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We discuss the uniqueness or nonuniqueness problem of the decomposition of the gluon field into the

physical and pure-gauge components, which is the basis of the two recently proposed physically

inequivalent gauge-invariant decompositions of the nucleon spin. It is crucially important to recognize

the fact that the standard gauge-fixing procedure is essentially a process of projecting out the physical

components of the massless gauge field. A complexity of the non-Abelian gauge theory as compared with

the Abelian case is that a closed expression for the physical component can be given only with use of the

nonlocal Wilson line, which is generally path dependent. It is known that—by choosing an infinitely long

straight-line path in space and time, the direction of which is characterized by a constant four-vector

n�—one can cover a class of gauge called the general axial gauge, containing three popular gauges, i.e.,

the temporal, the light-cone, and the spatial axial gauge. Within this general axial gauge, we calculate the

one-loop evolution matrix for the quark and gluon longitudinal spins in the nucleon. We find that the final

answer is exactly the same independent of the choices of n�, which amounts to proving the gauge

independence and path independence simultaneously, although within a restricted class of gauges and

paths. By drawing on all of these findings together with well-established knowledge from gauge theories,

we argue against the rapidly spreading view in the community that there are infinitely many decom-

positions of the nucleon spin.

DOI: 10.1103/PhysRevD.87.094035 PACS numbers: 12.38.�t, 12.20.�m, 14.20.Dh, 03.50.De

I. INTRODUCTION

Is a gauge-invariant complete decomposition of the
nucleon spin possible? This is a fundamentally important
question of QCD as a color gauge theory. The reason is that
the gauge invariance is generally believed to be a necessary
condition of observability. Unfortunately, this is quite a
delicate problem, which is still under intense debate
[1–36]. In a series of papers [16–19], we have established
the fact that there are two physically inequivalent gauge-
equivalent decompositions of the nucleon spin, which we
call decompositions (I) and (II). The decompositions (I)
and (II) are respectively characterized by two different
orbital angular momenta (OAMs) for both quarks and
gluons, i.e., the ‘‘dynamical’’ OAMs and the generalized
‘‘canonical’’ OAMs. We also clarified the fact that the
difference between the above two kinds of orbital angular
momenta is characterized by a quantity which we call the
‘‘potential angular momentum,’’ the QED correspondent of
which is nothing but the angular momentum carried by the
electromagnetic field or potential, which plays a key role in
the famous Feynman paradox of classical electrodynamics
[16,37]. The basic assumption for obtaining these two
gauge-invariant decompositions of the nucleon spin is
that the total gluon field can be decomposed into two parts,
i.e., the physical component and the pure-gauge compo-
nent, as A�ðxÞ ¼ A�

physðxÞ þ A�
pureðxÞ. In the course of de-

riving the above two gauge-invariant decompositions of the
nucleon spin, these two components are supposed to obey

the following general conditions, i.e., the pure-gauge
condition for the pure-gauge component, F��

pure �
@�A�

pure � @�A
�
pure � ig½A�

pure; A�
pure� ¼ 0, supplemented

with the homogeneous (or covariant) and inhomogeneous
gauge transformation properties, respectively, for the
physical and pure-gauge components of the gluon field
under general gauge transformations of QCD.
A natural question is whether these general conditions

are enough to uniquely fix the above decomposition. The
answer is evidently no! Note, however, that the above
decomposition is proposed as a covariant generalization
of Chen et al.’s decomposition given in a noncovariant
form as AðxÞ ¼ AphysðxÞ þApureðxÞ [8,9]. One must ac-

knowledge the fact that, at least in the QED case, this
decomposition is nothing new. It just corresponds to the
standardly known transverse-longitudinal decomposition
of the three-vector potential of the photon field, i.e.,
AðxÞ ¼ A?ðxÞ þAkðxÞ satisfying the properties

r �A? ¼ 0 and r�Ak ¼ 0 [38,39]. It is a well-

established fact that this decomposition is unique once
the Lorentz frame of reference is specified [39]. As we
shall see later, a physically essential element here is the
transversality condition r �A? ¼ 0 for the transverse (or
physical) component of A given in a noncovariant form.
Naturally, a certain substitute for this condition is neces-
sary to uniquely fix the physical component of A�

phys in the

above-mentioned decomposition given in a (seemingly)
covariant form. This fundamental fact of gauge theory is
missed in the community, and conflicting views have rap-
idly spread around.*wakamatu@phys.sci.osaka-u.ac.jp
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On the one hand, Lorcé claims that the above decom-
position is not unique because of the presence of what he
called the Stueckelberg symmetry, which alters both A

�
phys

and A�
pure while keeping their sum unchanged [30,31]. This

misapprehension comes from the oversight of the impor-
tance of the transversality condition that should be im-
posed on the physical component. On the other, another
argument against the uniqueness of the above-mentioned
decomposition is advocated by Ji et al. [32–34]. According
to them, the Chen decomposition is a gauge-invariant
extension (GIE) of the Jaffe-Manohar decomposition
based on the Coulomb gauge, while the Bashinsky-Jaffe
decomposition is a GIE of the Jaffe-Manohar decomposi-
tion based on the light-cone gauge. They claim that—since
the GIE with the use of a path-dependent Wilson line is not
unique at all—there is no reason that the above two decom-
positions should give the same physical predictions. This
made Ji reopen his longstanding claim that the gluon spin
�G in the nucleon is not a gauge-invariant quantity in a
true or traditional sense, although it is a measurable
quantity in polarized deep inelastic scatterings [40,41].
One should recognize a self-contradiction inherent in
this claim. In fact, one should first remember the funda-
mental proposition of physics, which states that
‘‘Observables must be gauge invariant.’’ (Note that we
are using the word ‘‘observables’’ in a strict sense. That
is, they must be quantities, which can be extracted purely
experimentally, i.e., without recourse to particular theoreti-
cal schemes or models.) The contraposition of this propo-
sition (note that it is always correct if the original
proposition is correct) is ‘‘Gauge-variant quantities cannot
be observables.’’ This dictates that, if �G is claimed to be
observable, it must also be gauge invariant in the tradi-
tional sense.

In view of the above-explained frustrated status, we
believe it is urgent to correct the widespread misunder-
standing regarding the meaning of true or traditional gauge
invariance in the problem of nucleon spin decomposition.
This paper is then organized as follows. In Sec. II, we first
clarify the fact that—at least in the case of Abelian gauge
theory—the decomposition of the gauge field into the
physical and pure-gauge components is nothing but the
well-known transverse-longitudinal decomposition of
the vector potential. It is a well-established fact that this
decomposition is unique as long as we are working in a
prescribed Lorentz frame. We also point out a hidden
problem of the gauge-invariant extension approach,
i.e., the path dependence, through a concise pedagogical
review of the gauge-invariant formulation of the electro-
magnetism with the use of the nonlocal gauge link.
Next, in Sec. III we give an explicit form of the physical
component of the gluon field based on a geometrical for-
mulation of the non-Abelian gauge theory, which also uses
a path-dependent Wilson line. After clarifying an insepa-
rable connection between the choice of path contained in

the Wilson line and the choice of gauge, we consider a
special class of paths, i.e., infinitely long straight-line
paths, the direction of which is characterized by a constant
four-vector n�. This particular choice of path is known to
be equivalent to taking the so-called general axial gauge,
which contains in it three popular gauges, i.e., the tempo-
ral, the light-cone, and the spatial axial gauges. Based on
this general axial gauge specified by the four-vector n�, we
shall calculate the one-loop evolution matrix for the quark
and gluon longitudinal gluon spins in the nucleon, in order to
check whether the answer depends on the choice of n�,
which characterizes simultaneously the gauge choiceswithin
the general axial gauge and the direction of the straight-line
path in the geometric formulation. Concluding remarks will
then be given in Sec. IV.

II. CRITIQUES ON THE IDEA OF
STUECKELBERG SYMMETRYAND

THE GAUGE-INVARIANT-EXTENSION
APPROACH

In a series of papers [16–19], we have shown that there
are two physically inequivalent decompositions of the
nucleon spin, which we call decompositions (I) and (II).
The QCD angular momentum tensor in the decomposition
(I) is given as follows:

M��� ¼ M���
q-spin þM���

q-OAM þM���
G-spin þM���

G-OAM

þM���
boost; (1)

with

M
���
q-spin ¼

1

2
����� �c���5c ; (2)

M
���
q-OAM ¼ �c��ðx�iD� � x�iD�Þc ; (3)

M
���
G-spin ¼ 2Tr½F��A�

phys � F��A�
phys�; (4)

M
���
G-OAM ¼ �2Tr½F��ðx�D�

pure � x�D�
pureÞAphys

� �
þ 2Tr½ðD�F

��Þðx�A�
phys � x�A�

physÞ�; (5)

and

M
0���
boost ¼ � 1

2
TrF2ðx�g�� � x�g��Þ: (6)

On the other hand, the QCD angular momentum tensor
in the decomposition (II) is given as follows:

M��� ¼ M0���
q-spin þM0���

q-OAM þM0���
G-spin þM0���

G-OAM

þM0���
boost ; (7)

with

M0���
q-spin ¼ M���

q-spin; (8)
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M0���
q-OAM ¼ �c��ðx�iD�

pure � x�iD�
pureÞc ; (9)

M
0���
G-spin ¼ M

���
G-spin; (10)

M
0���
G-OAM ¼ �2Tr½F��ðx�D�

pure � x�D�
pureÞAphys

� �; (11)

M0���
boost ¼ M���: (12)

In these two decompositions, the quark and gluon intrinsic
spin parts are just common, and the difference lies only in
the orbital parts. The difference is given as follows:

M
���
q-OAM �M

0���
q-OAM ¼ �ðM���

G-OAM �M
0���
G-OAMÞ

¼ 2Tr½ðD�F
��Þðx�A�

phys � x�A�
physÞ�:
(13)

The quantity characterizing the difference between the two
kinds of orbital angular momenta of quarks and gluons,
i.e., the quantity appearing on the rhs of the above relation,
is a covariant generalization of the following quantity:

L pot ¼
Z

�aðr�AaÞd3r; (14)

which we called the potential angular momentum in
Ref. [16]. The reason is that this just corresponds to the
angular momentum carried by the electromagnetic field or
potential appearing in Feynman’s famous paradox of clas-
sical electrodynamics [37]. (For an interesting phenome-
nological implication concerning the difference between
these two physically inequivalent decompositions of the
nucleon spin, we refer to Refs. [42–47].)

The whole argument above is based on the decomposi-
tion of the gluon field A� into the physical component and
the pure-gauge component as

A� ¼ A�
phys þ A�

pure; (15)

satisfying the following general conditions, i.e., the pure-
gauge condition for A�

pure,

F
��
pure � @�A�

pure � @�Apure � ig½A�
pure; A�

pure� ¼ 0; (16)

supplemented with the gauge-transformation properties for
A�
phys and A�

pure,

A
�
physðxÞ ! UðxÞA�

physðxÞUyðxÞ; (17)

A�
pureðxÞ ! UðxÞ

�
A�
pureðxÞ þ i

g
@�
�
UyðxÞ; (18)

under an arbitrary gauge transformation UðxÞ of QCD.
In recent papers [30,31], Lorce criticized that the pure-

gauge condition F
��
pure ¼ 0 is insufficient to uniquely de-

termine the decomposition A� ¼ A�
phys þ A�

pure. According

to him, there exists a hidden symmetry, which he calls a
Stueckelberg symmetry. In the simpler case of Abelian

gauge theory, the proposed Stueckelberg transformation
is given by

A�
physðxÞ ! A�

phys;gðxÞ ¼ A�
physðxÞ � @�CðxÞ; (19)

A�
pureðxÞ ! A�

pure;gðxÞ ¼ A�
pureðxÞ þ @�CðxÞ; (20)

with CðxÞ being an arbitrary function of space and time.
Certainly, this transformation changes both A�

phys and A
�
pure,

but their sum remains intact. It was then claimed that this
hidden symmetry dictates the existence of infinitely many
decompositions of the gauge field into the physical and
pure-gauge components, thereby leading to the conclusion
that there are in principle infinitely many decompositions of
the nucleon spin.
It is certainly true that the pure-gauge condition together

with the homogeneous and inhomogeneous transformation
properties of A�

phys and A
�
pure are not sufficient to determine

the decomposition A� ¼ A�
phys þ A�

pure uniquely. However,

one should remember the original motivation of this de-
composition. In the QED case with the noncovariant treat-
ment by Chen et al. [8,9], this decomposition is nothing
more than the standard decomposition of the vector poten-
tial A of the photon field into the transverse and longitu-
dinal components,

AðxÞ ¼ A?ðxÞ þAkðxÞ; (21)

where the transverse component and the longitudinal com-
ponent are respectively required to obey the divergence-
free and irrotational conditions [38,39],

r �A? ¼ 0; r�Ak ¼ 0: (22)

For the sake of later discussion, we also recall the fact that
the transverse-longitudinal decomposition can be made
explicit with the use of the corresponding projection
operators as follows:

AiðxÞ ¼ Ai
?ðxÞ þ Ai

kðxÞ ¼ ðPij
T þ Pij

L ÞAjðxÞ; (23)

with

Pij
T ¼ 	ij �rirj

r2
; (24)

Pij
L ¼ rirj

r2
: (25)

As is well known, these two components transform as

A?ðxÞ ! A0
?ðxÞ ¼ A?ðxÞ; (26)

AkðxÞ ! A0
kðxÞ ¼ AkðxÞ � r�ðxÞ (27)

under a general Abelian gauge transformation. This means
thatAk carries unphysical gauge degrees of freedom, while

A? is absolutely intact under an arbitrary gauge trans-
formation. Besides, it is a well-established fact that this
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decomposition is unique, once the Lorentz frame of refer-
ence is specified [39]. (To be more precise, the uniqueness
is guaranteed by a supplemental condition that A falls off
faster than 1=r2 at the spatial infinity, which is satisfied in
the usual circumstances that happen in electromagnetism.)
This uniqueness of the decomposition indicates that, in
QED, there exists no Stueckelberg symmetry as suggested
by Lorcé. In fact, within the above-mentioned noncovar-
iant framework, the Stueckelberg transformation à la
Lorcé reduces to

A?ðxÞ ! Ag
?ðxÞ ¼ A?ðxÞ þ rCðxÞ; (28)

AkðxÞ ! Ag
kðxÞ ¼ AkðxÞ � rCðxÞ: (29)

One can see that the transformed longitudinal component
Ag

kðxÞ retains the irrotational property,
r�Ag

k ¼ r� ðAk � rCðxÞÞ ¼ r �Ak ¼ 0: (30)

(This is simply a reflection of the fact the standard
gauge transformation forAk keeps the magnetic field B ¼
r�A intact.) However, one finds that the transformed
component Ag

?ðxÞ does not satisfy the desired divergence-

free (or transversality) condition r �Ag
? ¼ 0 any more,

since

r �Ag
? ¼ r � ðA? þ rCðxÞÞ ¼ �CðxÞ � 0 (31)

unless �CðxÞ ¼ 0. (As a matter of course—different from
the Stueckelberg transformation—there is no such problem
in the standard gauge transformation (26) and (27), be-
cause A? is intact under a general gauge transformation.)
The condition �CðxÞ ¼ 0 means that CðxÞ is a harmonic
function in three spatial dimensions. If it is required to
vanish at the spatial infinity, it must be identically zero
owing to the Helmholtz theorem. As is clear from the
discussion above, the Stueckelberg-like transformation
does not generally preserve the transversality condition
of the transverse or physical component of A. In other
words, the Stueckelberg symmetry does not actually exist
and/or it has nothing to do with a physical symmetry of
QED. Let us repeat again the well-founded fact in QED:
the transverse-longitudinal decomposition is unique once
the Lorentz frame of reference is fixed.

Still, a bothersome problem here is that the transverse-
longitudinal decomposition is not a relativistically invari-
ant manipulation. Avector field that appears transverse in a
certain Lorentz frame is not necessarily transverse in an-
other Lorentz frame. An immediate question is then what
meaning one can give to the seemingly covariant decom-
position of a gauge field like A� ¼ A

�
phys þ A

�
pure. Putting it

another way—in view of the fact that the transverse-
longitudinal decomposition can be made only at the sacri-
fice of breaking the Lorentz covariance—how can we get
an explicit form of this decomposition, which is usable in a
desired Lorentz frame? Leaving this nontrivial question

aside, we want to make some general remarks on the
treatment of gauge theories. In a covariant treatment of
gauge theories, we start with the gauge field A� with four
components (� ¼ 0, 1, 2, 3). However, we know that the
massless gauge field has only two independent dynamical
degrees of freedom, i.e., two transverse components, say
A1 and A2. The other two components, i.e., the scalar
component A0 and the longitudinal component A3, are
not independent dynamical degrees of freedom. For quan-
tizing a gauge theory, we need a procedure of gauge fixing.
A gauge-fixing procedure is essentially an operation which
eliminates the unphysical degrees of freedom so as to
pick out the two transverse components. In this sense, the
transverse-longitudinal decomposition and the gauge-
fixing procedure are closely interrelated operations (one
might say that they are almost synonymous), even though
they are not absolutely identical operations.
Another argument against the uniqueness of the nucleon

spin decomposition is based on the idea of the gauge-
invariant extension with the use of a path-dependent
Wilson line [32–34]. The idea of a gauge link in gauge
theories is of more general concern and has a long history.
DeWitt once tried to formulate the quantum electrodynam-
ics in a gauge-invariant way, i.e., without introducing a
gauge-dependent potential [48]. However, it was recog-
nized soon that—although the framework is manifestly
gauge-invariant by construction-it does depend on the
choice of path defining the gauge-invariant potential
[49–52]. Since the problem seems to be intimately con-
nected with the one we are confronted with, we think it
instructive to briefly review this framework by paying
attention to its delicate point.
According to DeWitt, once given an appropriate set

of electron and photon fields ½c ðxÞ; A�ðxÞ�, the gauge-

invariant set of the electron and photon fields
½c 0ðxÞ; A0

�ðxÞ] can be constructed as

c 0ðxÞ � eie�ðxÞc ðxÞ; (32)

A0
�ðxÞ � A�ðxÞ þ @��ðxÞ; (33)

with

�ðxÞ ¼ �
Z 0

�1
A�ðzÞ@z

�

@

d
; (34)

where z�ðx; 
Þ is a point on the line toward x, with 
 being
a parameter chosen in such a way that

z�ðx; 0Þ ¼ x�; and z�ðx;�1Þ ¼ spatial infinity:

(35)

Note here that @z�=@x� ¼ 	
�
� at 
 ¼ 0.

One can easily see that the new electron and photon
fields defined by Eqs. (32) and (33) are in fact gauge
invariant. In fact, under an arbitrary gauge transformation
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c ðxÞ ! eie!ðxÞc ðxÞ; (36)

A�ðxÞ ! A�ðxÞ þ @�!ðxÞ; (37)

the function �ðxÞ transforms as

�ðxÞ ! �
Z 0

�1
ðA�ðzÞ þ @�!ðzÞÞ @z

�

@

d
 ¼ �

Z 0

�1
A�ðzÞ @z

�

@

d
�

Z 0

�1
@!ðzÞ
@


d
 ¼ �ðxÞ �!ðxÞ: (38)

This means that c 0ðxÞ transforms as

c 0ðxÞ ! eieð�ðxÞ�!ðxÞÞeie!ðxÞc ðxÞ ¼ eie�ðxÞc ðxÞ ¼ c 0ðxÞ; (39)

that is, c 0ðxÞ is gauge invariant. The gauge invariance of A0
�ðxÞ can also be easily verified. For instructive purposes, we

reproduce here the proof. The manipulation goes as follows:

A0
�ðxÞ ¼ A�ðxÞ þ @��ðxÞ

¼ A� � @�
Z 0

�1
A�ðzÞ@z

�

@

d


¼ A� �
Z 0

�1
@�A�ðzÞ @z

�

@x�
@z�

@

d
�

Z 0

�1
A�ðzÞ @

@


�
@z�

@x�

�
d


¼ A� �
Z 0

�1
@�A�ðzÞ @z

�

@x�
@z�

@

d
þ

Z 0

�1
@�A�ðzÞ@z

�

@


@z�

@x�
d
� A�ðzÞ @z

�

@x�

��������
¼0


¼�1

¼ A� �
Z 0

�1
@�A�ðzÞ @z

�

@x�
@z�

@

d
þ

Z 0

�1
@�A�ðzÞ@z

�

@


@z�

@x�
d
� A�ðxÞ	�

�

¼ �
Z 0

�1
ð@�A� � @�A�Þ @z

�

@x�
@z�

@

d
: (40)

We thus find the key relation

A0
�ðxÞ ¼ �

Z 0

�1
F��ðzÞ @z

�

@x�
@z�

@

d
: (41)

Since the rhs of the above relation is expressed only in
terms of the gauge-invariant field-strength tensor, the
gauge invariance of A0

�ðxÞ is obvious. This is the essence
of the gauge-invariant formulation of QED by DeWitt.
There is a catch, however. Although the rhs of Eq. (41) is
certainly gauge invariant, it generally depends on the path
connecting the point x and spatial infinity. To see this most
transparently, let us take constant-time paths in a given
Lorentz frame, with the property @z0=@
 ¼ 0. In this case,
Eq. (34) reduces to

�ðxÞ ¼ �
Z x

�1
Aðx0; zÞ � dz: (42)

Let us now consider two spacelike (or constant-time) paths
L1 and L2 connecting x and spatial infinity [49]. The
corresponding gauge-invariant electron fields are given by

c 0ðx;L1Þ ¼ exp

�
�ie

Z x

L1

Aðx0;zÞ � dz
�
c ðxÞ; (43)

c 0ðx;L2Þ ¼ exp

�
�ie

Z x

L2

Aðx0;zÞ � dz
�
c ðxÞ: (44)

These two gauge-invariant electron fields are related
through

c 0ðx;L1Þ ¼ exp

�
ie

�Z x

L1

�
Z x

L2

�
Aðx0; zÞ � dz

�
c 0ðx;L2Þ:

(45)

Closing the path of integration to a loop L by a connection
at spatial infinity, where all fields and potentials are as-
sumed to vanish, we obtain

c 0ðx;L1Þ ¼ exp

�
ie
I
L
Aðx0; zÞ � dz

�
c 0ðx;L2Þ

¼ exp

�
ie
ZZ

S
ðrz �Aðx0; zÞÞ � dz

�
c 0ðx;L2Þ

¼ exp

�
ie
ZZ

S
Bðx0; zÞ � dz

�
c 0ðx;L2Þ: (46)

Since the magnetic flux does not vanish in general,
c 0ðx;L1Þ and c 0ðx;L2Þ do not coincide, which means
that c 0ðxÞ is generally path dependent.
Very interestingly, there is one particular choice of �ðxÞ

which enables us to construct c 0ðxÞ and A0
�ðxÞ, which are

path independent as well as gauge invariant [53,54]. The
choice corresponds to taking

�ðxÞ ¼ �
Z x

�1
Akðx0; zÞ � dz; (47)
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where AkðxÞ is the longitudinal component in the decom-

position AðxÞ ¼ A?ðxÞ þAkðxÞ, with the important prop-

erties r �A? ¼ 0, r�Ak ¼ 0. Interestingly, sinceI
L
Akðx0; zÞ � dz ¼

ZZ
S
ðrz �Akðx0; zÞÞ � dS ¼ 0 (48)

due to the irrotational property ofAkðxÞ, the electron wave
function defined by

c 0ðxÞ ¼ exp

�
�ie

Z x

�1
Akðx0; zÞ � dz

�
c ðxÞ (49)

is not only gauge invariant but also path independent. We
also recall the fact that the transverse and longitudinal
components of A can be expressed as

A?ðxÞ ¼ AðxÞ � r 1

r2
r �AðxÞ;

AkðxÞ ¼ r 1

r2
r �AðxÞ:

(50)

Therefore, c 0ðxÞ can be reduced to the following form:

c 0ðxÞ ¼ exp

�
�ie

Z x

�1

�
rz

1

r2
z

rz �Aðx0; zÞ
�
� dz

�
c ðxÞ

¼ exp

�
�ie

r �A
r2

ðxÞ
�
c ðxÞ: (51)

Note that, in this form, the path independence of c 0ðxÞ is
self-evident. We recall that this quantity is nothing but the
gauge-invariant physical electron introduced by Dirac
[55]. (For more discussion about this, we recommend
Refs. [56,57].) Using the same function �ðxÞ, the gauge-
invariant potential A0

�ðxÞ can also be readily found as

A0ðxÞ ¼ A?ðxÞ; (52)

A00ðxÞ ¼ A0ðxÞ þ
Z x

�1
_Akðx0; zÞ � dz: (53)

In this way, one reconfirms that the spatial component of
the gauge-invariant potential A0

�ðxÞ is nothing but the

transverse component of AðxÞ.
We can show another interesting example in which we

can define gauge-invariant electron and photon fields,
which are also path independent at least formally. The
construction begins with introducing a constant four-vector
n�. By using it, we introduce the following decomposition
of the photon field:

A� ¼ Aphys
� ðxÞ þ Apure

� ðxÞ � ðP�� þQ��ÞA�ðxÞ; (54)

where

P�� ¼ g�� �
@�n�

n � @ ; (55)

Q�� ¼ @�n�
n � @ : (56)

One can verify that the projection operators P�� and Q��

satisfy the identities

P��P
�
� ¼ P��; (57)

P��Q
�
� ¼ Q��P

�
� ¼ 0; (58)

Q��Q
�
� ¼ Q��: (59)

The two components of the above decomposition satisfy
the important properties

n�A
phys
� ðxÞ ¼ 0; (60)

@�A
pure
� ðxÞ � @�A

pure
� ðxÞ ¼ 0: (61)

As can be easily verified, under a general Abelian gauge
transformation A�ðxÞ ! A�ðxÞ þ @�!ðxÞ, these two com-

ponents respectively transform as

Aphys
� ðxÞ ! Aphys

� ðxÞ; (62)

Apure
� ðxÞ ! Apure

� ðxÞ þ @�!ðxÞ: (63)

Now we propose taking

�ðxÞ ¼ �
Z 0

�1
A
pure
� ðzÞ@z

�

@

d
 ¼ �

Z x

�1
A
pure
� ðzÞdz�;

(64)

and define the new electron and photon fields by Eqs. (32)
and (33). Very interestingly, we can show that the line
integral in the equation above is actually path independent.
In fact, let us recall the Stokes’ theorem in four-
dimensional spacetime expressed as

I
A�ðzÞdz� ¼ 1

2

Z
S
ð@�A� � @�A�Þd���; (65)

where d��� is an infinitesimal area element tensor. Owing
to the property (61), it holds thatI

A
pure
� ðzÞdz� ¼ 0: (66)

Because of this fact, �ðxÞ defined by Eq. (64) is formally
path independent, and can be expressed as

�ðxÞ ¼ �
Z x

�1
@z�n�
n � @z A

�ðzÞdz�

¼ �
Z x

�1
@z�

�
n � AðzÞ
n � @z

�
dz� ¼ n � AðxÞ

n � @ ; (67)

where @z� � @
@z� , while @� � @

@x� . The gauge-invariant

electron and photon fields are therefore given by

c 0ðxÞ ¼ eie�ðxÞc ðxÞ ¼ eie
n�AðxÞ
n�@ c ðxÞ; (68)
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A0
�ðxÞ ¼ A�ðxÞ þ @��ðxÞ ¼

�
g�� � @�n�

n � @
�
A�ðxÞ

¼ Aphys
� ðxÞ: (69)

One notices that the condition n�Aphys
� ¼ 0 is nothing but

the gauge-fixing condition projecting out the physical
component of the gauge field in the framework of the
general axial gauge.

Several remarks are in order here. The familiar gauge-
fixing condition n�A� ¼ 0 does not completely fix the

gauge; that is, there still remain residual gauge degrees
of freedom. The singular nature of the operator 1=ðn � @Þ is
related to these residual degrees of freedom. How to treat
this singularity is connected with what boundary condition
is imposed for the gauge field at the infinity. Another
concern is a generalization to the non-Abelian case. In

the abelian case, we have seen that A
phys
� ðxÞ and A

pure
� ðxÞ

defined by Eq. (54) supplemented with Eqs. (55) and (56)
satisfy the desired gauge transformation properties.
Unfortunately, the matter is not so simple in the non-
Abelian gauge case. In this case, we need a more sophis-
ticated method for projecting out the physical component
of the gauge field, as discussed in the next section.

As is clear from the discussion above, except for some
fortunate choices of �ðxÞ, the fields c 0ðxÞ and A0

�ðxÞ
defined by Eqs. (32) and (33) supplemented with
Eq. (34) are by construction gauge invariant but generally
path dependent. How should we interpret this path depen-
dence? Soon after the paper by DeWitt appeared [48],
Belinfante conjectured that a ‘‘path’’ is just a ‘‘gauge’’
[49]. He showed that, by averaging over path-dependent
potential over the directions of all straight lines at constant
time converging to the point where the potential is to be
calculated, one is led to the potential in the Coulomb gauge
[49]. On the other hand, Rohrlich and Strocchi applied a
similar averaging procedure over a covariant path and
they obtained the potential in the Lorentz gauge [51]. It
was also demonstrated by Yang that, for a simple quantum-
mechanical system, the path dependence is eventually a
reflection of the gauge dependence [52]. All these inves-
tigations appear to indicate that, if a quantity in question is
seemingly gauge invariant but path dependent, it is not a
gauge-invariant quantity in a true or traditional sense,
which in turn indicates that it may not correspond to
genuine observables. Clearly, the GIE approach is equiva-
lent to the standard treatment of gauge theory only when
its extension by means of a gauge link is path independent.
By the standard treatment of the gauge theory, we mean the
following. Start with a gauge-invariant quantity or expres-
sion. Fix the gauge according to the needs of the practical
calculation. The answer should be independent of the
gauge choice.

Now we come back to our original question. We are
asking whether or not the gluon spin part in the longitudi-
nal nucleon spin sum rule is a gauge-invariant quantity in a

traditional. In principle, there are two ways to answer this
question. The first is to show that the gauge-invariant
longitudinal gluon spin operator can be constructed
without recourse to the notion of ‘‘path.’’ The second
possibility is to adopt a gauge-invariant but generally
path-dependent formulation at the beginning and then to
show that the quantity of interest is actually path indepen-
dent. In the following analysis, we take the second route
and try to show the traditional gauge invariance of the
evolution equation of the quark and gluon longitudinal
spins in the nucleon.

III. GAUGE AND PATH INDEPENDENCE OF THE
EVOLUTION MATRIX FOR QUARK AND GLUON

LONGITUDINAL SPINS IN THE NUCLEON

A primary question we want to address in this section is
whether the gluon spin term appearing in the longitudinal
nucleon spin sum rule is a gauge-invariant quantity in a
traditional sense or whether it is a quantity that has a
meaning only in the light-cone gauge or in the gauge-
invariant extension based on the light-cone gauge. We
have already pointed out that—even for the Abelian
case—the choice of gauge, the choice of Lorentz frame,
and the transverse-longitudinal decomposition are all in-
trinsically intertwined. Moreover, an additional complexity
arises in the case of non-Abelian gauge theory. The past
studies have shown that—different from the Abelian gauge
theory—even within the noncovariant treatment, the trans-
verse component cannot be expressed in a closed form; that
is, it can be given only in the form of a perturbation series
in the gauge coupling constant [11,58]. Still, it remains true
that the independent dynamical degrees of freedom of the
massless vector field are two transverse components. In
broad terms, one might say that the physics is contained in
the transverse part of the gauge field. In the past, tremen-
dous efforts have been made to figure out these physical
components of the gauge field. DeWitt’s formulation of the
electrodynamics explained before is one typical example
[48]. We realized that what is especially useful for our
purpose is a slightly more sophisticated formulation pro-
posed in the papers by Ivanov, Korchemsky, and
Radyushkin [59,60]. It is based on the geometric interpre-
tation of the gauge field actualized as a fiber-bundle for-
mulation of gauge theories. (See Ref. [31] for a recent
concise review on this geometrical formulation.) In this
approach, the gauge field is identified with the connection
of the principle fiber bundle MðR4; GÞ with the four-
dimensional spacetime R4 being its base space and with
the fiber being the gauge group G. For the gauge field
A�ðxÞ and each element gðxÞ of the fiber GðxÞ, one can

define the gauge field configuration AgðxÞ by

AgðxÞ ¼ g�1ðxÞ
�
A�ðxÞ þ i

g
@�

�
gðxÞ: (70)
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Then, the set fAg
�ðxÞg for all gðxÞ forms the gauge-

equivalent field configurations called the orbits. For the
quantization, one must choose a unique gauge orbit from
infinitely many gauge-equivalent orbits. The most popular
way of doing this is to impose an appropriate gauge-fixing
condition fðAg; gÞ ¼ 0 by hand. However, the gauge-fixing
condition fðAg; gÞ ¼ 0 sometimes does not have a unique
solution beyond the perturbative regime [61]. A new
method was then proposed, which is in principle free
from the constraints of the perturbative gauge-fixing pro-
cedure. In this framework, the gauge function gðxÞ is fixed
as a solution of the parallel transport equation in the fiber-
bundle space,

@z�

@s
D�½A�gðzðsÞÞ ¼ 0; (71)

where D� ¼ @� � igA�ðzðsÞÞ is the covariant derivative,

while zðsÞ is a pathC in the four-dimensional base space R4

with the following boundary conditions:

z�ðs ¼ 1Þ ¼ x�; z�ðs ¼ 0Þ ¼ x
�
0 : (72)

The solution to this equation is well known. It is expressed
in terms of the Wilson line as

gðxÞ ¼ WCðx; x0Þgðx0Þ; (73)

with

WCðx; x0Þ ¼ P exp

�
ig
Z x

x0

dz�A�ðzÞ
�
: (74)

Once gðxÞ is given, Ag
�ðxÞ defined by Eq. (70) is uniquely

specified. However, one should clearly keep in mind the
fact that Ag

�ðxÞ so determined is generally dependent on the
choice of the path C connecting x and x0 (the starting point
of the path). By substituting Eq. (74) into Eq. (70) and by
using the derivative formula for the Wilson line, together
with the identity W�1

C ðx; yÞ ¼ WCðy; xÞ, Ag
�ðxÞ can be ex-

pressed as

Ag
�ðxÞ ¼ A�ðx0Þ @x

�
0

@x�

�
Z x

x0

dz�
@z�

@x�
WCðx0; zÞF��ðz;AÞWCðz; x0Þ;

(75)

where F��ðz;AÞ � @�A�ðzÞ � @�A�ðzÞ � ig½A�ðzÞ; A�ðzÞ�.
The rhs of the above equation depends on the original
gauge field A�, and on the starting point x0 of the path,

which in principle can depend on x. In the following, we
take x0 to be a unique point for all contours C, so that
@x�0=@x

� ¼ 0.
With some natural constraints on the choice of the

contours C, it was shown in Refs. [59,60] (see also
Ref. [62]) that the above way of fixing the gauge is equiva-
lent to taking gauges satisfying the condition

WCðx; x0Þ ¼ P exp

�
ig
Z x

x0

dz�Ag
�ðzÞ

�
¼ 1: (76)

This class of gauges are called the contour gauges. An
attractive feature of the contour gauge is that they are
ghost-free. As specific examples of contour gauges, three
gauges were briefly discussed. They are the Fock-
Schwinger gauge, the Hamilton gauge, and the general
axial gauge. Especially useful for our purpose here is the
general axial gauge. The reason is that this is the most
convenient gauge among the three for perturbative calcu-
lations. In the context of the geometrical approach, the
axial gauge corresponds to taking the following infinitely
long straight-line path:

z�ðsÞ ¼ x� þ sn�; (77)

with 0< s <1, where n� is a constant four-vector char-
acterizing the direction of the path. Substituting this form
of z�ðsÞ into Eq. (75), one obtains the relation between the
transformed and original gauge fields as

Ag
�ðxÞ ¼ n�

Z 1

0
dsWy

Cðxþ ns;1Þ
� F��ðxþ ns;AÞWCðxþ ns;1Þ; (78)

with

WCðx;1Þ ¼ P exp

�
ig
Z 1

0
dsn�A�ðxþ nsÞ

�
: (79)

Taking account of the antisymmetry of the field-strength
tensor, F�� ¼ �F��, one can easily see that Ag

� satisfies

the identity

n�Ag
� ¼ 0: (80)

Note that this is nothing but the gauge-fixing condition in
the general axial gauge. Since n� is an arbitrary constant
four-vector, this class of gauge contains several popular

gauges. For instance, by choosing n� ¼ ð1; 0; 0; 0Þ, n� ¼
ð1; 0; 0; 1Þ= ffiffiffi

2
p

, and n� ¼ ð0; 0; 0; 1Þ, we can cover any of
the temporal gauge, the light-cone gauge, and the spatial
axial gauge. Furthermore, using the property of the Wilson
line

Wy
Cðxþ ns;1ÞF��ðxþ ns;AÞWCðxþ ns;1Þ
¼ F��ðxþ ns;AgÞ; (81)

Eq. (78) can also be expressed in an equivalent but simpler
form as

Ag
�ðxÞ ¼ n�

Z 1

0
dsF��ðxþ ns;AgÞ: (82)

This identity represents the fact that, in the general axial
gauge, the gauge potential A� can be expressed in terms of

the field-strength tensor [25,63]. (Undoubtedly, Ivanov
et al. correctly recognized the fact that the choice of a
path in the geometrical formulation just corresponds to a
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gauge-fixing procedure. Note that this understanding is
nothing different from the conclusion of Belinfante pointed
out before that a ‘‘path’’ is just a ‘‘gauge.’’) With the

identification A
phys
� ðxÞ � Ag

�ðxÞ, the above equation can
then be thought of as a defining equation of the physical

component A
phys
� ðxÞ of the gluon field based on the general

axial gauge. We emphasize that this defining equation itself
is free from perturbation theory in the gauge coupling
constant.

Since the main purpose of our present study is to show
the perturbative gauge invariance of the gluon spin—or,
more concretely, the traditional gauge invariance of the
evolution equation of the quark and gluon longitudinal
spins in the nucleon—let us look into the perturbative
contents of the above equality (78), which can be inter-
preted as an equation projecting out the physical compo-

nent of the gluon field Aphys
� � Ag

�ðxÞ from A�ðxÞ. At the
lowest order in the gauge coupling constant, this gives

A
phys
� ðxÞ ’ n�

Z 1

0
dsð@�A�ðxþ nsÞ � @�A�ðxþ nsÞÞ:

(83)

Introducing the Fourier transform of A�ðxÞ,
~A�ðkÞ ¼

Z
d4xe�ikxA�ðxÞ; (84)

we therefore get

Aphys
� ðxÞ ’n�

Z 1

0
ds
Z d4k

ð2�Þ4e
ikðxþnsÞðik� ~A�ðkÞ� ik� ~A�ðkÞÞ

¼
Z d4k

ð2�Þ4e
ikx

�
g���

k�n�

k �n
�
~A�ðkÞ

¼
�
g���

@�n�
n �@

�
A�ðxÞ: (85)

Note that, although this is simply the lowest-order expres-
sion for the physical component for A�ðxÞ in the case of

non-Abelian gauge theory, it reproduces the exact one (69)
in the Abelian case, discussed in the previous section. One
can easily verify that this gives the lowest-order expression
for the physical propagator of the gluon as

hTðAphys
�;a ðxÞAphys

�;b ðxÞÞið0Þ ¼
Z d4k

ð2�Þ4 e
ikðx�yÞ �i	ab

k2 þ i�
P��ðkÞ;

(86)

with

P��ðkÞ ¼ g�� �
k�n� þ n�k�

k � n þ n2k�k�

ðk � nÞ2 : (87)

As anticipated, it just coincides with the free gluon propa-
gator in the general axial gauge.

In this way, one finds that the path dependence or
direction dependence of the constant four-vector n� in
the geometrical formulation is replaced by the gauge

dependence within the class of gauges called the general
axial gauge. In this setting, then, the gluon spin operator

reduces to M
���
G-spin ¼ 2Tr½F��A� � F��A��, where A� in

this equation should be regarded as the gluon field satisfy-
ing the general axial gauge condition n�A� ¼ 0.

Our strategy should be clear by now. We want to inves-
tigate the one-loop anomalous dimension for the quark and
gluon longitudinal spin operators in the nucleon within the
general axial gauge characterized by the four-vector n�.
Since the general axial gauge falls into the category of the
so-called noncovariant gauges, one must be careful about
the fact that the choice of gauge and the choice of Lorentz
frame are intrinsically intertwined. To understand this
subtlety, it is instructive to remember the basis of the
longitudinal momentum sum rule of the nucleon. The
momentum sum rule of the nucleon is derived based on
the following covariant relation:

hPsjT��ð0ÞjPsi ¼ 2P�P�; (88)

where T�� is the (symmetric) QCD energy-momentum

tensor, while jPsi is a nucleon state with momentum P
and spin s. A useful technique for obtaining the momentum
sum rule is to introduce a lightlike constant vector n� with
n2 ¼ 0. By contracting Eq. (88) with n� and n�, we have

hPsjn�T��ð0Þn�jPsi
2ðPþÞ2 ¼ 1; (89)

which provides us with a convenient basis for obtaining a
concrete form of the momentum sum rule of QCD.
However, since Eq. (88) itself is relativistically covariant,
the above choice of n� is not the only choice. With the
choice of arbitrary constant four-vector n� with n2 � 0,
we would have a more general relation,

hPsjn�T��ð0Þn� � 1
4 n

2T�
�ð0ÞjPsi

2ðP � nÞ2 ¼ 1: (90)

Here, since n2 � 0, the subtraction of the trace term is
obligatory.
Similarly, the starting point for obtaining the longitudi-

nal nucleon spin sum rule is the following covariant
relation:

hPsjM���ð0ÞjPsi
¼ JN

P�s�

M2
N

½2P������ � P������ � P�������; (91)

where M��� is the angular momentum tensor of QCD,
while

P2 ¼ M2
N; s2 ¼ �M2

N; s � P ¼ 0; (92)

with s� being a covariant spin-vector of the nucleon.

Note that, without loss of generality, we can take
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P� ¼ ðP0; 0; 0; P3Þ and s� ¼ ðP3; 0; 0; P0Þ with P0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP3Þ2 þM2

N

q
. The longitudinal nucleon spin sum rule

can be obtained by setting � ¼ 1, � ¼ 2, which gives

hPsjM�12ð0ÞjPsi ¼ �2JN
1

M2
N

P��12��P�s� ¼ 2JNP
�:

(93)

Contracting this relation with an arbitrary constant four-
vector n�, we therefore arrive at the basic equation of the
longitudinal nucleon spin sum rule [1],

JN ¼ 1

2
¼ hPsjn�M�12ð0ÞjPsi

2ðP � nÞ : (94)

An important fact here is that the relations (90) and (94) are
not covariant any more. The four-vector n� appearing in
these equations should therefore be identified with the
four-vector that characterizes the Lorentz frame, in which
the gauge-fixing condition n�A� ¼ 0 is imposed [64].

In the following, we shall confine ourselves to the in-
trinsic spin parts of quarks and gluons appearing in the
nucleon spin decompositions [we recall the fact that they
are just common in both decompositions (I) and (II)],

M
���
q-spin ¼

1

2
����� �c���5c ; (95)

M
���
G-spin ¼ 2Tr½F��A� � F��A��: (96)

Here, the gauge fields appearing in M���
G-spin should be

regarded as the physical gluon field satisfying the general
axial gauge condition n�A� ¼ 0.

Generally, the gluon spin operator appearing in Eq. (93)
consists of three pieces,

M�12
G-spin¼2Tr½F�1A2�F�2A1�¼V�

AþV�
BþV�

C; (97)

where

V�
A ¼ ð@�A1

aÞA2
a � ð@�A2

aÞA1
a; (98)

V�
B ¼ �½ð@1A�

aA
2
a � ð@2A�

aÞA1
a�; (99)

V�
C ¼ gfabcA

�
b½A1

cA
2
a � A2

cA
1
a�: (100)

Note, however, that the V�
B and V�

C terms do not contribute

to the longitudinal nucleon spin sum rule (94), since
n�V

�
B ¼ n�V

�
C ¼ 0, due to the gauge-fixing condition

n�A
� ¼ 0. As a consequence, in the general axial gauge,

only the V�
A term contributes to the longitudinal spin sum

rule.
The momentum-space vertex for the gluon spin there-

fore reduces to the following simple form supplemented
with the diagram illustrated in Fig. 1:

V�
A ¼ 2ik�ðg�1g�2 � g�2g�1Þ	ab: (101)

Now we are ready to investigate the anomalous-
dimension matrix for the longitudinal quark and gluon
spins in the nucleon,

�� ¼ ��qq ��qG

��Gq ��GG

 !
; (102)

which controls the scale evolution of the quark and gluon
spins. We start with the quark spin operator M�12

q-spin,

although there is no known problem in this part. The reason
is that we want to see the independence of the final result
regarding the choice of the constant four-vector n�, which
specifies the Lorentz frame in which the gauge-fixing
condition necessary for the quantization of the gluon field
is imposed.
The anomalous dimension ��qq can be obtained by

evaluating the matrix element of

2n�M
�12
q-spin ¼ n��

�12� �c���5c (103)

in a longitudinally polarized quark state jpsiwith s ¼ �1.
The corresponding one-loop diagram is shown in Fig. 2.
This gives

Tqq ¼ 1

2p � n
Z d4k

ð2�Þ4 �uðpsÞig��ta
ið6p� 6kÞ

ðp� kÞ2 þ i"

� n��
�12����5

ið6p� 6kÞ
ðp� kÞ2 þ i"

ig��tbuðpsÞ

� 	abD��ðkÞ; (104)

where

FIG. 1. Momentum-space vertices for the gluon spin.

FIG. 2. The Feynman diagram contributing to ��qq.
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D��ðkÞ ¼ �i

k2 þ i"
P��ðkÞ; (105)

with

P��ðkÞ � Paxial
�� ðkÞ ¼ g�� �

k�n� þ n�k�

k � n þ n2k�k�

ðk � nÞ2 :
(106)

As is well known, this gluon propagator in the general axial
gauge contains a spurious simple pole and also a double
pole. In the following, let us evaluate the contributions of
the three terms in Paxial

�� ðkÞ separately. The calculation of

the part containing g�� is straightforward. After some

Dirac algebra, we get

Tqqðg��Þ ¼ �i
g2CF

2p � n�
�
�8n�p�

Z d4k

ð2�Þ4

� k�k�

½ðp� kÞ2 þ i"�2ðk2 þ i"Þ
þ 4p � n

Z d4k

ð2�Þ4
1

½ðp� kÞ2 þ i"�2
�
: (107)

Using the standard dimensional regularization with
D � 2! spacetime dimensions, the divergent parts of the
necessary integral are given by

div
Z d4k

ð2�Þ4
k�k�

½ðp� kÞ2 þ i"�2ðk2 þ i"Þ ¼
1

4
g�� �I; (108)

div
Z d4k

ð2�Þ4
1

½ðp� kÞ2 þ i"�2 ¼
�I; (109)

where

�I ¼ i�2

2�!
: (110)

We therefore obtain

Tqqðg��Þ ¼ �S

2�

1

2
CF

1

2�!
: (111)

Next, we evaluate the term containing a simple spurious
pole 1=ðk � nÞ. After some algebra, we get

Tqqð1=ðk � nÞÞ ¼ �i
g2CF

2p � n
�
�p � n

Z d4k

ð2�Þ4

� 1

½ðp� kÞ2 þ i"�2

þ n2p�

Z d4k

ð2�Þ4
k�

½ðp� kÞ2 þ i"�2k � n
�
:

(112)

Now we encounter a Feynman integral containing a
spurious pole. A consistent method for handling such
Feynman integrals was first proposed by Mandelstam
[65] and independently by Leibbrandt [66] in the

light-cone gauge corresponding to the choice n2 ¼ 0. It is
given as

1

k � n ! 1

½k � n� � lim
"!0

k � n�
k � nk � n� þ i"

; ð" > 0Þ;
(113)

where n�� ¼ ðn0;�nÞ is a dual four-vector to the four-

vector n� ¼ ðn0;nÞ with n2 ¼ 0 and n�2 ¼ 0.

[Practically, we can take n� ¼ ðn0; 0; 0; n3Þ and n�� ¼
ðn0; 0; 0;�n3Þ without loss of generality.] Later, Gaigg
et al. showed that this prescription can be generalized to
a more general case of n2 � 0 and n�2 � 0 [67,68]. (For
review, see Refs. [69,70].) In this generalized n�� prescrip-

tion, the divergent part of the above integral is given by

Z
d2!k

k�

½ðp� kÞ2 þ i"�2½k � n�

¼ 1

D

�
n�� � n�2

n� � nþD
n�
�
�I; (114)

where D is defined by

D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� � nÞ2 � n�2n2

q
: (115)

By using this result, the divergent part of Tqqð1=ðk � nÞÞ
becomes

Tqqð1=ðk � nÞÞ ¼ �S

4�
CF

1

2�!

�
�4þ 2

n2

½p � n�
� 1

D

�
p � n� � n�2

n� � nþD
p � n

��
: (116)

The contribution of the part containing a spurious
double-pole structure 1=ðk � nÞ2 can similarly be calcu-
lated. We get

Tqqð1=ðk � nÞ2Þ ¼ �ig2CFn
2
Z d4k

ð2�Þ4

� k2

½ðp� kÞ2 þ i"�2ðk � nÞ2 : (117)

Using the generalized n�� prescription again, the divergent

part of the relevant integral is given by

div
Z d4k

ð2�Þ4
k2

½ðp� kÞ2 þ i"�2½k � n�2 ¼
2

D

n�2

n� � nþD
�I:

(118)

We therefore obtain

Tqqð1=ðk � nÞ2Þ ¼ �2
�S

4�
CF

�
1� n � n�

D

�
1

2�!
: (119)

Here, use has been made of the identity

n2n�2

n� � nþD
¼ n � n� �D: (120)
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By summing the three terms, we arrive at

Tqq ¼ � �S

4�
CF

1

2�!

� �S

4�
2CF

1

½p � n�
1

D
½p � nn � n� � p � n�n2� 1

2�!

� �S

4�
2CF

�
1� n � n�

D

�
1

2�!
: (121)

At this stage, it is instructive to consider several special
choices of n�. The light-cone gauge choice corresponds to

taking n0 ¼ n3 ¼ 1=
ffiffiffi
2

p
. In this case, we have

p �n¼pþ; p �n� ¼p�; n �n� ¼1; n2¼0; (122)

and

D ¼ 1; (123)

so that we find

TqqðLCÞ ¼ � �S

2�

3

2
CF

1

2�!
: (124)

This legitimately reproduces the answer first obtained by
Ji, Tang, and Hoodbhoy in the light-cone gauge [40].

Another interesting choice is the temporal-gauge limit
specified by n0 ¼ 1 and n3 ¼ 0. In this limit, we have

p � n¼ p � n� ¼ p0; n � n� ¼ 1; n2 ¼ 1; (125)

and

D ¼ 0: (126)

We therefore find that the coefficients of 1=ð2�!Þ in the
second and third term of Tqq diverge. The temporal-gauge

limit is singular in this respect. However, for obtaining the
anomalous dimension ��qq, we must also take account of

the self-energy insertion in the external quark lines. The
contribution of these diagrams can be easily obtained by
using the known result for the one-loop quark self-energy
in the general axial gauge. (See, for instance, Ref. [69]).
We get

TSelf
qq ¼ �S

4�
CF

1

2�!

þ �S

4�
2CF

1

½p � n�
1

D
½p � nn � n� �p � n�n2� 1

2�!

þ �S

4�
2CF

�
1� n � n�

D

�
1

2�!
: (127)

As anticipated, this exactly cancels Tqq obtained above,

thereby leading to the standardly known answer, i.e.,

��qq ¼ 0: (128)

It is important to recognize that this final result is obtained
totally independently of the choice of the four-vector n�.
The relevant Feynman diagram contributing to the

anomalous dimension ��qG is illustrated in Fig. 3. Since

no internal gluon propagator appears in this diagram, we
do not need to repeat the standard manipulation. One can
easily verify that

��qG ¼ 0: (129)

Next, we turn to the anomalous dimension ��Gq. The

relevant one-loop Feynman diagram is shown in Fig. 4.
The contribution of the vertex VA in the gluon spin operator
is given by

TA
Gq ¼

1

2p � n
Z d4k

ð2�Þ4 �uðpsÞig��0
td

ið6p� 6kÞ
ðp� kÞ2 þ i"

� 	de2iðk � nÞ½g�1g�2 � g�2g�1�
� 	bcig��0

teuðpsÞ	bdD��0 ðkÞ	ceD��0 ðkÞ; (130)

where D��0 ðkÞ and D��0 ðkÞ are gluon propagators in the

general axial gauge excluding trivial color-dependent
parts. This gives

FIG. 3. The Feynman diagram contributing to ��qG.

FIG. 4. The Feynman diagram contributing to ��Gq.
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TA
Gq ¼ �g2CF

p � n
Z d4k

ð2�Þ4
k � n

ðk2 þ i"Þ2½ðk� pÞ2 þ i"�
� �uðpsÞ��0 ð6p� 6kÞ��0

uðpsÞðg�1g�2 � g�2g�1Þ
� P��0 ðkÞP��0 ðkÞ

¼ 2i
g2CF

p � n
Z d4k

ð2�Þ4
k � n

ðk2 þ i"Þ2½ðk� pÞ2 þ i"�
� ðg�1g�2 � g�2g�1Þ��0�0��k�p�P��0 ðkÞP��0 ðkÞ:

(131)

After some algebra, we obtain

TA
Gq¼�4i

g2CF

p �n
�
p�n�

Z d4k

ð2�Þ4
k�k�

ðk2þ i"Þ2½ðk�pÞ2þ i"�
�p �n

Z d4k

ð2�Þ4
k2?

ðk2þ i"Þ2½ðk�pÞ2þ i"�
�
; (132)

with k2? � k21 þ k22. Evaluating its divergent part by dimen-

sional regularization, we get

TA
Gq ¼

�S

2�

3

2
CF

1

2�!
: (133)

In this way, we arrive at the standardly known answer for
��Gq given by

��Gq ¼ �S

2�

3

2
CF: (134)

Now we are in a position to investigate the most non-
trivial part of our analysis, i.e., the anomalous dimension
��GG. The contribution of the vertex VA is given by the
Feynman diagram illustrated in Fig. 5. This gives

TA
GG ¼ 1

2p �n
Z d4k

ð2�Þ4 �
��ðpsÞ��ðpsÞ

�gfac
0e½�ðpþ kÞ�g��0 þ ð2k�pÞ�g��0 þ ð2p� kÞ�0g���

� 2iðk �nÞ½g�1	�2ðkÞ�g�2	�1ðkÞ�	bc

�gfab
0d½ðpþ kÞ
g��0 þ ðp� 2kÞ�g�0
 þðk� 2pÞ�0g�
�

�	cc0D��0 ðkÞ	bb0D��0 ðkÞ	deD
�ðp� kÞ: (135)

This can be rewritten in the form

TA
GG ¼ þg2CA

p � n
Z d4k

ð2�Þ4
k � n

ðk2 þ i"Þ2½ðp� kÞ2 þ i"� �
��ðpsÞ��ðpsÞ

� ½ðpþ kÞ�g��0 þ ðp� 2kÞ�g��0 þ ðk� 2pÞ�0g���
� ½ðpþ kÞ
g��0 þ ðp� 2kÞ�g�0
 þ ðk� 2pÞ�0g�
�
� ðg�1g�2 � g�2g�1ÞP�

�0 ðkÞP�
�0 ðkÞP
�ðp� kÞ; (136)

where CA ¼ fabcfabc ¼ 3 is the standard color factor. After tedious but straightforward algebra, TA
GG can further be

rewritten in the form

TA
GG ¼ þCA

g2

p � n
Z d4k

ð2�Þ4
k � n

ðk2 þ i"Þ½ðk� pÞ2 þ i"� �
��ðpsÞ��ðpsÞ

�
�
ðg�01g�

02 � g�
02g�

01Þ � ðk1g�02 � k2g�
01Þ n

�0

k � nþ ðk1g�02 � k2g�
01Þ n�

0

k � nþ ðk1g�02 � k2g�
01Þ n2k�

0

ðk � nÞ2

� ðk1g�02 � k2g�
01Þ n2k�

0

ðk � nÞ2
�
½���0 ðpþ kÞ� � 2�� � kg��0 þ ���ðk� 2pÞ�0 �

� ½��0ðpþ kÞ
 � 2� � kg
�0 þ �
ðk� 2pÞ�0 �
�
g
� � ðk� pÞ
n� þ n
ðk� pÞ�

ðk� pÞ � n þ n2ðk� pÞ
ðk� pÞ�
½ðk� pÞ � n�2�

�
: (137)

FIG. 5. The Feynman diagrams contributing to ��GG.
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We shall again calculate the three contributions from
P
�ðkÞ separately. The part containing the tensor g
�

reduces to

TA
GGðg
�Þ ¼ TA1

GGðg
�Þ þ TA2

GGðg
�Þ; (138)

where

TA1

GGðg
�Þ ¼ �iCA

g2

p � n
Z d4k

ð2�Þ4

� k � nðpþ kÞ2 � 8p � nk2?
ðk2 þ i"Þ½ðk� pÞ2 þ i"� ; (139)

and

TA2

GGðg
�Þ ¼ 2iCA

g2

p � n n
2
Z d4k

ð2�Þ4

� k2?ðk2 � 3p � kÞ
ðk2 þ i"Þ2½ðk� pÞ2 þ i"�ðk � nÞ : (140)

The first part, which does not contain the 1=ðk � nÞ-type
spurious singularity, can be calculated in a standard man-
ner, which gives

TA1

GGðg
�Þ ¼ þ �S

2�

5

2
CA

1

2�!
: (141)

The second part can be evaluated by using the formulas

div
Z

d2!k
k2?

ðk2 þ i"Þ½ðk� pÞ2 þ i"�½k � n�

¼ � 1

D

�
p � n� � n�2

n� � nþD
p � n

�
�I; (142)

div
Z

d2!k
k�k2?

ðk2 þ i"Þ½ðk� pÞ2 þ i"�½k � n�

¼ � 1

2D

�
n�� � n�2

n� � nþD
n�
�
�I: (143)

The answer is given as

TA2

GGðg
�Þ ¼ � �S

2�

1

2
CA

n2

D

1

½p � n�
�
�
p � n� � n�2

n� � nþD
p � n

�
1

2�!
: (144)

Collecting the two pieces, we thus arrive at

TA
GGðg
�Þ ¼ þ �S

2�

5

2
CA

1

2�!
� �S

2�

1

4
CA

n2

D

1

½p � n�
�
�
p � n� � n�2

n� � nþD
p � n

�
1

2�!
: (145)

Next, we evaluate the term containing the spurious singu-
larity of 1=ðk� pÞ � n in P
�ðk� pÞ. After lengthy
algebra, we obtain

TA
GGð1=ðk�pÞ �nÞ

¼�iCA

g2

p �n
�
�2

Z d4k

ð2;�Þ4
k �n

ðk2þ i"Þ½ðk�pÞ2þ i"�
� 4p �n

Z d4k

ð2;�Þ4
k �n

ðk2þ i"Þ½ðk�pÞ2þ i"�ðk�pÞ �n
þ 2n2

Z d4k

ð2;�Þ4
k2?

ðk2þ i"Þ½ðk�pÞ2þ i"�ðk�pÞ �n
�n2

Z d4k

ð2;�Þ4
k2?

ðk2þ i"Þ½ðk�pÞ2þ i"�k �n
�
: (146)

Using the known integral formulas

div
Z

d2!k
k � n

ðk2 þ i"Þ½ðk� pÞ2 þ i"�½ðk� pÞ � n� ¼
�I;

(147)

div
Z

d2!k
k2?

ðk2 þ i"Þ½ðk� pÞ2 þ i"�½ðk� pÞ � n�

¼ 1

D

�
p � n� � n�2

n� � nþD
p � n

�
�I; (148)

div
Z

d2!k
k2?

ðk2 þ i"Þ½ðk� pÞ2 þ i"�½k � n�

¼ � 1

D

�
p � n� � n�2

n� � nþD
p � n

�
�I; (149)

we find that

TA
GGð1=ðk� pÞ � nÞ

¼ �S

2�

�
� 5

2
CA

�
1

2�!
þ �S

2�

3

2
CA

n2

D

1

½p � n�
�
�
p � n� � n�2

n� � nþD
p � n

�
1

2�!
: (150)

Finally, we evaluate the contribution of the spurious
double-pole term 1=½ðk� pÞ � n�2 in P
�ðk� pÞ. After
some algebra, we obtain

TA
GGð1=½ðk� pÞ � n�2Þ ¼ �iCA

g2

p � n n
2
Z d4k

ð2�Þ4

� k � n
½ðk� pÞ2 þ i"�½ðk� pÞ � n�2 :

(151)

Now, by using the integral formula

div
Z

d2!k
k�

½ðk� pÞ2 þ i"�½ðk� pÞ � n�2

¼ p� 2

D

n�2

n� � nþD
�I; (152)

we obtain
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TA
GGð1=½ðk� pÞ � n�2Þ ¼ �S

2�
CA

1

D

n2n�2

n� � nþD

1

2�!
:

(153)

Summing up the three contributions, we finally arrive at

TA
GG ¼ �S

2�
CA

n2

D

p � n�
½p � n�

1

2�!
: (154)

Again, it is instructive to consider several limiting cases.

In the light-cone limit with n0 ¼ n3 ¼ 1=
ffiffiffi
2

p
and n2 ¼ 0,

one sees that TA
GG above vanishes. This is consistent with

the direct calculation in the light-cone gauge [40]. On the
other hand, in the temporal limit with n0 ¼ 1,n3 ¼ 0, and
n2 ¼ 1, the coefficient of 1=ð2�!Þ diverges, sinceD ! 0
in this limit. However, for obtaining the anomalous dimen-
sion ��GG, we must also take account of the self-energy
insertion in the external gluon lines. The contribution
of these diagrams turn out to be (see, for instance,
Refs. [67,69])

TSelf
GG ¼ �S

2�

�
11

6
CA � 1

3
nf

�
1

2�!

� �S

2�
CA

n2

D

p � n�
½p � n�

1

2�!
: (155)

One finds that the dangerous terms in TGG and TSelf
GG cancel

exactly, thereby leading to

TA
GG þ TSelf

GG ¼ �S

2�

�
11

6
CA � 1

3
nf

�
1

2�!
; (156)

which gives

��GG ¼ �S

2�

�
11

6
CA � 1

3
nf

�
: (157)

In this way, we have succeeded in reproducing the well-
known answer completely independently of the choice of
the four-vector n�, which is interpreted to characterize the
Lorentz frame in which the gauge-fixing condition is im-
posed. The flexibility of our treatment regarding the choice
of the four-vector n� enables us to handle several interest-
ing cases in a unified way with the help of the generalized
n�� prescription. They include the temporal-gauge limit

with n2 ¼ 1, the light-cone gauge limit with n2 ¼ 0, and
the spatial axial-gauge limit with n2 ¼ �1. We have
shown that the temporal-gauge limit should be treated
with special care, because singular terms appear in the
course of manipulation. Nevertheless, after summing up
all the relevant contributions, dangerous singular terms
cancel among themselves and the final answer is shown
to be the same in all the cases. As we have shown, since
these three different gauges belonging to the general axial
gauge can also be connected with different choices of path
in the geometric formulation, what we have shown is also
interpreted as the path independence of the longitudinal

gluon spin, although within a restricted class of path
choices. Undoubtedly, this is a gauge invariance in a tradi-
tional sense.
Before ending this section, we make several supplemen-

tary remarks on the significance of our finding above. In
the previous paper [17], we gave a formal proof that the
quark and gluon dynamical OAMs appearing in our nu-
cleon spin decomposition (I) can be related to the differ-
ence between the second moment of the unpolarized
generalized parton distributions (GPDs) and the first mo-
ment of the longitudinally polarized parton distribution
functions (PDFs) as

Lq ¼ hpsjn�M�12
q-OAMjpsi=ðn � pÞ

¼ 1

2

Z
x½Hqðx; 0; 0Þ þ Eqðx; 0; 0Þ�dx� 1

2

Z
�qðxÞdx

(158)

and

LG ¼ hpsjn�M�12
G-OAMjpsi=ðn � pÞ

¼ 1

2

Z
x½Hgðx; 0; 0Þ þ Egðx; 0; 0Þ�dx�

Z
�gðxÞdx:

(159)

As is widely known, Eq. (158) was first derived by Ji. The
relation (159) was also written down by Ji, but as an ad hoc
definition of the gluon orbital angular momentum. This is
because his viewpoint was that the decomposition (159) is
not a truely gauge-invariant one. It would be instructive to
reconsider these relations in the context of the gauge-
invariant-extension approach using the gauge link or
Wilson line. It is widely accepted that the gauge-invariant
definitions of the GPDs as well as the polarized PDFs
necessarily require the gauge link connecting two different
spacetime points. However, the quantities appearing on the
rhs of the above relations are not GPDs and PDFs them-
selves but their lower moments. In fact, the above relations
can also be expressed as [4]

Lq ¼ 1

2
½Aq

20ð0Þ þ Bq
20ð0Þ� �

1

2
aqð0Þ; (160)

LG ¼ 1

2
½AG

20ð0Þ þ BG
20ð0Þ� � aGð0Þ: (161)

Here, Aq
20ð0Þ, Bq

20ð0Þ, AG
20ð0Þ, and BG

20ð0Þ are the forward

limit (t ! 0) of the gravitational form factors Aq
20ðtÞ,

Bq
20ðtÞ, AG

20ðtÞ, and BG
20ðtÞ, while aqð0Þ and aGð0Þ are the

axial charges of quarks and gluons corresponding to the
forward limits of the axial form factors aqðtÞ and aGðtÞ.
[We recall that the quark and gluon axial charges are
identified with the quark and gluon intrinsic spins in the

gauge-invariant MS regularization scheme, i.e., aqð0Þ ¼
�� and aGð0Þ ¼ �G.] Note that, to extract the form
factors, deep inelastic scattering measurements are not
mandatory. For example, the gravitational form factors
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can in principle be extracted from graviton-nucleon elastic
scattering just as the electromagnetic form factors can be
extracted from electron-nucleon elastic scatterings, even
though this is just a Gedanken experiment. This means
that, at least for these quantities, i.e., for the form factors,
we do not need to stick to such an idea that the path of the
gauge link has a physical meaning as claimed in the gauge-
invariant-extension approach. In fact, we have explicitly
demonstrated the path independence of the evolution ma-
trix for the quark and gluon spins, although within a
restricted class of choices called the general axial gauges
specified by the direction of the infinitely long path. This
indicates that at least the above relations (158) and (159)
are not affected by a continuous deformation of the path of
Wilson lines used in the definitions of the GPDs and the
polarized PDFs.

Also worth remembering is the following well-known
but sometimes unregarded fact. Why does one not need to
pay much attention to the notion of the path dependence of
the Wilson line in the case of the standard collinear PDFs?
For clarity, let us first consider the simplest leading-twist
PDF, i.e., the unpolarized PDF. The modern way of defin-
ing the unpolarized quark distribution function is to use the
bilinear quark operator with light-cone separation. The
nonlocal Wilson line is necessary here to ensure the gauge
invariance of the bilocal quark operator. However, this
definition of the PDF is known to be completely equivalent
to the one based on the operator product expansion (OPE).
That is, the bilinear and bilocal quark field with a Wilson
line is equivalent to the infinite tower of local and gauge-
invariant operators with higher covariant derivatives. Since
these infinite towers of gauge-invariant operators are just
local operators (although with higher derivatives), they are
free from the notion of path, i.e., they are independent of a
particular direction in space and time. The situation is
simply the same for other PDFs. Within the framework
of the OPE, the gluon distribution can also be defined in
terms of infinite towers of local and gauge-invariant op-
erators. Namely, within the framework of the OPE, they
can be defined without using the notion of paths. (Only one
important exception is the gluon spin operator correspond-
ing to the first moment of the longitudinally polarized
gluon distribution functions discussed in the present paper.
The long-known worrying fact was that—as long as one
sticks to the locality—there is no twist-two spin-one
gauge-invariant gluon operator.) For this reason, the notion
of the path dependence of the Wilson line has seldom been
an issue, at least in the case of collinear PDFs. The same
can also be said for the GPDs appearing in the sum rules
(158) and (159).

Unfortunately, such a simplification cannot be expected
for the transverse-momentum-dependent PDFs or more
general Wigner distributions. This is the reason why the
status for another gauge-invariant decomposition (II) is
still unclear. In fact, a very interesting relation between

the OAMs and Wigner distributions was first suggested by
Lorcé and Pasquini [71]. However, the gauge-invariant
definition of the Wigner distribution requires a gauge
link or Wilson line, which is generally path dependent.
Hatta showed that the light-cone-like path choice gives
‘‘canonical’’ OAM [29]. On the other hand, Ji, Xiong,
and Yuan argued that the straight path connecting the
relevant two spacetime points gives ‘‘dynamical’’ OAM
[33]. Assuming that both are correct, one might be led to
two possible scenarios. The first possibility is that, because
there are infinitely many paths connecting the two relevant
spacetime points appearing in the gauge-invariant defini-
tion of the Wigner distribution, there are infinitely many
Wigner distributions and consequently infinitely many
quark and gluon OAMs. The second possibility is that
the Wigner distributions with infinitely many paths of
gauge link are classified into some discrete pieces or
equivalent classes, which cannot be continuously deform-
able into each other. The recent consideration by Burkardt
may be thought of as an indication of this second possi-
bility [72]. At any rate, it would be fair to say that, at least
up to now, we do not have any convincing answer to the
question of the real observability of the nucleon spin
decomposition (II).

IV. CONCLUSION

We have investigated the uniqueness or nonuniqueness
problem of the decomposition of the gluon field into the
physical and pure-gauge components, which is the basis of
the recently proposed two physically inequivalent
gauge-invariant decompositions of the nucleon spin. It
was emphasized that the physical motivation of this
decomposition is the familiar transverse-longitudinal
decomposition in QED, which is known to be unique
once the Lorentz frame of reference is fixed. In the case
of non-Abelian gauge theory, this transverse-longitudinal
decomposition becomes a little more nontrivial even in the
noncovariant treatment. In fact, past studies have revealed
the fact that the transverse component of the non-Abelian
gauge field can be expressed only in a perturbation series in
the gauge coupling constant. Nevertheless, it is very im-
portant to recognize the fact that to project out the physical
component of the gauge field is essentially equivalent to
the process of gauge fixing. In fact, in the geometrical
formulation of the non-Abelian gauge theory, a closed
form of the physical component of the gauge field is
known, although it requires the nonlocal Wilson line,
depending on a path in the four-dimensional spacetime.
It is also known that a choice of path is inseparably con-
nected with a choice of gauge. An especially useful choice
for our purpose of defining a gauge-invariant gluon spin
operator is an infinitely long straight-line path connecting
the spacetime point of the gauge field and the spacetime
infinity, the direction of which is characterized by a
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constant four-vector. This particular choice of path is
known to be equivalent to taking the so-called general
axial gauge, which contains three popular gauges, i.e.,
the temporal, the light-cone, and the spatial axial gauges.
Based on this general axial gauge, characterized by the
constant four-vector n�, we have calculated the one-loop
anomalous-dimension matrix for the quark and gluon lon-
gitudinal spins in the nucleon. We then found that the final
answer is exactly the same independent of the choice of
n�, which amounts to proving the gauge independence and
the path independence simultaneously. After all, what we
have explicitly shown is only the perturbative gauge and
path independence of the gluon spin. Nevertheless, our
general argument offers strong counterevidence to the
idea that there are infinitely many decompositions of the
nucleon spin. It also gives support to our claim that the total
angular momentum of the gluon can be gauge-invariantly
decomposed into the orbital and intrinsic spin parts as long
as the longitudinal spin sum rule of the nucleon is con-
cerned. This means that the dynamical OAMs of quarks
and gluons appearing in our decomposition (I) can be
thought of as genuine observables, in the sense that there

is no contradiction between this decomposition and the
general gauge principle of physics.
On the other hand, the observability of the OAM appear-

ing in the decomposition (II), i.e., the generalized ‘‘canoni-
cal’’ OAM, is not completely clear yet. This is because,
although the relation between the ‘‘canonical’’ OAM and a
Wigner distribution is suggested, its path dependence or
path independence should be clarified more convincingly.
Moreover, once quantum loop effects are included, the
very existence of transverse-momentum-dependent PDFs
as well as Wigner distributions satisfying gauge invariance
and factorization (or universality) at the same time is under
debate. (See Ref. [73] and references therein.) Is process-
independent extraction of ‘‘canonical’’ OAM possible?
This is still a challenging open question.
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