4] that the sign problem in this theory, at nonzero
chemical potential, may be more tractable than the sign
problem in the underlying lattice gauge theory (for a re-
view, cf. Ref. [5]), and if so it could provide us with a new
tool for investigating the QCD phase diagram. It is fairly
straightforward, given the PLA at chemical potential � ¼
0, to introduce a nonzero chemical potential, as we discuss
in Sec. V. The problemwe address here is how to extract the
PLA from the underlying lattice gauge theory at � ¼ 0.

This article is a follow-up to Ref. [6], which presented a
novel ‘‘relative weights’’ technique for deriving the PLA,
based on a method used previously in studies of the Yang-
Mills vacuum wave functional [7]. The method was tested
at strong couplings, where the answer is known, and a
conjecture for the action at a weaker coupling, for SU(2)
pure gauge theory at� ¼ 2:2 and inverse temperatureNt ¼
4 lattice spacings, was presented. This conjecture was
based, however, on a study limited to fairly atypical regions
of field configuration space. Below we will apply the
method in the region expected to dominate the path inte-
gral, and a rather different (and in fact simpler) action from
the one conjectured in Ref. [6] emerges. As a crucial test of
the derived PLA, we compute the two-point Polyakov line
correlator from Monte Carlo simulations of both the PLA
and the underlying gauge theory. These correlators will be
seen to agree quite accurately. Our effective PLA turns out
to be only bilinear in the Polyakov line variables, with a
simple expression for the finite range kernel.

There have been a number of previous attempts to derive
the PLA from lattice gauge theory at finite temperature.
These include strong-coupling expansions [2], the Inverse
Monte Carlo method [8], and the demon approach [9]. All
of these methods generate effective Polyakov line actions
of varying degrees of complexity. We believe, however,
that an accurate agreement of Polyakov line correlators in
the confined phase, computed in the effective and under-
lying lattice gauge theories, has not been demonstrated in
any of the previous studies, at least not beyond two or three
lattice spacings in Polyakov line separation.
It should also be mentioned that there are a number of

studies which are concerned with deducing the Polyakov
line potential, with particular application to the deconfine-
ment transition, cf. Ref. [10] and references therein. There
have also been efforts, e.g., Ref. [11], to express the
fermion determinant in terms of a potential involving
Polyakov lines. These studies do not arrive at a full PLA
as defined above, and hence their focus is somewhat differ-
ent from ours.
Our article is organized as follows: An improved version

of the relative weights method is presented in Sec. II below.
The technique is applied to pure SU(2) gauge theory in
Sec. III, again at � ¼ 2:2 and Nt ¼ 4, and the Polyakov
line correlators of the derived PLA are compared to those
of lattice gauge theory. Application to a gauge-Higgs
theory, with a scalar matter field explicitly breaking global
Z2 center symmetry, is presented in Sec. IV. Section VI
contains our conclusions. The extension of our method to
gauge theories with dynamical fermions is discussed in the
Appendix.

II. THE RELATIVE WEIGHTS METHOD

The relative weights method, as applied to deriving
the PLA SP, was introduced in Ref. [6]. The technique
is particularly well adapted to computing path (or
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‘‘directional’’) derivatives of the effective action SP in
the space of all Polyakov line configurations. A single
configuration fUxg is a point in this space, where we
specify the group-valued Polyakov line holonomies Ux at
each spatial point x in a three-dimensional volume. Let
fUxð�Þg be a path through this space of configurations,
where � parametrizes the path. The relative weights
method computes the path derivative @SP½Uxð�Þ�=@� at
some given � ¼ �0. In this section we present a variant of
the relative weights approach which, while equivalent to
the original method of Ref. [6], is numerically more
efficient.

In order to minimize minus signs later on, we adopt
the convention that the Boltzmann weight is proportional
to exp ½þSP�. Let SL be the lattice gauge action on an
L3 � Nt volume with coupling � for the Wilson action. SL
may contain pseudofermion or bosonic matter degrees of
freedom, collectively denoted by �. It is convenient to go
to temporal gauge, so that all timelike link variables are set
to the unit matrix except on a time slice at t ¼ 0. Then the
PLA SP is defined as

exp½SP½Ux��¼
Z
DU0ðx;0ÞDUkD�

�
�Y

x

�½Ux�U0ðx;0Þ�
�
eSL : (1)

Because of the residual U0ðx; 0Þ ! gðxÞU0ðx; 0ÞgyðxÞ
symmetry in temporal gauge, it follows that SP can only
depend on the eigenvalues of the Ux matrices.

While the functional integration in (1) can only be
carried out in special cases, e.g., via strong coupling and
hopping parameter expansions valid in a certain range of
parameters, the ratio (or ‘‘relative weights’’) exp ½SP½U0

x��=
exp ½SP½U00

x �� evaluated at nearby configurations U0
x, U

00
x is

calculable numerically. This fact enables us to compute
path derivatives of SP.

Let us consider a set of M Polyakov line configurations

ffUðnÞ
x ; all xg; n ¼ 1; 2; . . . ;Mg; (2)

corresponding to values of the path parameter

�n ¼ �0 þ
�
n�Mþ 1

2

�
��; n ¼ 1; 2; . . . ;M; (3)

and define

SðmÞ
L ½U;�� � SL½U0ðx; 0Þ ¼ UðmÞ

x ; Ukðx; tÞ; �ðx; tÞ� (4)

to be the lattice action in temporal gauge with the timelike
links at t ¼ 0 fixed to the mth member of the set (2). We
also define

�Sðmþ1Þ
P � SP½Uðmþ1Þ� � SP½UðmÞ�;
Zm �

Z
DUkD�eS

ðmÞ
L :

(5)

From (1), we have

exp ½�Sðmþ1Þ
P � ¼ exp ½SP½Uðmþ1Þ��

exp ½SP½UðmÞ��

¼
R
DUkD�eS

ðmþ1Þ
LR

DUkD�eS
ðmÞ
L

¼
R
DUkD� exp ½Sðmþ1Þ

L � SðmÞ
L �eSðmÞ

LR
DUkD�eS

ðmÞ
L

¼ hexp ½�Sðmþ1Þ�im; (6)

where h� � �im indicates that the expectation value is taken

from ensembles with Boltzmann factor exp ½SðmÞ�=Zm. For
sufficiently small ��,

dSP½Uxð�Þ�
d�

��Sðmþ1Þ
P

��
¼ 1

��
logðhexp½�Sðmþ1Þ�imÞ: (7)

Derivatives evaluated at each m should, in principle, be
very nearly the same for small enough ��, and should
closely agree, for all m<M, with the derivative evaluated
at the central value of � ¼ �0. The main source of error is
not the discretization of the derivative (which could be
reduced by using a central or multipoint approximation),
but rather the ordinary statistical error in computing (6) via
lattice Monte Carlo. We can then improve our estimate of
the derivative by making use of all M configurations, and
taking the average

�
dSP½Uxð�Þ�

d�

�
�¼�0

� 1

��

1

M� 1

XM�1

m¼1

log ðhexp ½�Sðmþ1Þ�imÞ: (8)

In practice we have found that this procedure results in a
considerable reduction in the error of dSp=d�, as com-

pared to our previous implementation of the relative
weights method in Ref. [6].
The question then becomes which point fUxð�0Þg in

configuration space should be chosen for the computation,
and which directional derivatives dSP=d� at this point
should be computed, in order to deduce SP. It is possible
that the choice is not very important, and that SP is well
approximated by the same simple expression everywhere
in configuration space. However, if this is not the case, then
calculating path derivatives in some very atypical corner of
configuration space may lead to an approximate answer for
SP which may be correct in that particular corner, but
misleading in the bulk of configuration space.
In Ref. [6] the path derivatives were computed using

three types of sets (2) for SU(2) lattice gauge theory. These
were (i) Polyakov lines which were constant in space, and
the � parameter was the amplitude of Px ¼ 1

2 Tr½Ux� ¼ �;
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(ii) Polyakov lines which consisted of small plane
wave fluctuations around a constant background, Px ¼
P0 þ � cos ðk � xÞ with � � P0; and (iii) Polyakov lines
in which Px varied as Px ¼ � cos ðk � xÞ. Compared to
thermalized time slice configurations U0ðx; 0Þ generated
in a normal lattice Monte Carlo simulation, such configu-
rations are very atypical. In a thermalized configuration in
the confined phase, the Fourier components of the configu-
ration are all of Oð1= ffiffiffiffiffiffi

V3

p Þ, where V3 ¼ L3 is the lattice
volume of the D ¼ 3 dimensional time slice, whereas in
the special configurations just mentioned, one Fourier
component (which may be the zero mode) is of Oð1Þ. For
computing the PLA at a strong lattice coupling, where this
action can be evaluated via a strong coupling expansion,
the atypical nature of the constantþ plane wave, or pure
plane wave configurations did not seem important, and the
PLA deduced from the relative weights data was a close
match to the known result. There was no similar result to
compare to at� ¼ 2:2,Nt ¼ 4, and although an expression
for SP matching the results for dSP=d� was deduced from
fitting the data, there is a concern that this expression might
only be valid in the special region of configuration space
where it was derived.

We will investigate the action in more typical regions of
configuration space in the next section.

III. DERIVATIVES OF SP IN A THERMALIZED
BACKGROUND

The goal is to use the expression for the path derivative
(8) to determine SP. However, if SP does not have a simple
form everywhere in configuration space (and it may not),
then it is at least required that we have a fairly accurate
approximation to SP in the regionwhich is important for the
computation of observables, i.e., the region occupied by
typical thermalized configurations fUxg. A set of timelike
link configurations fU0ðx; 0Þg on the t ¼ 0 time slice, gen-
erated by a numerical simulation of the underlying lattice
gauge theory, is a sample of such configurations. Let us
define, for the SU(2) gauge group thatwewill consider here,

Px ¼ 1

2
Tr½Ux�

¼ a0 þ 1

2

X
k�0

fak cos ðk � xÞ þ bk sin ðk � xÞg; (9)

where the sum runs over all wave vectors k on a cubic lattice
of volume L3, and ak ¼ a�k, bk ¼ �b�k are real valued.
Then we may consider calculating numerically, by the
relative weights method, derivatives with respect to the
Fourier components�

@SP
@ak

�
ak¼�

;

�
@SP
@bk

�
bk¼�

; (10)

in a background in which all other Fourier components are
drawn from a thermalized configuration. By calculating the

derivative for some range of �, it is possible to extrapolate
to small� of order 1=

ffiffiffiffiffiffi
V3

p
, which is the typicalmagnitude of

a Fourier component in thermalized configurations. It is
sufficient in practice to concentrate on the coefficients of the
cosine terms in the Fourier expansion, since the sine terms
give similar results. We then try to reconstruct SP from this
information.
There are potentially two obstacles to this approach.

First, there are as many independent Fourier components
as there are lattice sites in the V3 volume, and this is too
many to calculate in practice. Secondly, it might be that the
results are strongly dependent on the particular thermalized
background which is used. Concerning the first obstacle,
this will not be a problem if the derivatives with respect to
ak have a simple dependence on the lattice momentum

kL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
X3
i¼1

sin 2

�
1

2
ki

�s
; (11)

which can be deduced from a small sample of all possible
components. As for the second obstacle, this is not a
problem if it turns out that the dependence of the final
results on the particular choice of thermalized configura-
tion is very weak.

A. Deriving the effective PLA

The first step in the extrapolation to small � is to
run a standard lattice Monte Carlo, stop at some thermal-
ized configuration, and calculate all the Polyakov line
holonomies,

P x ¼ U0ðx; 1ÞU0ðx; 2Þ . . .U0ðx; NtÞ
¼ d4ðn1; n2; n3Þ1þ idðn1; n2; n3Þ � �; (12)

where x ¼ ðn1; n2; n3Þ, in that configuration. Define
WðxÞ ¼ d4ðxÞ. We pick a particular wave vector k which
is specified by three integers ðm1; m2; m3Þwith correspond-
ing wave number components

ki ¼ 2�

L
mi; (13)

and set the coefficient of cos ðk � xÞ, in the sine-cosine
expansion of WðxÞ, to zero. Denote the modified array,
with the cos ðk � xÞ term removed, as W 0ðxÞ.
Next, construct a set of M ¼ 20 configurations with

PðnÞ
x ¼aðnÞk cosðk1n1þk2n2þk3n3Þþð1����ÞW 0ðxÞ;

aðnÞk ¼�þ
�
n�1

2
ðMþ1Þ

�
�=L3; n¼1;2; . . . ;M; (14)

where � ¼ L3�a is a constant chosen to be as small as
possible, but still large enough to get some spread in the
data. Typically � � 0:5.
The factor 1� �� � in (14) is introduced in order

to keep PðnÞ
x , with rare exceptions, inside the range

½�1:1�. Ideally one would like to leave all fak0 ; bk0 g in
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the thermalized configuration unaltered, apart from the

mode with k0 ¼ k, i.e., PðnÞ
x ¼ ak cos k � xþW 0ðxÞ. At

finite �, however, this has the disadvantage that at many
sites jPxj> 1. To see this, note that WðxÞ, from which
W 0ðxÞ is derived, may come close to the limits�1 at some
sites, and at these sites the additional contribution
ak cos ðk � xÞ may put the sum outside the allowed range
by as much as �. Moreover, by removing the cos ðk � xÞ
mode, W 0ðxÞ may already lie outside the range ½�1:1� at
some sites; this is especially true for k ¼ 0. We must also

allow for the fact that half of the faðnÞk g are slightly greater

than �. For this reason we reduce the amplitude of the
added thermalized configuration by a factor of 1� �� �
(in our simulations we found � ¼ 0:04 sufficient). In the

exceptional cases where PðnÞ
x still lies outside the allowed

range, it is truncated to the nearest limit, i.e., �1.
We then construct the SU(2) variables, at each site,

which have 2PðnÞ
x as the trace

UðnÞ
x ¼ PðnÞ

x 1þ isðnÞdðxÞ � �; (15)

where, to ensure unitarity,

sðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðPðnÞ

x Þ2
dðxÞ � dðxÞ

s
: (16)

The calculation of ð@SP=@akÞ� proceeds as described

above. For the choice of UðnÞ given above, it is easy to
see that for a lattice of extension L in the spatial directions

1

L3

�
@SP½UxðakÞ�

@ak

�
ak¼�

� 1

�ðM� 1Þ
XM�1

m¼1

log ðhexp ½�Sðmþ1Þ½U��imÞ: (17)

The results for the derivatives are found to depend only
weakly on the particular choice of thermalized configura-
tion, generated in an ordinary Monte Carlo run, which
provides us with a set of Polyakov line holonomies (12).
The dependence is most pronounced at small kL, with the
variance on the order of 2%. In practice we have averaged
our results for dSP=dak over eighty independent sets of
Polyakov line holonomies, generated from the same num-
ber of thermalized lattice configurations.

In Fig. 1 we display our results for the L�3dSP=dak vs
kL at � ¼ 0:05, and lattice spatial extension L ¼ 24. (Note
that, apart from Figs. 5 and 7, all of our figures show data
derived at an L ¼ 24 extension.) The underlying SU(2)
lattice gauge theory is defined as a Wilson action on a
periodic 243 � 4 volume, at the coupling � ¼ 2:2. The
calculations were made, in this case, at lattice momenta
with components ki ¼ 2�mi=L, with the following
ðm1m2m3Þ triplets:

fð000Þ; ð100Þ; ð110Þ; ð111Þ; ð200Þ; ð210Þ; ð211Þ; ð300Þ; ð311Þ;
ð320Þ; ð400Þ; ð322Þ; ð421Þ; ð430Þ; ð333Þ; ð433Þ; ð443Þ;
ð444Þ; ð554Þ; ð654Þ; ð655Þ; ð665Þ; ð766Þ; ð777Þ; ð887Þ;
ð988Þ; ð998Þ; ð10 99Þ; ð10 10 10Þg: (18)

On this plot the data point displayed at kL ¼ 0 is a factor of
2 smaller than the actual data value; this was done for
reasons to be explained shortly.
The striking thing about this data is that, for lattice

momenta kL > 0:7, the data points clearly fall on a straight
line. The second fact is that the data is linearly proportional
to � at these small � values, as we see in Fig. 2. In this
figure we divide dSP=dak by �, at � ¼ 0:05, 0.10, 0.15,
0.20, and find that the data points coincide. The linearity of
the derivative with respect to ak implies that the action
itself is quadratic in these variables, leading to a simple
bilinear form

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.5  1  1.5  2  2.5  3  3.5

L-3
 d

S
P

/d
a k

kL

L=24 data at α=0.05

data
fit

FIG. 1 (color online). Derivatives of the PLA L�3@SP=@ak
evaluated at ak ¼ � ¼ 0:05, vs lattice momenta kL. Also shown
is a linear best fit to the data at kL > 0:7.
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 0.5

 1

 1.5
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 0  0.5  1  1.5  2  2.5  3  3.5

(L
-3

 d
S

P
/d

a k
)/

α

kL

L=24 data with α rescaling

α=.05
α=.10
α=.15
α=.20

FIG. 2 (color online). Derivatives L�3ð@SP=@akÞ� divided by
�, vs lattice momenta kL, for � ¼ 0:05, 0.10, 0.15, 0.20. It is
clear that the derivatives of SP depend linearly on �.
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SP ¼ 1

2
c1
X
x

P2
x � 2c2

X
xy

PxQðx� yÞPy; (19)

where

Qðx� yÞ ¼ 1

L3

X
k

~QðkLÞeik�ðx�yÞ: (20)

This leads to derivatives

1

L3

�
dSP½UxðakÞ�

dak

�
ak¼�

¼
8><
>:
�
�
1
2 c1 � 2c2 ~QðkLÞ

�
kL � 0

2�
�
1
2 c1 � 2c2 ~Qð0Þ

�
kL ¼ 0:

(21)

The relative factor of 2 in the kL ¼ 0 and kL > 0 cases is
due to the fact that

P
x1 ¼ L3, while

P
xcos

2ðk � xÞ ¼ 1
2L

3.

The kL > 0 data should extrapolate, as kL ! 0, to a value
which is half the result at kL ¼ 0, which is why we have
divided the derivative at kL ¼ 0 by a factor of 2, when
displaying these values on Figs. 1 and 2. The constants c1
and c2 are obtained from a linear fit to the data at kL > 0:7,
as shown in Fig. 1.1

It is clear that for kL > 0:7, the k-space kernel is
~QðkLÞ ¼ kL. If this were true at all kL, then we would

have Q ¼
ffiffiffiffiffiffiffiffiffiffiffi
�r2

L

q
in position space, where �r2

L is the

negative lattice Laplacian

ð�r2
LÞxy ¼

X3
i¼1

ð2�xy � �x;yþ{̂ � �xþ{̂;yÞ: (22)

However, a kernel Qðx� yÞ of this kind is infinite range,
which would violate one of the assumptions of the
Svetitisky-Yaffe analysis (cf. Ref. [12]). In any case, com-

paring Fig. 2 with Eq. (21), it is clear that ~QðkLÞ must
deviate from linearity at small momentum. We therefore
make an ansatz for the kernel which imposes the finite
range restriction on Q in a simple way:

Qðx� yÞ ¼
8<
:
� ffiffiffiffiffiffiffiffiffiffiffi

�r2
L

q �
xy

jx� yj 	 rmax

0 jx� yj> rmax :

(23)

Given rmax , ~QðkLÞ is obtained by a Fourier transform of
Qðx� yÞ, and this result can be compared to the data
via (21). Actually, two Fourier transforms are required.

First, we determine ð
ffiffiffiffiffiffiffiffiffiffiffi
�r2

L

q
Þxy from

� ffiffiffiffiffiffiffiffiffiffiffi
�r2

L

q �
xy

¼ 1

L3

X
k

kLe
ik�ðx�yÞ; (24)

and Eq. (23) defines Qðx� yÞ, given rmax (see Table II).

Then ~QðkLÞ is derived from QðxÞ by inverting the trans-
form (20).
To determine rmax , we do a linear fit of the kL ¼ 0 data

1

L3

�
dSP
da0

�
a0¼�

vs �; (25)

as shown in Fig. 3. Let the slope of the line be D. Then,
from (21),

c1 � 4c2 ~Qð0ÞÞ ¼ D: (26)

The rmax cutoff fixes Qðx� yÞ via (23), and then ~QðkLÞ at
all k is obtained by inverting the transform (20). We choose
rmax to satisfy the condition (26) as closely as possible.
In Fig. 4 we plot the data shown in Fig. 1 together with

the values computed for

�

�
1

2
c1 � 2c2 ~QðkLÞ

�
(27)

[cf. Eq. (21)] at � ¼ 0:05. Agreement seems to be quite
good in the entire range of kL.
We have repeated this analysis at smaller volumes of

spatial extension L ¼ 12, 16, 20. The results for c1, c2,
rmax are shown in Table I. In Table II we record nonzero
components ofQðxÞ ¼ ð�r2

LÞx0 up to jxj< 3:2 and lattice
volume 243. For rmax ¼ 3, the last entry in the table should
be replaced by Qð3; 1; 0Þ ¼ 0. The rest of the nonzero
elements of Q are obtained from the table via permutation
symmetry, xi $ xj, and reflection symmetry xi ! �xi,

among the coordinate components.

 0

 0.1
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 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.05  0.1  0.15  0.2

L-3
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S
P

/d
a 0

α

kL=0 data, linear fit

data
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FIG. 3 (color online). The derivatives of SP with respect to the
amplitude of the zero mode, evaluated at several values of �. The
slope of this data is used to determine rmax of the bilinear kernel
Qðx� yÞ, as explained in the text.

1In practice we fit the data for each �, at kL > 0:7, to the form
Að�Þ � Bð�ÞkL. We then fit Að�Þ, Bð�Þ to straight lines, and the
constants c1, c2 are extracted from the slopes, i.e., dA=d� ¼
1
2 c1, and dB=d� ¼ 2c2. The choice of 0.7 as the lower limit is a
potential source of systematic error, since the value for c1 can
vary up to 1% when the lower limit is increased (the variation of
c2 is smaller). We find, however, that the choice of 0.7 as the
lower limit minimizes the reduced 	2 value of the linear fit.
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B. Comparing the PLA to the underlying
lattice gauge theory

We now have a concrete proposal for the effective
Polyakov line actions at various spatial volumes L3 rang-
ing from 123 to 243, and which correspond to an underlying
lattice SU(2) gauge theory at � ¼ 2:2 on an L3 � 4 lattice
volume. The actions are specified by Eqs. (19) and (23),
and the constants in Table I. Above the lattice volume 123,
these actions are about the same.

The crucial question, of course, is whether these pro-
posed Polyakov line actions are correct; they are certainly
different from the action suggested in Ref. [6], which was
derived for gauge configurations in a rather unrepresenta-
tive region of configuration space. There is one obvious
and essential test: Do the derived Polyakov line actions
reproduce the Polyakov line correlator calculated in the
corresponding lattice gauge theory? Thus we compute,
via numerical simulation of the Polyakov line action at
L ¼ 12, 16, 20, 24,

Gðjx� yjÞ ¼ hPxPyi; (28)

and compare the result to the same observable obtained
from standard lattice Monte Carlo at � ¼ 2:2 on an L3 � 4
volume. The result for these four cases is shown in
Fig. 5. Note that off-axis displacements are included,
with xyz components of the displacement x� y in the
range ½�4; 4�.

The data in Fig. 5 is limited to displacements of
magnitude R< 7 lattice spacings, and it is interesting to
consider larger displacements for larger lattices. This calls
for higher statistics. In Fig. 6 we compare the results for
Gðx� yÞ obtained on a 243 lattice for the effective theory,
and on a 243 � 4 lattice for the SU(2) gauge theory, again
at � ¼ 2:2. In this figure we show the results for displace-
ments x� y parallel to any one of the coordinate axes. The
Lüscher-Weisz noise reduction method [13] was used in
obtaining the Polyakov line correlator in the lattice gauge
theory, while for the effective Polyakov line action the
correlator was obtained from 38 400 configurations (about
2 orders of magnitude more than was used in Fig. 5).
The agreement of the correlators in the PLA and the

underlying lattice gauge theory seen in Fig. 6 is extraordi-
nary, and it persists down to magnitudes of order 10�5.2

While this is not a proof that SP is the correct effective
action, it is difficult to believe that agreement of
Polyakov line correlators to this level of precision is
coincidental.

IV. POLYAKOV LINE ACTION FOR
AN SU(2) GAUGE-HIGGS SYSTEM

We now add a scalar matter field in the fundamental
representation of the gauge group, thereby breaking
explicitly Z2 center symmetry. The simplest case is a
fixed-modulus Higgs field, and for SU(2) gauge theory
the action can be written in the following way:

S ¼ �
X
plaq

1

2
Tr½UUUyUy�

þ 

X
x;�

1

2
Tr½�yðxÞU�ðxÞ�ðxþ �̂Þ�; (29)

TABLE II. Nonzero elements of the bilinear kernel QðxÞ at
rmax ¼ 3:2 and L ¼ 24.

x1 x2 x3 QðxÞ
0 0 0 2.38760

1 0 0 �0:22001
1 1 0 �0:02357
1 1 1 �0:00774
2 0 0 �0:01279
2 1 0 �0:00455
2 1 1 �0:00246
2 2 0 �0:00160
2 2 1 �0:00111
3 0 0 �0:00200
3 1 0 �0:00121

TABLE I. Constants defining the effective Polyakov line
action for pure Yang-Mills theory, L3 � 4 lattice, � ¼ 2:2.

L c1 c2 rmax

12 4.364(6) 0.491(1) 3.2

16 4.417(4) 0.498(1) 3.0

20 4.416(7) 0.493(1) 3.0

24 4.414(8) 0.493(1) 3.0
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FIG. 4 (color online). A test of Eq. (21) at � ¼ 0:05. The
derivative data of Fig. 1 is plotted against the conjectured fitting
function �ð12 c1 � 2c2 ~QðkLÞÞ with rmax ¼ 3.

2The Polyakov line correlator derived from the Inverse
Monte Carlo method in Ref. [8] was displayed on a linear, rather
than logarithmic, scale, and hence the precision of agreement
with lattice gauge theory, in that approach, is difficult to judge.
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where �ðxÞ is SU(2) group valued. The work of Fradkin
and Shenker [14], itself based on a theorem by Osterwalder
and Seiler [15], demonstrated that the Higgs region and the
‘‘confinement-like’’ regions of the �–
 phase diagram are
continuously connected. Subsequent Monte Carlo studies
found that there is only a single phase at zero temperature
(there might have been a separate Coulomb phase),
although there is a line of first-order transitions between
the confinement-like and Higgs regions, which eventually
turns into a line of sharp crossover around � ¼ 2:775, 
 ¼
0:705, cf. Ref. [16] and references therein. At � ¼ 2:2 the
crossover occurs at 
 � 0:84, as seen in the plaquette
energy data shown in Fig. 7. There is also a steep rise in
the Polyakov line expectation value as 
 increases past this
point.

Wewill work at� ¼ 2:2 on a 243 � 4 lattice volume, but
this time at Higgs coupling� ¼ 0:75, which places us in the
‘‘confinement-like’’ phase a little below the crossover point.

For these parameters, the Polyakov line has a vacuum
expectation value of hPxi ¼ 0:0515. Once again, we gen-
erate sets of thermalized Polyakov line holonomies, and
compute L�3dSP=dak as explained in the previous section.
The derivatives @SP=@ak at ak ¼ � are computed as

before, and at each kL > 0 the results are simply propor-
tional to �. The constants c1, c2 are again extracted by a
linear fit to the kL > 0:7 data. However, the data at kL ¼ 0 is
not strictly proportional to�; there is also an�-independent
constant contribution to the data. This fact can be seen in
Fig. 8. The straight line is a best fit to L�3@SP=@a0 eval-
uated at a0 ¼ � for � in the range ½�0:2; 0:2�. The y
intercept of this line does not pass through zero, but rather
through y ¼ 0:0236ð14Þ. This implies that SP must contain
a term which is linear in Px, i.e.,

SP ¼ c0
X
x

Px þ 1

2
c1
X
x

P2
x � 2c2

X
xy

PxQðx� yÞPy; (30)
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FIG. 5 (color online). A comparison of the Polyakov line correlation functions Gðjx� yjÞ ¼ hPxPyi as computed via lattice
Monte Carlo simulation of the underlying gauge theory on a L3 � 4 lattice at coupling � ¼ 2:2, and via Monte Carlo simulation of the
corresponding effective action SP of Eq. (19). Lattices are of spatial extension L ¼ 12, 16, 20, 24 lattice spacings. Note that off-axis
displacements are included.
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and it is clear from inspection that c0 must equal the y
intercept in Fig. 8. It is also clear that only the kL ¼ 0mode
contributes to the linear term, and is therefore invisible in
the derivatives of SP at kL > 0. We define Qðx� yÞ again
by (23), with rmax determined as in the pure-gauge theory.
The final set of parameters for the effective Polyakov line
action is given in Table III, and we plot the kL > 0 data,
together with the quantity

�

�
1

2
c1 � 2c2 ~QðkLÞ

�
vs kL (31)

in Fig. 9.

As in the pure gauge theory, the crucial test is to see
whether the Polyakov line correlator (28) found from
numerical simulation of the gauge-Higgs theory (29)
agrees with the same observable computed in the derived
Polyakov line action (30). The results are shown in Fig. 10.
In this case the agreement between the lattice gauge
Higgs correlator (black diamonds) and the correlator of
the effective action (blue triangles), while fairly close, is
not perfect. However, the result for the effective action
depends very sensitively on the value of c0, and of course
there is an errorbar associated with this quantity. In our best
fits, c0 ¼ 0:0236ð14Þ. With a little trial and error, one can
find a value of c0 for the effective action such that the
corresponding correlator (red circles) agrees almost ex-
actly with the gauge-Higgs value. This happens at a value
c0 ¼ 0:02165 which is not far outside our errorbars, about
1:4� away from c0 ¼ 0:0236.

V. SP AT FINITE CHEMICAL POTENTIAL

Asmentioned in the Introduction, one of our motivations
in this work is to apply our methods to the well-known sign
problem, which arises upon introducing a finite chemical
potential to a system of matter fields coupled to gauge
fields. There is no sign problem for the SU(2) gauge
group, but the relative weights method should apply to
other gauge groups as well, and to the SU(3) group in
particular. However, since the method depends on ordinary
Monte Carlo simulations, it is only applicable at chemical
potential� ¼ 0. Supposing, then, that we can compute the
effective PLA for an SU(3) system at� ¼ 0, how does this
help us to find the effective theory at nonzero �?
Recall that for small gauge coupling � and massive

quark fields, the effective action S
�¼0
P at zero chemical

potential, defined in temporal gauge by3

exp½S�¼0
P ½Ux;U

y
x ��

¼
Z
DUkD �cDc exp½SL½Ux;U

y
x ;UiðxÞ;c ; �c ��; (32)

can be computed from a combined strong-coupling/
hopping parameter expansion of the functional integral
on the right-hand side. Let us consider any diagram D in
an SUðNÞ gauge theory which contributes to this expan-
sion. In general, after integrating out all spacelike link
variables and fermion fields, the diagram (which may
consist of some number of disconnected subdiagrams)
will contribute terms of the form

cDN
�pD

�
�

2N2

�
p0
D
hp

00
DPD½Ux; U

y
x �; (33)

where h is the hopping parameter, cD is a (�, h)-
independent constant, pD, p0

D, p00
D are integer powers,

0 4 8 12 16 20 24
R

1e-06

0.0001

0.01

1

G
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)
lattice YM
effective theory

On-axis Polyakov line correlators, L=24

FIG. 6 (color online). A high-statistics comparison of the
Polyakov line correlation function Gðjx� yjÞ ¼ hPxPyi com-

puted for the lattice gauge and effective theories, for displace-
ments x� y parallel to the x, y, or z axes, and spatial volume 243.
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FIG. 7. Plaquette energy vs gauge-Higgs coupling 
 at fixed
� ¼ 2:2, for the SU(2) gauge-Higgs theory with fixed Higgs
modulus on a 164 lattice volume, showing a sharp crossover at

 � 0:84.

3The notation means that U0ðx; 0Þ is replaced by Ux, and
Uy

0 ðx; 0Þ is replaced by Uy
x , in the lattice action SL.

JEFF GREENSITE AND KURT LANGFELD PHYSICAL REVIEW D 87, 094501 (2013)

094501-8



and PD½Ux; U
y
x � is a product of traces of Polyakov line

holonomies at various positions and of various winding
numbers, i.e.,

PD½Ux; U
y
x �

¼ TrUw1
x1 TrU

w2
x2 . . . TrU

wn
xn TrU

yw0
1

y1 TrU
yw0

2
y2 . . . TrUyw0

m
ym ;

(34)

where the wi, w
0
i are winding numbers for Polyakov lines

of opposite orientation.4 Then

exp½S�¼0
P ½Ux;U

y
x ��¼

X
D

cDN
�pD

�
�

2N2

�
p0
D
hp

00
DPD½Ux;U

y
x �:

(35)

By standard arguments, the series can be resummed into
an exponential whose exponent contains only connected
diagrams.

Note that since Ux, U
y
x are unintegrated, it is irrelevant

to the strong-coupling/hopping parameter expansion
whether these matrices are unitary, or even whether,
despite the notation, they are Hermitian conjugates of

one another, providing only that UxU
y
x ¼ 1 at each x.

Now in QCD, a chemical potential is introduced by
making the replacement

Ux ! eNt�Ux; Uy
x ! e�Nt�Uy

x (36)

in the Dirac operator. But in fact, we can also formally
make this replacement in the pure gauge part of the action
as well, since this part is invariant under the replacement.
This means that

S�L ½Ux; U
y
x ; UiðxÞ; c ; �c �

¼ SL½eNt�Ux; e
�Nt�Uy

x ; UiðxÞ; c ; �c � (37)

and therefore

exp ½S�P ½Ux; U
y
x ��

¼
Z

DUkD �cDc exp ½S�L ½Ux; U
y
x ; UiðxÞ; c ; �c ��

¼
Z

DUkD �cDc

� exp ½SL½eNt�Ux; e
�Nt�Uy

x ; UiðxÞ; c ; �c ��: (38)

Once again, we may compute the second line of (38) by a
strong-coupling/hopping parameter expansion. As already

noted, the fact that eNt�Ux, e
�Nt�Uy

x are nonunitary, and
are not the Hermitian conjugates of one another, is irrele-
vant to the expansion. We have exactly the same set of
diagrams as in the � ¼ 0 expansion, and for each contri-
bution the constants cD, pD, p

0
D, p

00
D are unchanged. The

only change is that the Polyakov line holonomies in PD are
modified by a factor of eNt� multiplyingUx, and a factor of

e�Nt� multiplying Uy
x , i.e.,

exp½S�P ½Ux;U
y
x ��

¼X
D

cDN
�pD

�
�

2N2

�
p0
D
hp

00
DPD½eNt�Ux;e

�Nt�Uy
x �: (39)
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FIG. 8 (color online). The derivatives of SP with respect to the amplitude of the zero mode in the gauge-Higgs theory, evaluated at
positive and negative values of a0 ¼ �. Part (a) shows the full range of the data; (b) is a close-up near � ¼ 0. The y intercept of this
data is nonzero, and determines the coefficient c0 of the linear, Z2-symmetry breaking term in the effective PLA (30).

TABLE III. Constants defining the effective Polyakov line
action for gauge-Higgs theory, 243 � 4 lattice, � ¼ 2:2,

 ¼ 0:75.

L c0 c1 c2 rmax

24 0.0236(14) 4.447(9) 0.501(1) 3.2

4Because of a residual gauge invariance U0ðx; 0Þ !
gxU0ðx; 0Þgyx in temporal gauge on a periodic lattice, there are
no terms in PD involving traces of products of holonomies at
different sites, e.g., TrUw

xU
yw0
y with x � y.
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Comparing (35) and (39), it is clear that there must be a
simple and powerful identity, which is exact within the
radius of convergence of the strong-coupling/hopping

parameter expansion, relating S
�
P to S

�¼0
P , namely

S
�
P ½Ux; U

y
x � ¼ S

�¼0
P ½eNt�Ux; e

�Nt�Uy
x �: (40)

It is not unreasonable to assume that this relationship is
valid in general, for arbitrary �, h. If so, and if we are able

to compute S
�¼0
P ½Ux; U

y
x � by some method (such as

relative weights), then we obtain the effective Polyakov
line action at nonzero chemical potential by the trivial
replacement (36) in the effective Polyakov line action at
zero chemical potential.5 Remarkably, this means that the
effective Polyakov line action at � � 0 can in principle be
obtained from the effective Polyakov action at � ¼ 0,
without actually simulating the underlying lattice gauge
theory at nonzero �.

VI. CONCLUSIONS

Motivated in part by the sign problem, we have applied
the relative weights method to determine the effective
Polyakov line action SP for both pure and gauge-Higgs
lattice SU(2) gauge theory. This effective action turns out
to be a remarkably simple expression, which is bilinear in
the Polyakov line variables Px ¼ 1

2 Tr½Ux�:

SP ¼ c0
X
x

Px þ 1

2
c1
X
x

P2
x � 2c2

X
xy

PxQðx� yÞPy;

Qðx� yÞ ¼
8><
>:
� ffiffiffiffiffiffiffiffiffiffiffi

�r2
L

q �
xy

jx� yj 	 rmax

0 jx� yj> rmax ;

(41)

with c0 ¼ 0 in the pure-gauge theory, and nonzero in the
gauge-Higgs theory. Our results so far have been obtained
at lattice coupling � ¼ 2:2, and Nt ¼ 4 lattice spacings in
the time direction. The effective action has been checked
by computing Polyakov line correlators in both the effec-
tive theory and the underlying gauge theory, and we have
found that these correlators agree quite well with each
other. This is especially true in the pure gauge theory,
where agreement persists down to correlator values of
order 10�5. These results, together with previous checks
in the case of strong coupling [6], inspire some confidence
that the method works. The next immediate step will be to
understand how the couplings of the effective theory
evolve as a function of coupling � and temperature 1=Nt.
In the longer term our interest is the sign problem, and to

address that problem it will be necessary to derive the
effective Polyakov line action corresponding to lattice
SU(3) gauge fields coupled to matter at zero chemical
potential. As explained in the preceding section, we expect
to extract the Polyakov line action at finite � from the
appropriate Polyakov line action at � ¼ 0 by the simple
substitution (36). The strategy is then to apply one or more
of the methods [1–4], which were developed for solving
Polyakov line actions with a chemical potential, to our
derived effective action. If the sign problem is tractable
in the effective Polyakov line theory, as suggested by the
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FIG. 9 (color online). Same as Fig. 4 for the gauge-Higgs
theory. We plot the data for the derivative L�3@SP=@ak vs kL
against the conjectured fitting function �ð12 c1 � 2c2 ~QðkLÞÞ with
rmax ¼ 3:2.
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FIG. 10 (color online). A comparison of the Polyakov line
correlation functions Gðjx� yjÞ ¼ hPxPyi as computed via lat-

tice Monte Carlo simulation of the underlying gauge-Higgs
theory (black diamonds) on a 243 � 4 lattice, at couplings
� ¼ 2:2, 
 ¼ 0:75, and via Monte Carlo simulation of the
corresponding effective action SP of Eq. (30) (blue triangles,
c0 ¼ 0:0236). Also shown is a simulation of the effective action
with a slightly different value of c0 ¼ 0:02165 (red circles).

5For a discussion of a possible pitfall in this approach, and its
resolution, cf. Ref. [4].
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earlier work cited above, then it may be possible to extract
useful results regarding the QCD phase diagram.
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APPENDIX: DYNAMICAL FERMIONS

In this Appendix we will just sketch how the relative
weights algorithm can be applied in the case where there
are two mass-degenerate dynamical fermions coupled to
the gauge field.

Taking D as the Dirac operator, and M � DyD, the
integration measure is

eSL ¼ detMeSW ; (A1)

where SW is the Wilson (or other improved pure-gauge)
action. Defining

MðmÞ ¼ M½U0ðx; 0Þ ¼ UðmÞ
x ; Ukðx; tÞ�; (A2)

we have

exp ½�Sðmþ1Þ
P � ¼ Zmþ1

Zm

¼
�
detMðmþ1Þ

detMðmÞ exp ½�Smþ1
W �

	
m
;

(A3)

where h� � �im signifies, as before, the expectation value in a

probability measure exp ½SðmÞ
L �=Zm. The vacuum expecta-

tion value can be evaluated via hybrid Monte Carlo, but in
this case there is the question of how to evaluate the ratio
of determinants in (A3). In the most straightforward ap-

proach, defining �Mðmþ1Þ ¼ Mðmþ1Þ �MðmÞ and writing

detMðmþ1Þ ¼ det fMðmÞð1þ ½MðmÞ��1�Mðmþ1ÞÞg; (A4)

it is not hard to see that

detMðmþ1Þ

detMðmÞ ¼ exp ½Tr log f1þ ½MðmÞ��1�Mðmþ1Þg�
� exp ½Trf½MðmÞ��1�Mðmþ1Þg�: (A5)

Therefore

exp ½�Sðmþ1Þ
P � ¼ hexp ½Trf½MðmÞ��1�Mðmþ1Þg�e�Sðmþ1Þ

W im:
(A6)

It is best not to evaluate the trace Trf½MðmÞ��1�Mðmþ1Þg
directly, because of the computational expense, but rather
indirectly, by the method of ‘‘noisy pseudofermions’’
(cf. Sec. 8.4 in Ref. [17]).
A way of completely avoiding M�1 in the observable is

to introduce another set of pseudofermions’, distinct from
the pseudofermions used by hybrid Monte Carlo, so that
we may write

detMðmþ1Þ

detMðmÞ ¼
R
D’ exp ½�’yMðmÞ’�R
D’ exp ½�’yMðmþ1Þ’� : (A7)

Defining

�Aðmþ1Þ ¼ ’yMðmþ1Þ’� ’yMðmÞ’; (A8)

we have

detMðmþ1Þ

detMðmÞ ¼ hhexp ½�Aðmþ1Þ�iimþ1; (A9)

where hh� � �iimþ1 refers to the expectation value in the
measure proportional to

exp ½�’yMðmþ1Þ’�: (A10)

The final result for the relative weight is

exp ½�Sðmþ1Þ
P � ¼ hhhexp ½�Aðmþ1Þ�iimþ1 exp ½�Sðmþ1Þ

W �im:
(A11)

Again, the expectation value h� � �im would be computed via
the usual hybrid Monte Carlo algorithm. Equation (A11) is
to be used, as before, to compute path derivatives, hope-
fully leading to an expression for the effective PLA at
� ¼ 0. The PLA with a finite chemical potential would
then be obtained from the substitution (36).
Apart from computation cost, we believe that the addi-

tion of dynamical fermions does not pose any problems of
principle to the derivation of the effective Polyakov line
action via the relative weights approach.

[1] C. Gattringer, Nucl. Phys. B850, 242 (2011); Y.D.
Mercado and C. Gattringer, Nucl. Phys. B862, 737 (2012).

[2] M. Fromm, J. Langelage, S. Lottini, and O. Philipsen,
J. High Energy Phys. 01 (2012) 042.

[3] G. Aarts and F. A. James, J. High Energy Phys. 01 (2012)
118.

[4] J. Greensite and K. Splittorff, Phys. Rev. D 86, 074501
(2012).

EFFECTIVE POLYAKOV LINE ACTION FROM THE . . . PHYSICAL REVIEW D 87, 094501 (2013)

094501-11

http://dx.doi.org/10.1016/j.nuclphysb.2011.04.018
http://dx.doi.org/10.1016/j.nuclphysb.2012.05.009
http://dx.doi.org/10.1007/JHEP01(2012)042
http://dx.doi.org/10.1007/JHEP01(2012)118
http://dx.doi.org/10.1007/JHEP01(2012)118
http://dx.doi.org/10.1103/PhysRevD.86.074501
http://dx.doi.org/10.1103/PhysRevD.86.074501


[5] P. de Forcrand, Proc. Sci., LAT2009 (2009) 010
[arXiv:1005.0539].

[6] J. Greensite, Phys. Rev. D 86, 114507 (2012).
[7] J. Greensite, H. Matevosyan, Š. Olejnı́k, M. Quandt, H.
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