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We study the relativistic quark-antiquark system embedded in a magnetic field (MF). The Hamiltonian

containing confinement, one gluon exchange, and spin-spin interaction is derived. We analytically follow

the evolution of the lowest meson states as a function of MF strength. Calculating the one gluon exchange

interaction energy hVOGEi and spin-spin contribution haSSi we have observed that these corrections remain

finite at large MF, preventing the vanishing of the total � meson mass at some Bcrit, as previously thought.

We display the � masses as functions of the MF in comparison with recent lattice data.
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I. INTRODUCTION

During the last years we have witnessed impressive
progress in the fundamental physics in the ultraintense
magnetic field (MF) reaching strength of up to eB�
1018 G�m2

� [1]. Until recently, magnetars [2] were the
only physical objects, where this, or a somewhat weaker
MF could be realized. Now the MF of the above strength
and even stronger is within reach in peripheral heavy ion
collisions at RHIC and LHC [3]. High intensity lasers are
another prospective tool to achieve MF beyond the
Schwinger limit [4]. On the theoretical side, striking
progress has been achieved along several lines. It is beyond
our scope to discuss these works or even present a list of
corresponding references. We mention only two lines of
research which have a certain overlap with our work. The
first one [5,6] is the behavior of the hydrogen atom and
positronium in a very strong MF. The second one [7] is the
conjecture of the vacuum reconstruction due to vector
meson condensation in a large MF. The relation between
the above studies and our work will be clarified in what
follows. Our goal is to study from the first principles the
spectrum of ameson composed of quark-antiquarkmaterial
embedded in aMF. Usewill be made of the Fock-Feynman-
Schwinger representation (see [8] for a review and refer-
ences) of the quark Green’s function with strong (QCD)
interaction andMF included. An alternative approach could
have been a Bethe-Salpeter type formalism. However, for
the confinement originating from the area law of theWilson
loop, the use of the gluon propagator is inadequate.
Numerous attempts in this direction failed because of gauge
dependence and the vector character of the gluon propaga-
tor, while confinement is scalar and gauge invariant.

Therefore, it is sensible to use the path integral technique
forQCDþ QEDGreen’s functions. This method, based on
the proper-time formalism, allows us to represent the
quark-antiquark Green’s function via the Hamiltonian
(see [9] for a new derivation), and was used in [10] to
construct explicit expressions for meson Hamiltonians
without a MF. In this way the spectra of light-light, light-
heavy, and heavy-heavy mesons were computed with good
accuracy, using the string tension �, strong coupling con-
stant �S, and quark current masses as an input [11,12].
In what follows we expand this technique to incorporate

the effects of MF on mesons. The latter contains (i) the
direct influence of MF on the quark and antiquark, and
(ii) the influence on gluonic fields, e.g., on the gluon
propagator via q �q loops and on the gluon field correlators
determining the string tension �. Since the MF acts on
charged objects, its influence on the gluonic degrees of
freedom enters only via ðNcÞ�k, k ¼ 1; 2; . . . ; however,
corrections of the second type can be important, as shown
in [13]. (iii) As was shown recently in the framework of our
method, the MF also changes quark condensate h �qqi and
quark decay constants f� etc., and in this way strongly
influences chiral dynamics [14].
The important step in our relativistic formalism is the

implementation of the pseudomomentum notion and
center-of-mass (c.m.) factorization in the MF, suggested
in the nonrelativistic case in [15] for neutral two particle
systems. Recently the c.m. factorization was proved for the
neutral three-body system in [16], the situation with
charged two-body system was clarified and an approxima-
tion scheme was suggested in [17].
The plan of the paper is the following. Section II contains

a brief pedagogical reminder of how the two-body problem
in MF is solved in quantum mechanics. The central point
here is the integral of motion (‘‘pseudomomentum’’) which
allows the separation of the center of mass. Here we also
show how to diagonalize the spin-dependent interaction.
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In Sec. III we formulate the path integral for a quark-
antiquark system with QCDþ QED interaction. Then
from the Green’s function the relativistic Hamiltonian
is obtained. Section IV is devoted to the treatment of
confining and color Coulomb terms. Here we also present
the derivation of the eigenvalue equations for the relativ-
istic Coulomb problem. In Sec. V we discuss the spectrum
of the system focusing on the regime of an ultrastrong
MF. Section VI contains the discussion of the results,
comparison with lattice calculations, drawing further per-
spectives, and intersections of our results with those of
other authors [5–7].

The present work develops the approach presented ear-
lier in [18]. As compared to [18], one will find in what
follows novel results, changing the physical picture out-
lined in [18]. The new point is that the mass of the quark-
antiquark system remains nonzero however strong the MF
is. This is similar to freezing by radiative corrections of the
hydrogen atom ground state in strong magnetic fields [5,6].
A fewmore remarks on the relation between the two papers
will be added in the final section below.

II. PSEUDOMOMENTUM AND WAVE FUNCTION
FACTORIZATION

The total momentum of N mutually interacting particles
with translation invariant interaction is a constant of mo-
tion and the center of mass motions can be separated in the
Schrödinger equation. It was shown [15] that a system
embedded in a constant MF also possesses a constant of
motion—pseudomomentum. As a result for the case of
zero total electric charge Q ¼ 0 the c.m. motion can be
removed from the total Hamiltonian. The simplest example
is a two-particle system with equal masses m1 ¼ m2 ¼ m
and electric charges e1 ¼ �e2 ¼ e. We define

R ¼ r1 þ r2
2

; � ¼ r1 � r2; P ¼ p1 þ p2: (1)

Straightforward calculation in the London gauge
A ¼ 1

2 ðB� rÞ yields

Ĥ ¼ 1

4m

�
P� e

2
ðB� �Þ

�
2 þ 1

m

�
�i

@

@�
� e

2
ðB�RÞ

�
2

þ Vð�Þ: (2)

One can verify that the following pseudomomentum
operator F commutes with the Hamiltonian (2)

F̂ ¼ Pþ e

2
ðB� �Þ: (3)

This immediately leads to the following factorization of
the wave function

�ðR;�Þ ¼ ’ð�Þ exp
�
iPR� i

e

2
ðB� �ÞR

�
: (4)

For the oscillator-type potential Vð�Þ the problem
reduces to a set of three oscillators, two of them are in a

plane perpendicular to the magnetic field and their fre-
quencies are degenerate, while the third one is connected
solely with Vð�Þ.
Next, we briefly elucidate the spin interaction in the

presence of a MF. The corresponding part of the
Hamiltonian may be written as

Ĥs ¼ ahfð�1�2Þ ��Bð�1 � �2Þ; (5)

where e1 ¼ �e2 ¼ e > 0 and �> 0. Diagonalization of

Ĥs yields the following four eigenvalues, e.g., for the u �u
system, comprising both � and � levels.

EðsÞ
1;2 ¼ ahf; EðsÞ

3;4 ¼ �ahf

0
@2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
�B

ahf

�
2

s
� 1

1
A; (6)

where we assume that B is aligned along the positive z
axis and B ¼ jBj. In a strong MF when �B> ahf spin-

spin interaction becomes unimportant and EðsÞ
3;4 ’ �2�B.

For the lowest level EðsÞ
4 this corresponds to a configuration

jþ �i when the spin of a negatively charged particle is
aligned antiparallel to B, and the spin of the positively
charged one is aligned parallel to B. This means that the
spin (and isospin) are no longer good quantum numbers
and eigenvalues (6) correspond to the mixture of spin 1 and
spin 0 states. As a result, the q �q state will split into 4 states

(two of them coinciding as EðsÞ
1 ¼ EðsÞ

2 ). Until now we
treated a nonrelativistic system, to incorporate relativistic
effects we shall exploit the path integral form of relativistic
Green’s functions [8,9].

III. RELATIVISTIC q �q GREEN’S FUNCTION AND
EFFECTIVE HAMILTONIAN

The derivation of the relativistic Hamiltonian of the q �q
system in a MF consist of several steps. The first one is the
4d relativistic path integral for the q �q Green’s function.
The starting point is the Fock-Feynmann-Schwinger
(world-line) representation of the quark Green’s function

[8]. The role of the ‘‘time’’ parameter along the path zðiÞ� ðsiÞ
of the ith quark is played by the Fock-Schwinger proper
time si, i ¼ 1, 2. Consider a quark with a charge ei in a
gluonic field A� and the electromagnetic vector potential

AðeÞ
� , corresponding to a constant magnetic field B. Then

the quark propagator in the Euclidean space-time is

Siðx; yÞ ¼ ðmi þ @̂� igÂ� ieiÂ
ðeÞÞ�1

xy � ðmi þ D̂ðiÞÞ�1
xy :

(7)

The path-integral representation for Si [8] is

Siðx; yÞ ¼ ðmi � D̂ðiÞÞ
Z 1

0
dsiðD4zÞxye�Ki�ðiÞ

� ðx; yÞ
� ðmi � D̂ðiÞÞGiðx; yÞ; (8)

where
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Ki ¼ m2
i si þ

1

4

Z si

0
d�i

0
@dzðiÞ�
d�i

1
A2

; (9)

�ðiÞ
� ðx; yÞ ¼ PAPF exp

�
ig
Z x

y
A�dz

ðiÞ
� þ iei

Z x

y
AðeÞ
� dzðiÞ�

�

� exp

�Z si

0
d�i���ðgF�� þ eiB��Þ

�
: (10)

Here, F�� and B�� are correspondingly gluon and MF

tensors, PA, PF are ordering operators, ��� ¼ 1
4i ð	�	� �

	�	�Þ. Equations (7)–(10) hold for the quark, i ¼ 1, while

for the antiquark one should reverse the signs of ei and g.
In explicit form one writes

���F�� ¼ �H �E

�E �H

 !
; ���B�� ¼ �B 0

0 �B

 !
:

(11)

Next, we consider the q1 �q2 system born at the point
x with the current j�1

ðxÞ ¼ �q1ðxÞ�1q2ðxÞ and annihi-

lated at the point y with the current j�2
ðyÞ. Here, x

and y denote the sets of initial and final coordinates of
quark and antiquark. Using the non-Abelian Stokes
theorem and cluster expansion for the gluon field
(see [11] for reviews) and leaving the MF term intact,
we can write

Gq1 �q2ðx; yÞ ¼
Z 1

0
ds1

Z 1

0
ds2ðD4zð1ÞÞxyðD4zð2ÞÞxye�K1�K2 trhT̂W�ðAÞiA exp

�
ie1

Z x

y
AðeÞ
� dzð1Þ� � ie2

Z x

y
AðeÞ
� dzð2Þ�

þ e1
Z s1

0
d�1ð�BÞ � e2

Z s2

0
d�2ð�BÞ

�
; (12)

where

T̂ ¼ �1ðm1 � D̂1Þ�2ðm2 � D̂2Þ; (13)

and �1 ¼ 	�, �2 ¼ 	� for vector currents, �i ¼ 	5 for
pseudoscalar currents, while

hW�ðAÞiA¼ exp

�
�g2

2

Z
d���ð1Þd�
�ð2ÞhF��ð1ÞF
�ð2Þi

þOðhFFFiÞ
�
; (14)

where d��� � ds�� þ �ð1Þ
��d�1 � �ð2Þ

��d�2, and ds�� is an
area element of the minimal surface, which can be con-
structed using straight lines, connecting the points zð1Þi ðtÞ
and zð2Þj ðtÞ on the paths of q1 and �q2 at the same time t [8,10].
Note, that operator T̂ actually does not participate in the field
averaging procedure: as was shown in [19], the following
replacement is valid, m� D̂ ! m� ip̂, p� ¼ 1

2 ðdz�d� Þ�¼s.
As a result of the first step the q �q Green’s function is

represented as a 4d path integral (including Euclidean time
paths) and, in addition, also integrates over proper times s1,
s2. In the second step one introduces monotonic Euclidean
time tEð�Þ ¼ x4 þ �

s T, where T � jx4 � y4j, so that

z4ð�Þ ¼ tEð�Þ þ �z4ð�Þ, where �z4ð�Þ is fluctuation of
time trajectory around tEð�Þ. This new variable tE is an

ordering parameter for trajectories zð1ÞðtEÞ, zð2ÞðtEÞ, and
proper times transform into physical parameters—virtual
q and �q energies !i � T

2si
, so that dsi ¼ � T

2!2
i

d!i.

Combining for simplicity all fields into one Wilson loop

WðA; AðeÞÞ, one can rewrite the Green’s function in new
variables as

Gq1 �q2ðx; yÞ ¼
T

8�

Z 1

0

d!1

!3=2
1

d!2

!3=2
2

ðD3zð1ÞD3zð2ÞÞxy

� e�K1ð!1Þ�K2ð!2ÞhhT̂WFii�z4 ; (15)

(see [9] for details of derivation). Here,K1ð!1Þ,K2ð!2Þ are
obtained from Ki in (9) by the same replacement dzi

d�i
¼

2!i
dzi
dtE

,

K1ð!1Þ þ K2ð!2Þ

¼
�
m2

1 þ!2
1

2!1

þm2
2 þ!2

2

2!2

�
T þ

Z T

0
dtE

�
!1

2

�
dzð1Þ

dtE

�
2

þ!2

2

�
dzð2Þ

dtE

�
2
�
: (16)

The final step is the use of the Wilson loop dynamics to
express all dynamics in terms of instantaneous interaction.
Indeed, the quadratic field correlator in (14) is represented
through two scalar functions DðzÞ and D1ðzÞ (see, e.g.,
[11,20] for details), the first of them is responsible for
confinement, while the second one gives one gluon ex-
change (OGE) potential. So, for the case of zero quark
orbital momenta with the minimal surface discussed
above, integrating over relative time � ¼ t1E � t2E in
Dð�; z1 � z2Þ, D1ð�; z1 � z2Þ, one obtains a simple instan-
taneous answer for spin-independent (SI) part of hW�ðAÞiA,

hW�ðAÞiSIA ¼ exp

�
�
Z T

0
dtE

�
�jzð1Þ � zð2Þj

� 4

3

�s

jzð1Þ � zð2Þj
��

; (17)

containing VconfðrÞ ¼ �r and VOGEðrÞ ¼ � 4�s

3r . Here � is

the QCD string tension, � ¼ 0:18 GeV2 in our
calculations.
First, we need to find theHamiltonianHq1 �q2 of the system

at tE1 ¼ tE2 ¼ tE. To this end we define the Euclidean

Lagrangian LE
q1 �q2

. We write dzðiÞ
d�i

¼ 2!i
dzðiÞ

k

dtE
¼ 2!i _zk,

k ¼ 1, 2, 3. Then all terms in the exponents in (12), (14),
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and (17) can be represented as exp ð�R dtELE
q1 �q2

Þ and thus

we arrive at the following representation:

Gq1 �q2ðx; yÞ
¼ T

8�

Z 1

0

Z 1

0

d!1d!2

ð!1!2Þ3=2
ðD3zð1ÞD3zð2ÞÞxy trðe�SEq1 �q2 T̂Þ

(18)

with the action

SEq1 �q2 ¼
Z T

0
dtE

�X
i

�
!i

2
ð _zðiÞk Þ2 � ieiA

ðeÞ
k _zðiÞk

�
þ!1 þ!2

2

þ m2
1

2!1

þ m2
2

2!2

þ e1
�1B

2!1

þ e2
�2B

2!2

þ �jzð1Þ � zð2Þj � 4

3

�s

jzð1Þ � zð2Þj
�
: (19)

Here, AðeÞ
k is the kth component of the QED vector

potential. The next step is the transition to the
Minkowski metric. This is easy, since confinement is al-
ready expressed in terms of string tension. We have
exp ð�RLEdtEÞ ! exp ðiRLMdtMÞ, tE ! itM, and

pðiÞ
k ¼ @LM

@ _zðiÞk
¼ !i _z

ðiÞ
k þ eiA

ðeÞ
k ;

Hq1 �q2 ¼
X
i

_zðiÞk pðiÞ
k � LM:

(20)

The explicit expression for the Hamiltonian without spin-
dependent terms is

Hq1 �q2 ¼
X
i¼1;2

ðpðiÞ � eiAðzðiÞÞÞ2 þm2
i þ!2

i � ei�
ðiÞB

2!i

þ �jzð1Þ � zð2Þj � 4

3

�s

jzð1Þ � zð2Þj : (21)

The q �q Green’s function (15) takes the ‘‘heat–
kernel’’ form when going back to Euclidean time with
Hamiltonian (21)

Gq1 �q2ðx; yÞ ¼
T

8�

Z 1

0

d!1

!3=2
1

Z 1

0

d!2

!3=2
2

hxjtrðT̂e�Hq1 �q2
TÞjyi:

(22)

The c.m. projection of the Green’s function yieldsZ
Gq1 �q2ðx; yÞd3ðx� yÞ

¼ T

8�

Z 1

0

d!1

!3=2
1

Z 1

0

d!2

!3=2
2

X1
n¼0

’2
nð0ÞhtrðT̂Þie�Mnð!1;!2ÞT;

(23)

where’n andMn are eigenfunctions and eigenvalues of the
Hamiltonian Hq1 �q2 . At large T the integral over!1, !2 can

be taken by the stationary point method, and hence the

effective energies !i are to be found from the minimum of
the total mass Mnð!1; !2Þ, as was suggested in [10]. To
introduce the minimization procedure and to check its
accuracy we shall begin by the calculation of the eigenval-
ues of one and two quarks in the MF, and the energy of the
ground state of a relativistic charge in the atom in the next
section, reproducing the known exact results.
We have the following equations defining !i from the

total mass Mð!iÞ

Ĥc ¼ Mnð!1; !2Þc ;
@Mnð!1; !2Þ

@!i

¼ 0: (24)

For a single quark in MF the first of the above equations
gives

Mnð!Þ ¼ p2
z þm2

q þ jeBjð2nþ 1Þ � eB�z

2!
þ!

2
: (25)

Then the minimization over ! yields the correct answer

�Mn ¼ ðp2
z þm2

q þ jeBjð2nþ 1Þ � eB�zÞ1=2: (26)

Now we turn to the case of q1 �q2 system and introduce the
coordinates which are the generalization of (1):

R ¼ !1z
ð1Þ þ!2z

ð2Þ

!1 þ!2

; � ¼ zð1Þ � zð2Þ; (27)

P ¼ �i
@

@R
; p ¼ �i

@

@�
: (28)

It is convenient to introduce the following two additional
parameters

~! ¼ !1!2

!1 þ!2

; s ¼ !1 �!2

!1 þ!2

: (29)

Let us consider the case of the neutral meson, so that
e1 ¼ �e2 ¼ e. Then the totalHamiltonianmaybewritten as

Hq1 �q2 ¼ HB þH� þW; (30)

where

HB ¼ 1

2!1

�
~!

!2

Pþ �� e

2
B�

�
Rþ ~!

!1

�

��
2

þ 1

2!2

�
~!

!1

P� �þ e

2
B�

�
R� ~!

!2

�

��
2

¼ 1

2 ~!

�
�� e

2
B�Rþ s

e

2
B� �

�
2

þ 1

2ð!1 þ!2Þ
�
P� e

2
B� �

�
2
: (31)

Equation (31) is an obvious generalization of (2). The two
other terms in (31) read

H� ¼ m2
1 þ!2

1 � e�1B

2!1

þm2
2 þ!2

2 þ e�2B

2!2

; (32)
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W¼VconfþVOGEþ�W¼���4

3

�sð�Þ
�

þ�W; (33)

and �W contains self-energy and spin–spin contributions,
which come from the unaccounted spin-dependent terms
of hW�ðAÞi. One can verify that the pseudomomentum
operator in (3), introduced in Sec. II, commutes with HB

and hencewe can again separate the c.m.motion according to
the ansatz (4):

HB�ðR;�Þ ¼ exp

�
iPR� i

e

2
ðB� �ÞR

�
~HB’ð�Þ: (34)

Then the problem reduces to the eigenvalue problem for
’ð�Þ with the Hamiltonian ~HB having the following form:

~HB ¼ 1

2 ~!

�
�i

@

@�
þ s

e

2
B� �

�
2

þ 1

2ð!1 þ!2Þ ðP� eB� �Þ2: (35)

ForP� B ¼ 0 the system has a rotational symmetry and the
c.m. is freelymoving along the z axis. Herewe shall consider
a state with zero orbital momentum ðL�Þz ¼ ½�� @

i@��z ¼
0. As a result, ~HB is replaced by a purely internal space
operator

H0 ¼ 1

2 ~!

�
� @2

@�2
þ e2

4
ðB� �Þ2

�
; (36)

To test our method we put W ¼ 0 and arrive at the
equation

ðH0 þ h�Þ’ ¼ Mð!1; !2Þ’: (37)

Consequent minimization of Mð!1; !2Þ in !1, !2, as
in (26), yields the expected answer for the two independent
quarks,

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ eBð2n1 þ 1Þ � e�1B
q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ eBð2n2 þ 1Þ þ e�2B
q

: (38)

We turn now to the particular case of a charged two-
body system in the MF e1 ¼ e2 ¼ e and also m1 ¼ m2,
when exact factorization of R and � can be done. In this
case, for !1 ¼ !2 ¼ ! and P� B ¼ 0, the Hamiltonian
has the following form [9]:

Hq1 �q2 ¼
P2

4!
þ e2

4!
ðB�RÞ2 þ �2

!
þ e2

16!
ðB� �Þ2

þ 2m2 þ 2!2 � eð�1 þ �2ÞB
2!

þ �

2

�
�2

	
þ 	

�

þ VOGE þ VSS þ �MSE: (39)

IV. TREATING CONFINEMENTAND GLUON
EXCHANGE TERMS. THE ABSENCE OF THE

MAGNETIC QCD COLLAPSE

From (33) and (36) it is clear that inclusion of Vconf and
VOGE in H0 þW leads to a differential equation in varia-
bles �?, �z, which can be solved numerically. However, in
order to obtain a clear physical picture, we shall represent
Vconf in a quadratic form. This will allow us to get an exact
analytic solution in terms of oscillator functions with
eigenvalue accuracy of the order of 5%. The OGE contri-
bution will be estimated as an average h’jVOGEj’i, thus
yielding an upper limit for the total mass.
For Vconf we choose the form

Vconf ! ~Vconf ¼ �

2

�
�2

	
þ 	

�
: (40)

Here, 	 is a positive variational parameter; minimizing
~Vconf with respect to 	, one returns to Vconf . We shall
determine Mð!1!2; 	Þ corresponding to ~Vconf , and to de-
fine 	 an additional condition

@Mð!1; !2; 	Þ
@	

��������	¼	0

¼ 0 (41)

will be added to (24). As a result, Mð!ð0Þ
1 ; !ð0Þ

2 ; 	0Þ will be
the final answer for the mass of the system, neglecting the
�W contribution. The difference of the exact numerical
solution from that obtained with the genuine potential Vconf

does not exceed 5%. The solution of the equation
ðH0 þ ~VconfÞ’ ¼ Mð!1; !2; 	0Þ’ for the ground state is

c ð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3=2r2?r0

q exp

�
� �2

?
2r2?

� �2
z

2r20

�
; (42)

where r? ¼
ffiffiffiffiffi
2
eB

q
ð1þ 4� ~!

	e2B2Þ�1=4, r0 ¼ ð 	
� ~!Þ1=4. As we shall

see below, for the lowest mass eigenvalue with eB � �,

one has r? 	
ffiffiffiffiffi
2
eB

q
, r0 	 1ffiffiffi

�
p and the ðq1 �q2Þ system acquires

the form of an elongated ellipsoid. A similar quasi-one-
dimensional picture was observed before for the hydrogen-
like atoms in strong MF [5,6]. In such geometrical
configuration VOGE manifests itself in a peculiar way, again
similar towhat happens in hydrogen, or positronium atoms;
and, as was shown in [13], in QCD the outcome is also
similar to the case of QED, with the screening of the
diverging effects.
We turn now to the OGE term to treat it in our formal-

ism. As a starting point we present another check of our
approach; namely, we shall obtain the ground state energy
of two relativistic particles with opposite charges without
MF interacting via the Coulomb potential. The correspond-
ing Hamiltonian reads H ¼ H0 þH� � �

� , then H� ¼
M�, and for eB ¼ 0 we have

M ¼ � ~!�2

2
þm2

1 þ!2
1

2!1

þm2
2 þ!2

2

2!2

: (43)
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Minimizing in !1 in the limit m2 � m1 (the hydrogen
atom), one obtains

M ¼ m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
þm2; (44)

which coincides with the known eigenvalue of the Dirac
equation.

In our ðq1 �q2Þ case one can calculate the expectation

value of VOGE ¼ � 4
3
�sð�Þ
� with the asymptotic freedom

and IR saturation behavior in p space (see [21] for a
derivation and a short review)

�sðqÞ ¼ 4�

�0 ln
	
q2þM2

B

�2
QCD


 ; (45)

where �0 ¼ 11
3 Nc � 2

3nf,MB is proportional to
ffiffiffiffi
�

p
,MB 	

1 GeV [21]. With the wave function (42) the average value
of VOGE takes the form

�MOGE �
Z

VOGEðqÞ ~c 2ðqÞ d3q

ð2�Þ3

¼� 4

3�

Z 1

0
�sðqÞdqe�

q2r2?
4 I

�
q2ðr20� r2?Þ

4

�
; (46)

where c 2ðqÞ is the Fourier transform of squared wave

function c 2ð�Þ and Iða2Þ ¼ Rþ1
�1 dxe

�a2x2 . Estimating the

integral in (46), for eB � �, i.e., for r0 � r? one obtains
for massless quarks

�MOGE 	 � 16
ffiffiffiffi
�

p
3r0�0

ln ln
r20
r2?

	 � ffiffiffiffi
�

p
ln ln

eB

�
: (47)

With eB increasing the upper bound for the q �q mass is
boundlessly decreasing. The exact eigenvalue should lie
even lower.
This situation is similar to the hydrogen atom case,

where �MCoul diverges as �ln 2eB, and in this case
eþe� loop contribution to the photon line stabilizes the
result (the screening effect, [6,7]). In our case the q �q loop
contribution to the OGE term can by written in a similar
way, adding to the gluon loop also the lowest Landau level
of the q �q in the MF [13],

~VOGEðQÞ ¼ � 16��ð0Þ
s

3½Q2ð1þ �ð0Þ
s

4�
11
3 Nc ln

Q2þM2
B

�2
0

Þ þ �ð0Þ
s nfjeqBj

� exp ð �q2?
2jeqBjÞTð

q23
4�Þ�

; (48)

where TðzÞ ¼ � ln ð ffiffiffiffiffiffiffi1þz
p þ ffiffi

z
p Þffiffiffiffiffiffiffiffiffiffiffi

zðzþ1Þ
p þ 1. Calculating now the av-

erage value of (48),

�MOGE ¼ h ~VOGEi; (49)

one obtains saturation of �MOGE at large eB, as shown in
Fig. 1, eliminating in this way the possible ‘‘color
Coulomb catastrophe’’, discussed in the first version of
this paper [18].

V. MESON MASSES IN THE MAGNETIC FIELD

Our next task is to calculate analytically the mass
Mnð!1; !2; 	Þ of a ðq1 �q2Þ meson. We have to solve the
equation

ðH0 þH� þWÞ�nð�Þ ¼ Mnð!1; !2; 	Þ�nð�Þ; (50)

where H0, H�,W are given in (32), (33), and (36), and the
total Hamiltonian for the charged meson is given in (39).

The resulting mass for neutral meson without spin-
dependent contribution from �W is

Mnð!1; !2; 	Þ ¼ "n?;nz þ �MOGE þm2
1 þ!2

1 � eB�1

2!1

þm2
2 þ!2

2 þ eB�2

2!2

� �Mnð!1; !2; 	Þ � eB�1

2!1

þ eB�2

2!2

; (51)

where

"n?;nz ¼
1

2 ~!

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2B2 þ 4� ~!

	

s
ð2n? þ 1Þ

þ
ffiffiffiffiffiffiffiffiffiffi
4� ~!

	

s �
nz þ 1

2

�375þ 	�

2
; (52)

�MOGE is given by (48) and (49). So, for fixed n we have
four states for different quark spin orientations, jþ þi,
jþ �i, j� þi, and j� �i, where þ=� are the up and

FIG. 1. One gluon exchange correction to the meson mass in
GeV as a function of the magnetic field with (solid line) (49) and
without (broken line) (46) account of thequark loops’ contributions.
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down directions of individual quark spins, with corre-
sponding masses

Mþþ
n ¼ �Mn � eB

�
1

2!1

� 1

2!2

�
; (53)

M��
n ¼ �Mn þ eB

�
1

2!1

� 1

2!2

�
; (54)

Mþ�
n ¼ �Mn � eB

�
1

2!1

þ 1

2!2

�
; (55)

M�þ
n ¼ �Mn þ eB

�
1

2!1

þ 1

2!2

�
: (56)

The spin-dependent part �W contains self-energy VSE

and spin-spin VSS contributions. As was shown in [22], the
mass correction, corresponding to VSE, is given by

�MSE ¼ � 3�

4�!1

�
1þ �

�



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBþm2

1

q ��

� 3�

4�!2

�
1þ �

�



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBþm2

2

q ��
; (57)

where �ðtÞ ¼ t
R1
0 z2K1ðtzÞe�zdz and 
� 1 GeV�1 is

vacuum correlation lengths.
Let us introduce now the spin-spin interaction. It has

nondiagonal structure

VSS ¼ 8��s

9!1!2


ð3ÞðrÞ�1�2 � aSS�1�2; (58)

so we should diagonalize the Hamiltonian with respect to
spin variables. This results in new four states, two of them
are a mixture of jþ �i and j� þi states, corresponding to
�0 and �0 with zero spin projection sz ¼ 0, the other two
states jþ þi and j� �i correspond to �0 states with sz ¼ 1
and sz ¼ �1 (we consider the ground state n ¼ 0). We
note that both VSS and �MSE are to be considered as

corrections and contain !ð0Þ
1 , !ð0Þ

2 , obtained from minimi-
zation of the remaining part of the meson mass. Note also,
that masses Mþ�

n and M�þ
n are symmetric with respect to

!1 $ !2 for equal quark masses, so in this case we have in
fact only two variables in the minimization procedure !
and 	.

The masses of the first two states are

E1;2 ¼ 1

2
ðM11 þM22Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M22 �M11

2

�
2 þ 4a12a21

s
;

(59)

where

M11 ¼ ðMþ�
0 þ �MSE � haSSiÞj!ð0Þ

1
¼!ð0Þ

2
¼!�

;

M22 ¼ ðM�þ
0 þ �MSE � haSSiÞj!ð0Þ

1
¼!ð0Þ

2
¼!�

;
(60)

a12 ¼ a21 ¼ haSSij!ð0Þ
1
¼!�;!

ð0Þ
2
¼!�

and haSSi is the averag-

ing with the wave function (42) (see [22] for derivation).
The parameters !� and!� are obtained by minimizing of
corresponding diagonal eigenvalues Mþ�

0 and M�þ
0 , the

parameter 	0 [see (35)] for the ground state is defined from
the condition

@M0ð!1; !2; 	Þ
@	

��������	¼	0

¼ @"0;0
@	

��������	¼	0

¼ 0: (61)

It is easy to see, that at large eB masses E1;2 tend to

diagonal values

E1ðeB ! 1Þ ! M22; E2ðeB ! 1Þ ! M11: (62)

The remaining two states have masses

E3 ¼ Mþþ
0 þ �MSE þ haSSi;

E4 ¼ M��
0 þ �MSE þ haSSi;

(63)

taken in point ð!ð0Þ
1 ; !ð0Þ

2 ; 	0Þ in accordance with minimi-

zation conditions (24) and (61).
It should be noted that actually we have eight states

instead of four, since q �q systems with different quark
charges behave differently in the MF, as we see from our
Hamiltonians. Isospin is not conserved now and each
neutral state splits into two states with different quark
content u �u and d �d.
Let us consider also the particular case of the charged

meson with Hamiltonian (39) in a state with sz ¼ 1
(jþ þi-state, corresponding to �þ). The eigenvalue, corre-
sponding to this state is given by the following expression

Mnð!;	Þ ¼ eB

2!
ð2N? þ 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
eB

2!

�
2 þ 2�

!	

s
ð2n? þ 1Þ

þ
ffiffiffiffiffiffiffiffi
2�

!	

s �
nk þ 1

2

�
� eB

!
þ �	

2
þm2 þ!2

!

þ �MOGE þ�MSE þ haSSi: (64)

Among the considered states, the mass of the charged
meson ground state (�þ with sz ¼ 1) and E2, correspond-
ing to �0, tend to finite value at large MFs due to cancel-
lation of linearly growing terms in "n?;nz and in H�, while

other masses grow with eB. This is true, provided that the
spin-spin contribution haSSi remains finite at large MF.
However, it contains the factor c 2ð0Þ � eB, which leads
to unbounded decrease of E2. As was shown in [22], this
situation is not physical, the total mass eigenvalues should
be positive, and the reason for this decrease is the unlawful

use of the perturbation theory for the potential c
ð3ÞðrÞ.
One should replace aSS by a smeared out version, e.g.,


ð3ÞðrÞ ! ~
ð3ÞðrÞ ¼
�

1



ffiffiffiffi
�

p
�
3
e�r2=
2

; 
� 1 GeV�1:

(65)
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Using the wave function (42), one obtains for haSSi

haSSi ¼ c

�3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 þ r20

q
ð
2 þ r2?Þ

; c ¼ 8��s

9!1!2

:

(66)

The smearing length 
 on the lattice corresponds to the
lattice unit a (
� a), in a physical situation the relativistic
smearing is connected with the gluelamp mass parameters
in DðzÞ and D1ðzÞ; see [20] for details.

In Fig. 2 we plot the masses of some selected systems as
a function of eB (e is the �þ charge, not the charge of
individual quarks). Calculations were performed according
to (59), (63), and (64) and the minimization procedure. The
dashed curves correspond to the �0 state with sz ¼ 0
(eigenvalue E1), the solid-symbol lines describe the �0

state with sz ¼ 1, the lower solid curve refers to the state
of the charged meson �þ with sz ¼ 1. The black triangles
are from lattice calculations [23]. One can see that the
masses of the first states are increasing, while the last
one tends to the finite limit in accordance with the dis-
cussion above (note that the results plotted in Fig. 2 were
obtained for massless quarks).

VI. DISCUSSION AND CONCLUSIONS

In our treatment of the relativistic quark-aniquark sys-
tem embedded in a MF we relied on pseudomomentum
factorization of the wave function and the relativistic
Hamiltonian technique. The Hamiltonian for mesons in

the MF, containing confinement, one gluon exchange, and
spin interaction was derived. Using a suitable approxima-
tion for the confining force we were able to calculate
analytically meson masses as functions of the MF. In this
paper, to simplify things, we started with �0 meson states at
B ¼ 0, taking	i in place of�1 and�2 in (13). In thiswaywe
essentially left aside the complicated problem of chiral
dynamics and the pseudo-Goldstone spectrum. In this
oversimplified picture the lowest neutral state with sz ¼ 0
is amixture of the�0 and�0, as can be seen from its spin and
isospin structure. Indeed, the u �u or d �d system under con-
sideration is a mixture of isospin I ¼ 0 and I ¼ 1 states,
and at large MF it has a spin structure ju "; �u #i, which is a
mixture of S ¼ 0 and S ¼ 1 states. We have calculated
the mass of the higher state of this mixture, which we
call �0ðeBÞ, while the lower state, associated with �0ðeBÞ,
can be subject to chiral corrections. These states have
negative corrections from one-gluon exchange and
spin-spin interactions. As was shown, these corrections
(and the total mass) stay finite at large B, preventing the
so called ‘‘magnetic collapse in QCD’’, discussed earlier in
[18].
As shown in Fig. 2, our analytical results are in agree-

ment with lattice calculations [23], both for the �0 and �þ
states.
Here, we add a few more remarks concerning the rela-

tion between the present work and the preceding one [18].
The amendments include (a) screening of the color
Coulomb interaction, which leads to the nonvanishing �
meson mass at large eB, in contrast with the results and
Fig. 1 of [18], (b) separate treatment of the u �u and d �d
states, (c) inclusion of the �þ state, (d) account of the MF
in self-energy, and (e) smearing of the singular 
 function
in spin-spin interaction. The main conclusion from (a) and
(e) stressed here which was absent in [18] is that ‘‘fall to
the center’’ in a MF does not occur. We believe this is a
general conclusion which holds true independently of the
technical approach to the problem.
Another system which can be treated using the same

technique is the neutral three-body system, like the neu-
tron. The results might be important for neutron star
physics.
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