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The basic principles of the correlation femtoscopy, including its correspondence to the Hanbury Brown

and Twiss intensity interferometry, are reexamined. The main subject of the paper is an analysis of the

correlation femtoscopy when the source size is as small as the order of the uncertainty limit. It is about

1 fm for the current high energy experiments. Then the standard femtoscopy model of random sources is

inapplicable. The uncertainty principle leads to the partial indistinguishability and coherence of closely

located emitters that affect the observed femtoscopy scales. In thermal systems the role of corresponding

coherent length is taken by the thermal de Broglie wavelength that also defines the size of a single emitter.

The formalism of partially coherent phases in the amplitudes of closely located individual emitters is used

for the quantitative analysis. The general approach is illustrated analytically for the case of the Gaussian

approximation for emitting sources. A reduction of the interferometry radii and a suppression of the Bose-

Einstein correlation functions for small sources due to the uncertainty principle are found. There is a

positive correlation between the source size and the intercept of the correlation function. The peculiarities

of the nonfemtoscopic correlations caused by minijets and fluctuations of the initial states of the systems

formed in pp and eþe� collisions are also analyzed. The factorization property for the contributions of

femtoscopic and nonfemtoscopic correlations into complete correlation function is observed in numerical

calculations in a wide range of the model parameters.
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I. INTRODUCTION

The correlation femtoscopy, or intensity interferometry
method, is the direct tool to measure the spatial and
temporal scales of extremely small and short-lived sys-
tems created in particle and nuclear collisions with accu-
racy of 10�15 m and 10�23 sec , respectively. The method
[1–3], is grounded on the Bose-Einstein (BE) or Fermi-
Dirac (FD) symmetric properties of the quantum states. It
has a deep analogy with the intensity interferometry tele-
scope that was proposed by Hanbury Brown and Twiss
for measurements of angular sizes of remote stars [4]. In
distinction on standard telescopic and microscopic tech-
niques based on the registration of intensities of light or
particles, e.g., electrons, coming from (or through) the
object, this method deals with the correlation between
intensities of the source radiation registered by two
(many) spatially separated parts of devices such as tele-
scopes, reflectors, particle detectors, etc. In fact, it mea-
sures the correlations between numbers of emitted
identical particles detected in separated parts of the
detector.

The femtoscopic space-time structure of the systems is
typically represented in terms of the interferometry radii.
They are the result of the Gaussian fit of the correlation
function defined as a ratio of the two- (identical) particle
spectra to the product of the single-particle ones. In the
pioneer papers [2,3] the measured interferometry radii

were interpreted as the geometrical sizes of the systems.
Later on it was found [5–7] that for typical systems
formed in experiments with heavy ions, the above geo-
metrical interpretation needs to be generalized. The treat-
ment of the interferometry radii as the homogeneity
lengths [8,9] in the systems and the crucial suggestion
for femtoscopy scanning of the source radiation in differ-
ent momentum bins bring the possibility to analyze differ-
ent parts of the source and explain the behavior of the
interferometry radii. In addition, the practical method of
how to use the final state interactions (FSI) and effects of
long-lived resonances to extract the BE correlations in
relatively large systems created in heavy ion collisions
has been proposed [10].
The other challenge which is still actual concerns the

femtoscopy analysis of relatively small systems created in
particle interactions such as pp and eþe�, where the
observed femtoscopic scales are approximately 1 fm or
smaller [11]. Typically, the suppression of the correlation
function is fairly large in these processes. Here we will
analyze the femtoscopy of such small systems accounting
for the uncertainty principle, coherence of the radiation
from spatially very closely set emitters and nonfemto-
scopic (non-BE, -FD, and -FSI) correlations. The latter
appear due to the energy-momentum conservation law
and incoherent contributions to the two- and single-
particle spectra induced by particle clusterization in
momentum space and fluctuations of initial conditions
of the collision processes. The detailed analysis of these
theoretical problems can help to provide the correct fem-
toscopy study of the small systems.
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II. THE BASIC IDEAS OF THE INTENSITY
INTERFEROMETRY TELESCOPE

The intensity interferometry method for the measure-
ment of the stars’ angular sizes was proposed and realized
first by Hanbury Brown and Twiss [4] at the end of the
1950s. The electromagnetic radiation from the star is the
mixture of different, almost monochromatic wave trains,
which are mutually incoherent at the moment of radiation.
To see the principal aspects, let us consider the emission
from the different sites of a radiating object. If the stellar
object is close to the observer, like our Sun, then one can
easily select, say, the opposite sites (edges) of it. If the two
telescopes are directed to those different sites and one
measures the correlations between photon numbers coming
to each of the two telescopes, then the waves from different
sites of the source do not mix in the telescopes, and the
correlations between them are absent—the signals coming
to the two telescope reflectors are mutually incoherent. If,
however, the stellar object—let us consider now the double
star system—is very remote, so that it is impossible to select
only one of the two stars by a telescope, the light from both
stars will come to each of the two reflectors and become
mutually (partially) coherent. For simplicity let us imagine
that at somemoment in time the telescopes register only one
wave train from each star, and both these trains are equally
polarized and follow each other continuously. Ipso factowe
ignore the real problems of the intensity interferometry
method—how to extract the signal from the noise—but
preserve the principal point of this method.

A. The basic formalism

One can decompose the electric field strength into posi-

tive and negative frequency parts, E ¼ EðþÞðx; tÞ þ
Eð�Þðx; tÞ, Eð�Þðx; tÞ ¼ ðEðþÞðx; tÞÞy. The ideal photon

counter reacts just to the product Eð�Þðx; tÞEðþÞðx; tÞ ¼
jEðþÞðx; tÞj2 [12]. Far from the stellar object, the light is
described well by the plane waves, so that

EðþÞðx; tÞ ¼ Aeiðk1�x�!1tÞ þ Beiðk2�x�!2tÞ: (1)

The complex amplitudes A and B have stochastic indepen-

dent phases, A ¼ jAðtÞjei’Aðt;xÞ and B ¼ jBðtÞjei’Bðt;xÞ,
which are roughly constants during coherence time �coh
of the wave train, e.g., �coh � 10�8 sec , so that being
averaged over a period of time T � �coh, the amplitudes
and their product become zero, hAi ¼ 0, hBi ¼ 0, hABi ¼
0. The intensity of light that is proportional to the number
of photons registered by the telescope/reflector and photo-
multipliers at point x is

hIk1;k2
ðxÞi ¼ hE2i ¼ hEð�Þðx; tÞEðþÞðx; tÞi ¼ hjEðþÞðx; tÞj2i

¼ hjAj2 þ jBj2 þAB�eiððk1�k2Þ�x�ð!1�!2ÞtÞ

þA�Be�iððk1�k2Þ�x�ð!1�!2ÞtÞi
¼ jAj2 þ jBj2; (2)

where we supposed that jAðtÞj, jBðtÞj are almost indepen-
dent on t.
The statistically averaged intensity registered by one of

the telescopes contains the information only about the
(averaged) squared modulus of the amplitudes. However,
the correlation of intensities C, defined as the ratio of the
averaged product of intensities registered at the two space-
time points ðx1; t1Þ and ðx2; t2Þ to the product of averaged
intensities registered at these points, depends already on
the differences of momenta and energies of the light
quanta. To simplify notation, we put jAj ¼ jBj and get

C¼ hIk1;k2
ðx1ÞIk1;k2

ðx2Þi
hIk1;k2

ðx1ÞihIk1;k2
ðx2Þi

¼ 1

4jAj4 hjE
ðþÞðx1;tÞj2jEðþÞðx2; tÞj2i

¼1þ1

2
cos½ðk1�k2Þðx1�x2Þ�ð!1�!2Þðt1� t2Þ�

�1þ1

2
cos½�jkjdþððxL1�xL2Þ=c� t1þ t2Þð!1�!2Þ�;

(3)

where one took into account that hjAj2A�B ¼ 0i, etc. Here
the � ¼ D=L is the angular size of the double star system
with ‘‘transverse’’ distance D between stars in the plane
perpendicular to the direction to the system, L is the
distance to the system, d is the ‘‘transverse’’ distance
between two telescopes, jkj is the mean detected wave
number, xiL is the ‘‘longitudinal,’’ directed to the system,
coordinate of the i-telescope and t1 � t2 � � is the signal
delay between points x1 and x2. It is worth noting that the
time resolution �res in the method has to be smaller than the
coherence time, �res < �coh, in order to provide correlation
measurement of photon numbers during the mutual coher-
ence time �coh of the electromagnetic waves in points x1

and x2. For a stationary process, the averaging over a large
period of time T plays the role of the averaging over the
ensemble of events with duration time �coh. Also note that
the condition of the validity of formula (3) is

x2L � x1L
c

� ðt2 � t1Þ< �coh: (4)

Otherwise, hAðx1; t1ÞAðx2; t2Þi ¼ 0, hBðx1; t1ÞBðx2; t2Þi ¼
0 and the correlations disappear; C ¼ 1 because of the
mutual incoherence of waves coming to the two telescopes.

B. The nature of the HBT effect

The formula (3) demonstrates the principle of measure-
ment of the differences in momenta (and energies) of
photons radiated by remote stars by measuring the corre-
lation function depending on distances between telescopes/
reflectors and time delay. In fact, the momentum difference
in the transverse plane is connected with the angular size of
a stellar object. As for the difference in the energy of the
photons, it is possible, in principle, to measure it with the
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restriction given by Eq. (4), and this difference would be
associated with different temperatures of the two stars, if
such a situation could take place. However, there is no
direct connection of the difference in the energy of radiated
photons with the time and space scales of the stellar
system, and, therefore, only the angular size of this object
can be extracted in this way. The latter is the basic appli-
cation of the intensity interferometry telescope, and the
method was used to measure the angular sizes of single
remote stars.1

Despite the classical description of the Hanbury Brown
and Twiss (HBT) method, the detailed analysis of the
measurements accounting for the principle of photon regis-
tration pointed to the quantum nature of the effect [12]. The
relationship between classical and quantum descriptions of
the electromagnetic waves has been established through
the formalism of coherent states [12]. Appealing to the
quantum nature of the electromagnetic fields, one can say
that the method of the measurement of the star angular size
is based on the positive correlations between numbers of
photons registered in two close space-time points because
of the Bose-Einstein statistics for these quanta.

If a double star system is so far from the detectors that
the latter can register only a few photons per �res, then one
has to use the amplitudes of registration at points x1 and x2
of the two photons emitted with mutually random phases
from the two stars a and b, Aðx1Þ ¼ hajx1i þ hbjx1i and
Aðx2Þ ¼ hajx2i þ hbjx2i. Then taking the ratio of the aver-
aged modulus squared of symmetric (over photons permu-
tation) two-photon amplitude Aðx1; x2Þ ¼ Aðx1ÞAðx2Þ to
the product of the averaged single-photon amplitudes,
one can get again the correlation structure (3). Note that
describing a registration of the two neutrinos from the star,
one should use the antisymmetrized amplitude Aðx1; x2Þ ¼
hajx1ihbjx2i � hajx2ihbjx1i.

III. THE BASIC IDEAS OF THE
CORRELATION INTERFEROMETRY

In particle physics the positive correlations between
numbers of identical pions with close momenta emitted
from an interaction region in proton-antiproton annihila-
tions were found in 1960 by Goldhaber et al. (GGLP
effect) [1]. It was understood that the nature of the effect
lies in quantum statistics for identical particles demanding
the symmetrization of bosonic wave function. Later on,
based on this fundamental principle, Kopylov and
Podgoretsky [2] developed the method of the pion

interferometry microscope, or correlation femtoscopy/in-
terferometry. They found an analogy between the correla-
tion interferometry and Hanbury Brown and Twiss (HBT)
stellar intensity interferometry [4]. As one can see below,
the basic mathematical structure of the two methods can be
presented in identical form. However, at the HBT mea-
surements, the interference of intensities/photon numbers
happen near the detector (telescope pair), where the corre-
lations form, while in the femtoscopy the quantum statis-
tical (QS) correlations arise in the emitting object. The
HBT is based on the analysis of particle correlations as
they depend on the space-time separation of the telescopes/
reflectors, while the correlation interferometry deals with
dependence of the correlations on the particles’ momenta
differences. Correspondingly, the measurands are differ-
ent. The HBT method measures differences of momenta
and energies of photons radiated by stellar objects, and the
only angular sizes associated with observed momenta dif-
ference can be extracted.2 In contrast, the correlation fem-
toscopy measures the space and time separation of the
emission points and so extracts all the sizes and three-
dimensional geometrical shape of the source, as well as a
duration of the emission. In this sense the term ‘‘HBT
radii’’ that one often uses to present the femtoscopy mea-
surements is not quite adequate, as is stressed in Ref. [13].

A. Standard approach

The basic ideas of the correlation femtoscopy are
described in many publications, e.g., Ref. [14]. We repro-
duce them here with some important remarks. Let us
suppose that two identical bosons (e.g., pions) are emitted
from the two space-time points, x1 ¼ ðt1;x1Þ and x2 ¼
ðt2;x2Þ, and then propagate freely. The wave function of
a single particle at the initial time ti in the configuration
representation is3 �3ðr� xiÞ. At some time � in the
momentum representation with p ¼ ðp0 ¼ E;pÞ, it is
c xiðp; �Þ ¼ 1

ð2�Þ3=2 e
�iE�eipxi , where pxi ¼ p0ti � pxi.

Here and below we use dimensionless units, ℏ ¼ c ¼ 1.
In the momentum representation ðp1; p2Þ, the two-boson

wave function is symmetrized and has the form

c x1;x2ðp1; p2; �Þ ¼ 1ffiffiffi
2

p ð2�Þ3 ½e
ip1x1eip2x2 þ eip2x1eip1x2�

� e�iðE1þE2Þ�: (5)

Then the probability to find the two pions with momenta p1,
p2 is expressed through the scalar product of 4-momentum
and 4-coordinate differences of the two-pion emission,

1In this case one deals not with two emitters, but with many
emitters N at the whole stellar disk, and formula (3) is modified

at t1 ¼ t2 as follows: C� 1 / 1
N2

PN
j�i¼1 exp ½iðkTi � kTjÞ�

ðxT1 � xT2Þ� !N!1ð2J1ð�jkjdÞ
�jkjd Þ2. Determining the distance corre-

sponding to the first zero of the correlation function in this
representation, Hanbury Brown and Twiss have measured the
angular size of Sirius and some other stars.

2If the distance to the double star system is known, the only
transverse (to the direction of the stellar system) projection of the
distance between the stars is possible to restore from the angular
size.

3We use notation ð�; rÞ for current Minkowski coordinates to
escape confusion with emission points t, x.
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Wx1;x2ðp1; p2Þ ¼ jc x1;x2ðp1;p2;�Þj2
/ 1þ cos ½ðp1 �p2Þ � ðx1 � x2Þ�: (6)

Comparing Eq. (6) with result (3), related to the inter-
ferometry telescope, one can see that they differ from each
other by a factor of 1=2 before the cosine. The attentive
reader can notice the difference between the two cases. In
the case of emission from a double star system, the corre-
lation of intensities accounts for all the possibilities: this is
the correlation between intensities of the wave trains com-
ing from different stars as well as from the same star. In
contrast, when formula (6) is derived, it is supposed that if
one boson (with momentum p1) is emitted from the point
x1, then another boson (with momentum p2) is emitted
from different point x2 and vice versa, but the possibility
when the two bosons are emitted from the same point, x1 or
x2, is excluded. In the case of independent particles’
radiation, all the possibilities have to be taken into account.
For such a case, one usually demonstrates the idea of the
correlation femtoscopy method by means of factorization
of the two-particle normalized emission function,
�ðx1; x2Þ ¼ �ðx1Þ�ðx2Þ, and integrates the two-point
probability (6) over the space-time region. Then for the
correlation function Cðp1; p2Þ, one has (we ignore here
possible correlations between coordinates and momenta
of the emitted particles)

Cðp1; p2Þ ¼ Wðp1; p2Þ
Wðp1ÞWðp2Þ

¼ 1

Wðp1ÞWðp2Þ
Z

d4x1d
4x2�ðx1Þ�ðx2Þ

�Wx1;x2ðp1; p2Þ
¼ 1þ 1

Wðp1ÞWðp2Þ
��������
Z

d4x�ðxÞeiq�x
��������

2

; (7)

where q ¼ p1 � p2. So, the probability to find the particles
with momenta p1, p2 at very large times � ! 1 is ex-
pressed through the Fourier image of the emission func-
tion. This is the typical basis of the correlation
interferometry method, allowing one to analyze the size
and shape of small systems. If � is the Gaussian-like
emission probability that in some reference frame has the

form �ðxÞ / exp

�
�P

3
i¼1

x2i
2R2

i

�
�ðt� t0Þ, then (7) reads as

Cðp1; p2Þ ¼ 1þ exp

�
�X3

i¼1

q2i R
2
i

�
: (8)

For example, the typical resolving width of the correlation
function �q ¼ 50 MeV corresponds to the size 4�
10�15 m¼ 4 FmðFermiÞ¼ 4 fm ðfemtometerÞ. The origina-
tion of the method’s name—the correlation femtoscopy—
is obvious from such estimates.

B. Correlation femtoscopy formalism under microscope

The problem, however, appears when we apply the basic
formula (7) to the system with small number of emitters.
For example, if there are only two different emitting points:
�ðxÞ ¼ 1

2 ð�4ðx� x1Þ þ �4ðx� x2ÞÞ, then from (7) follows

(�i ¼ 1=2)

Wx1;x2ðp1;p2Þ /
X

i1;i2¼1;2

�i1�i2ð1þ cos½ðp1�p2Þðxi1 �xi2Þ�Þ

¼ 1þcos2
�
1

2
ðp1�p2Þðx1�x2Þ

�
: (9)

The result is incorrect as we shall show.
To analyze the situation in detail, let us consider single-

particle radiation from the two points. If the emission from
the point x1 is associated with the quantum state that is
distinguishable and independent from the state corre-
sponding to emission from the point x2, then the two
orthogonal states Ai are allowed to be realized with the
following known probabilities �i:

�1: A1ðpÞ ¼ eipx1e�iE� and �2: A2ðpÞ ¼ eipx2e�iE�;

�1 þ �2 ¼ 1: (10)

Here and below we omit multiplier ð2�Þ�3=2 since these
factors cancel in the correlation function (see below). Note
that Wx1;x2ðpÞ¼�1A1ðpÞA�

1ðpÞþ�2A2ðpÞA�
2ðpÞ¼ 1. Since

two identical bosons are emitted independently from the
two points, there are three different final states (ampli-
tudes) Ai1i2 that are distinguishable and realized with the

probabilities �i1i2 :

�11: A11ðp1;p2Þ¼ eip1x1eip2x1e�iðE1þE2Þ�;

�22: A22ðp1;p2Þ¼ eip1x2eip2x2e�iðE1þE2Þ�;

�12: A12ðp1;p2Þ¼ 1ffiffiffi
2

p ðeip1x1eip2x2 þeip1x2ep2x1Þe�iðE1þE2Þ�;

�11þ�22þ�12¼ 1: (11)

If �1 ¼ �2 ¼ 1=2, then �ii ¼ �2
i ¼ 1=4 and �12 ¼ 1=2.

As a result, the probability of finding the two particles with
momenta p1, p2 that are emitted independently from the
two points x1 and x2 is

Cðp1; p2Þ ¼
Wx1;x2ðp1; p2Þ

Wx1;x2ðp1ÞWx1;x2ðp2Þ ¼
X

i1	i2¼1;2

�i1i2 jAi1i2 j2

¼ 1þ 1

2
cos ½ðp1 � p2Þðx1 � x2Þ�: (12)

The last result coincides with Eq. (3) for stellar intensity
interferometry telescope. The result (12) takes into account
that the emission of both quanta from the same point (say,
x1) brings no interference, while the wrong account for the
interference effect leads to the results like (9). Only in the
case of a very large number of emitters, when contributions
to the correlation function from one-point two-particle
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radiations are relatively small, can one use the idealized
continuous limit (7). Therefore the simplest ‘‘derivation’’
of the intensity interferometry method (7) has to be cor-
rected to exclude the double accounting in the correlation
function for the contribution associated with the particle
pairs emitted from very close points. This correction is
significant if the number of independent emitters is not
large. For small systems with not flat momentum spectrum,
there is essentially finite number of independent incoherent
emitters because of the uncertainty principle. We shall
consider these effects in detail in the next subsections.

If the emission from points x1 and x2 is not independent
at all (full coherence), then one has to use not the proba-
bilities �1, �2, but the pure state only to account for the
interference between the different states, Ax1;x2ðpÞ ¼
A1ðpÞ þ A2ðpÞ. The amplitude of the two identical bosons
symmetrized over p1, p2, in this case is Ax1;x2ðp1; p2Þ ¼
Ax1;x2ðp1ÞAx1;x2ðp2Þ and

Cðp1; p2Þ ¼
Wx1;x2ðp1; p2Þ

Wx1;x2ðp1ÞWx1;x2ðp2Þ ¼ 1: (13)

C. Correlation femtoscopy in random
phase representation

Both these cases of completely independent and fully
coherent radiation from points x1 and x2, which correspond
to mixed and pure quantum states, can be reproduced in the
formalism of partially coherent phases [15]. To demon-
strate it, let us consider the two-point source with coordi-
nates x1 and x2 and some undetermined phases �ðxiÞ
(i ¼ 1, 2) and express the amplitude of single boson emis-
sion with momentum p,

Ax1;x2ðpÞ ¼ e�iE�
X2
i¼1

eipxiei�ðxiÞ: (14)

The symmetrized amplitude of the two-boson radiation is

Ax1;x2ðp1; p2Þ ¼ Ax1;x2ðp1ÞAx1;x2ðp2Þ: (15)

The probability of registering the two identical particles
with momenta p1 and p2 is

Wðp1; p2Þ ¼ hAx1;x2ðp1ÞAx1;x2ðp2ÞA�
x1;x2ðp1ÞA�

x1;x2ðp2Þi

¼ 1

4

X2
i1;i2;i

0
1;i

0
2¼1

e
iðp1xi1þp2xi2�p1xi0

1
�p2xi0

2
Þ

� heið�ðxi1 Þþ�ðxi2 Þ��ðxi0
1
Þ��ðxi0

2
Þi; (16)

where brackets mean the averaging over all combinations
of the two-boson radiation from the two points with prob-
abilities �i1i2 ¼ �i1�i2 ¼ 1

4 (�i ¼ 1
2 as in previous subsec-

tion) and over all events with mutually different phases in
separate points. The random emission corresponds to the
two-point phase average,

heið�ðxÞ��ðx0ÞÞi ¼ �4
Kðx� x0Þ; (17)

where �K is the Kronecker delta, x ¼ xi1 or xi2 , x
0 ¼ xi01 or

xi0
2
, and we omit here the discrete index i, xi1 ! x1, xi0

1
!

x01, etc., aiming to apply formalism to continuously distrib-
uted emitters. The other two-point phase averages are zero.
The four-point phase average in chaotic sources is ex-
pressed through the sum of the products of the two-point
ones (17),

heið’ðx1Þþ’ðx2Þ�’ðx0
1
Þ�’ðx0

2
ÞÞi

¼ �4
Kðx1 � x01Þ�4

Kðx2 � x02Þ þ �4
Kðx1 � x02Þ�4

Kðx2 � x01Þ
� �4

Kðx1 � x01Þ�4
Kðx1 � x02Þ�4

Kðx2 � x01Þ: (18)

The last subtracted term eliminates double counting in the
four-point phase average in (16) and (18), when xi1 ¼
xi2 ¼ xi01 ¼ xi02 and is usually omitted at the large number

of emitters, but for an essentially small number, it is
important. It corresponds to considered earlier elimination
of the double counting in the model of independent emit-
ters [cf. (9) vs (12)], when the two bosons are emitted from
the same point. With accounting for the subtracted term in
(18), the correct results (12) in the formalism of random
phases follow directly from (16).
If the source emission is not independent and fully

coherent, it means that heið�ðxÞ��ðx0ÞÞi ¼ 1, and Eq. (16)
leads to the result (13).
In the case of independent emitters, the phase average

(17) can be presented in the form [15]

Gx0x ¼ heið�ðxÞ��ðx0ÞÞi ¼ �4ðx� x0Þ ¼ Ix0x�ðt� t0Þ; (19)

where Ix0x is the overlap integral,

Ix0x ¼
��������
Z

d3rc xð�; rÞc �
x0 ð�; rÞ

��������=N; (20)

where N is the normalization of the wave function. As is
demonstrated, the two-particle emission with fully random
phases describes the mixed state fi1i2g corresponding to
different combinations of the two-particle emission from
points xi1 and xi2 with probabilities �i1i2 ¼ �i1�i2 . Such a

description is possible only if both bosons are emitted
independently from different points xi in distinguishable/
orthogonal quantum states.4 The latter requirement is sat-
isfied in the above case of the flat momentum spectrum
for each emitter, fðpÞ ¼ WðpÞ ¼ const, since the initial
quantum states �3ðr� xiÞ taken in different points i are
orthogonal.

4For indistinguishable quantum states one cannot define or
measure the classical probability of the separate state in the
system. Note also that the orthogonality is the necessary but not
sufficient condition for the independence of emission.
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D. Uncertainty principle and formalism
of partially coherent phases

If the momentum spectrum fðpÞ is essentially not flat,
this corresponds to the wave packets characterized by their
centers x and some finite width. In this realistic case one
cannot consider quantum states with very close distances
between emitter centers as distinguishable and indepen-
dent because similar to the situation when two identical
bosons are emitted from the same point, such a system
gives no contribution to the Bose-Einstein correlation
function [16], like a fully coherent state (13). One
can discriminate between the different states with emis-
sion centers x and x0 only if they are approximately
orthogonal—the overlap integral (20) is small, Ix0x 
 1.
In other words, the distance between the centers of the
emitters has to be larger than the width of the emitted wave
packets. Since the latter is the inverse of the variance�p of
the momentum spectrum, so ðx� x0Þ2 > 1=�p2. The lat-
ter expresses the uncertainty principle: one can discrimi-
nate the wave packet with center x without noticeable
violation of the particle spectrum if the measurement that
localizes the particle’s position somewhere inside the
sphere, with the center x and the diameter not less than
1=�p, unambiguously points to the quantum state with
center x, but not x0. So the distance between the emitter
centers �x ¼ jx� x0j should satisfy the uncertainty prin-
ciple in the form �x2�p2 > 1. Then the states are almost
distinguishable and orthogonal, so the radiation from both
emitters can be considered as independent and well ap-
proximated within the random phase approach with prob-
abilities �i for separate quantum states.

In relativistic physics there is another uncertainty prin-
ciple: the measurement of the particle’s momentum p has
accuracy depending on the duration of the measurement
�t, �p� 1=�t [17].5 One can measure the time of particle
emission without noticeable violation of the momentum
spectrum with accuracy not better than 1=�p and, then, the
�-function in Eq. (19) has to be smeared when one deals
with wave packets. So, for normalized wave packets, one
cannot use the random phase approximation if the distance
in space and time between emitters is less than the width
1=�p of the wave packet (in units ℏ ¼ c ¼ 1). For

example, if fðpÞ ¼ 1
ð2��p2Þ3=2 e

� p2

2�p2 , then Ix0x ¼ e�
�p2ðx�x0 Þ2

2

at t ¼ t0, and �ðt� t0Þ ) Gt
x0x ! e�

�p2ðt�t0Þ2
2 . The last term

expresses the uncertainty principle for energy-momentum
and time measurements.

Therefore, the fully random phases, corresponding to the
standard femtoscopy approach [2,3], are possible only
under some conditions which we have discussed: the phase
average for quantum states emitted from the points x and
x0, written in the form of Eqs. (19) and (20),

Gx0x ¼ heið�ðxÞ��ðx0ÞÞi ¼ Ix0xe
��p2ðt�t0 Þ2

2 ; (21)

has to be close to zero. Here Ix0x is the overlap integral (20),
and �p is a variance of the momentum spectrum of
emitters.
In the opposite case, when ðx� x0Þ2 
 1=�p2, the

states are indistinguishable and overlap integral (21)
Gx0x � 1 at t � t0. Then the result looks like the one for
fully coherent radiation (13), which takes place for very
close emitters [16]. So, in both limiting cases of chaotic
and fully coherent emission, Eq. (21) leads to physically

obvious results, and therefore the quantity (21), Gx0x ¼
Ix0xe

��p2ðt�t0 Þ2
2 , is the natural measure of distinguishability/

indistinguishability and mutual coherence of the two emit-
ted states caused by the uncertainty principle at any dis-
tance between the emission centers ðx0� � x�Þ. In this way

we solve the problem of distinguishability of the quantum
states c i associated with different emission points xi: we
always sum i-amplitudes, not i-probabilities, and average
the resulting distributions/spectra over partially coherent
phases in correspondence with the requirement of maximal
possible distinguishability and the independence of differ-
ent i-states compatible with the uncertainty principle for
momentum and position and energy-momentum and time
measurements.

E. Femtoscopic correlations in multiparticle systems

We discussed above the simplest situation with only two
emitted bosons (pions). Typically, the basic formalism of
correlation interferometry in multipion systems for inclu-
sive momentum spectra is similar [18]: one can use the
same basic formula (7) with the following substitutions:

WðpÞ ! p0 d3N
d3p

, Wðp1; p2Þ ! p0
1p

0
2

d6N
d3p1d

3p2
, �ðxÞ !

Sðx; p � p1þp2

2 Þ. The correlation between the space-time

position x of the emission point and momentum p of
emitted particle, reflected in p-dependence of the emission
function Sðx; pÞ, leads to dependence of the interferometry
radii in formula (8) on the mean momentum p of pion pair,
Ri ! RiðpÞ [6]. The x� p correlation appears due to fast
expansion of the multiparticle systems created in high
energy Aþ A (or even pþ p) collisions. The radii RiðpÞ
are associated then with homogeneity lengths in i-direction
in inhomogeneous expanding systems [8]. So, one can
carry the two-pion correlation results from the two-pion
system to multiparticle systems if one applies the above
substitutions. In fact, our quantum-mechanical considera-
tion is related to the rest frame of the homogeneous emit-
ting subsystem, forming the spectra in a vicinity of some
momentum p.
Another aspect of multiparticle emission is that the two-

pion wave function may not always be factorized out as for
independent subsystems, � ¼ j�þ�þijXi, where state X
is related to the residual part of the total system. The
symmetrization/antisymmetrization procedure has to be

5In fact, Ref. [17] presents one of the forms of the uncertainty
principle for energy-time measurement.

YU. M. SINYUKOVAND V.M. SHAPOVAL PHYSICAL REVIEW D 87, 094024 (2013)

094024-6



applied to the total system wave function �. However, it
can be difficult to provide it if one supposes the distin-
guishability of the radiation points as in the standard
correlation interferometry method of independent sources
[1,2]. For example, let us suppose that one pion with
momentum p1, �

þðp1Þ is the primary particle emitted
from the fireball near the point x1, and another pion
�þðp2Þ with the momentum p2 is emitted together with
particle X at the resonance decay, Res ! �þðp2Þ þ Xðp3Þ
[say, �0 ! �þðp2Þ þ ��ðp3Þ] near the point x2. Such a
system may not have �ðp1Þ $ �ðp2Þ symmetry because

(i) if at the �ðp1Þ $ �ðp2Þ exchange, the momentum
p3 of the particle X is preserved, then the momentum
of emitted resonance is changed and gets the other
value p1 þ p3. This new resonance state has typi-
cally another probability to form as compared to the
previous resonance state. (In extreme cases, it can
even happen that the value ðp1 þ p3Þ2 instead of
p2
Res ¼ ðp2 þ p3Þ2 excludes the resonance decay

into the pair �þðp1Þ, Xðp3Þ because of the kinemat-
ics). In general, all that suppresses the interference
effect [19];

(ii) if the exchange of �þ momenta is accompanied by
the change of p3 by the value q ¼ p1 � p2,
p3!p0

3¼p3þq, then the two configurations

j�þ
x1ðp1Þ�þ

x2ðp2ÞXðp3Þi and j�þ
x1ðp2Þ�þ

x2ðp1ÞXðp0
3Þi

become distinguishable and so cannot interfere;
(iii) if at �ðp1Þ $ �ðp2Þ, the particles Xðp3Þ together

with �þðp2Þ are emitted by the resonance Res from
the fireball near point x1 and primary pion �þðp1Þ
radiates from x2, the requirement of distinguish-
ability of the emission points may lead to principal
distinguishability of the emission points x1 and x2
of the particle X that excludes the pion interference
effect.

So, the exact symmetry of the total system at p1 $ p2

exchange can be lost in similar situations, and the two
configurations j�þ

x1ðp1Þ�þ
x2ðp2Þi and j�þ

x1ðp2Þ�þ
x2ðp1Þi of

the two-pion subsystem can interfere only partially. This
has to be taken into account in the transport models used
for high energy collisions.

The attempt to estimate the limits of applicability of the
standard correlation femtoscopy is done in Ref. [20]. It is
argued that when j�þ

x1ðp1Þ�þ
x2ðp2Þi $ j�þ

x1ðp2Þ�þ
x2ðp1Þi

then the classical phase-space position of the residual
part of the system is changed by the value qðx1 � x2Þ along
each direction i. If this change exceeds the size 2�ℏ of the
elementary cell of the phase-space per one degree of free-
dom, then the residual system moves to another quantum
state, and it can be, in principle, measured. Therefore the
pion interference should disappear when qiRi > 2� (ℏ ¼
c ¼ 1), where Ri is the effective system size/homogeneity
length in i-direction. However, this argumentation fails
already in the simplest case when the system contains
only identical particles. Such a system can be symmetrized

with distinguishable and independent radiation points, and
there is no principal possibility to measure the exchange of
the momenta between two identical pions at any value of q
using for this aim the residual system containing the same
sort of pions. We think that the real picture of the pion
interference can be restored on the basis of symmetrized/
antisymmetrized amplitude of the total system with par-
tially coherent phases in the way described in Sec. III D.

IV. THE CORRELATION FEMTOSCOPY IN
GAUSSIAN APPROXIMATION

Here we apply the basic ideas discussed in the previous
section to construct the simple analytical model accounting
for uncertainty principle in the correlation femtoscopy. We
use the nonrelativistic approximation in the rest frame of
the source which has Gaussian sizes corresponding to the
homogeneity lengths Ri in the corresponding part of the
total expanding system. The transformation of the results
to a global reference frame, where the source moves with
4-velocity u�, depends on the concrete model used.

A. Analytical model for fixed emitters

Let us introduce the quantum state c xiðp; �Þ correspond-
ing to a boson with mass m emitted at the time ti from the
effectively finite space region with the center xi as a wave
packet with momentum dispersion �p, and then propagat-
ing freely,

c xiðp; �Þ ¼ eipxi�iE�ei’ðxiÞ ~fðpÞ; (22)

where ’ðxÞ is some phase and ~f defines the primary
momentum spectrum fðpÞ that we take in the Gaussian
form with variance �p ¼ k,

fðpÞ ¼ ~f2ðpÞ ¼ 1

ð2�k2Þ3=2 e
� p2

2k2 : (23)

The amplitude of the single-particle radiation from some
4-volume at very large times t1 can be written as a super-
position of the wave functions c xiðpÞ with some coeffi-

cients/distribution �ðxiÞ for emission 4-points xi. In the
continuous limit of a very large number of emitters, we can
omit discrete index i, and in the momentum representation
the superposition looks like

Aðp; �Þ ¼ c
Z

d4xc xðp; �Þ�ðxÞ; (24)

where c is the normalization constant. Let us select the two
directions: parallel to z axis (for systems that are created in
collision processes it is the beam axis) which is marked by
the index ‘‘L,’’ and orthogonal to it, the transverse axis
‘‘T.’’ The distribution �ðxÞ of the emission centers is
supposed to be the Gaussian one, so that the quantity
�2ðx; tÞ, being the probability distribution in the case of
random phases �ðxiÞ, is normalized to unity,

CORRELATION FEMTOSCOPY OF SMALL SYSTEMS PHYSICAL REVIEW D 87, 094024 (2013)

094024-7



�ðxÞ ¼ 1

2�RT

ffiffiffiffiffiffiffiffiffiffi
RLT

p e
� x2

T

4R2
T

� x2
L

4R2
L

� t2

4T2 : (25)

The single-particle momentum distribution averaged over
events with different phase distributions is

WðpÞ ¼ c2
Z

d4xd4x0eipðx�x0Þ�ðxÞ�ðx0Þheið’ðxÞ�’ðx0ÞÞifðpÞ:
(26)

To calculate the phase average one needs first to calculate
the overlap integral (20). In the nonrelativistic approach,
the wave function of the particle emitted at the moment t
from the point x in coordinate representation is at some
time �,

c xð�; rÞ ¼ 1

ð2�Þ3=2
Z

~fðpÞeipðr�xÞe�ip
2

2mð��tÞd3p: (27)

Then the modulus of the overlap integral (20) is

Ix0x ¼
��������
Z
d3rc xð�;rÞc �

x0 ð�;rÞ
��������¼ e

� k2ðx�x0 Þ2
2ð1þk4ðt�t0 Þ2=m2Þ

ð1þk4ðt� t0Þ2=m2Þ3=4 :

(28)

To provide calculations in analytical form, we substitute
the squared time difference ðt� t0Þ2 by the constant pro-
portional to its mean value over emission region,

ðt� t0Þ2 ! ahðt� t0Þ2i ¼ a
Z

d4xd4x0�ðxÞ�ðx0Þðt� t0Þ2

¼ 4aT2 � �T2: (29)

As we will demonstrate later, the results obtained within
such a prescription reproduce with good accuracy the exact
numerical calculations for momentum spectra and correla-
tion functions with the values of � depending on the basic
parameters of emission. Then the overlap integral (21) that
accounts for the uncertainty principle takes the form

Gxx0 ¼ heið’ðxÞ�’ðx0ÞÞi ¼ e
� k2ðx�x0Þ2

2ð1þ�k4T2=m2Þ

ð1þ �k4T2=m2Þ3=4 e
�k2ðt�t0Þ2=2:

(30)

Now one can obtain the one-particle spectrum (26). It is
presented below for the case when homogeneity lengths
are equal, RT ¼ RL ¼ R,

WðpÞ ¼ Ne
� p2

2k2
� 2p2R2

1þ4k2
0
R2
� p4T2

2m2ð1þ4k2T2Þ; (31)

where

k20 ¼ k2=ð1þ �k4T2=m2Þ: (32)

The two-particle spectrum averaged over events with
partially coherent phases is

Wðp1; p2Þ ¼ c4
Z

d4x1d
4x2d

4x01d
4x02e

iðp1x1þp2x2�p1x
0
1
�p2x

0
2
Þ

� fðp1Þfðp2Þ�ðx1Þ�ðx2Þ�ðx01Þ�ðx02Þ
� heið’ðx1Þþ’ðx2Þ�’ðx0

1
Þ�’ðx0

2
ÞÞi: (33)

The 4-point phase correlator supposing emitters to be
chaotic and independent in a maximum possible way per-
mitted by uncertainty principle is decomposed into the sum
of products of the two-point correlators (21) and contains
the three terms,

heið’ðx1Þþ’ðx2Þ�’ðx0
1
Þ�’ðx0

2
ÞÞi

¼ Gx1x
0
1
Gx2x

0
2
þGx1x

0
2
Gx2x

0
1
�Gx1x2Gx1x

0
2
Gx2x

0
1
; (34)

where the third term removes the double accounting which
appears in the sum of the first two terms when x1 � x2 �
x01 � x02. We emphasize that just the second term—factor at
crossing interference term (with cosine)—has to be com-
pensated for when all four points are very close to each
other. The detailed discussion about the subtracted term is
presented earlier in the Sec. III C. Note that we use the
product of the minimal number (three) of the two-point
correlators in the subtracted term. The structure of (34)
coincides with one in Eq. (18) and is symmetric under
simultaneous interchange x1 $ x2 & x01 $ x02 as it is re-
quired by the ðp1; p2Þ symmetry of Eq. (33).
Let us split transverse direction ‘‘T’’ into two: out,

which is directed along the total transverse momentum of
the pair p1T þ p2T and side, which is orthogonal to the out
direction as well as to the longitudinal ‘‘L’’ axis. Then the
calculations of the one- and two-particle spectra lead to the
following correlation function in the variables of the half of

the bosonic pair momenta sum p ¼ p1þp2

2 and the momenta

difference q ¼ p1 � p2:

Cðp;qÞ ¼ Wðp1; p2Þ
Wðp1ÞWðp2Þ

¼ 1þ e
�q2TR

2
T

4k2
0
R2
T

1þ4k2
0
R2
T

�q2LR
2
L

4k2
0
R2
L

1þ4k2
0
R2
L

�ðq�pÞ2T2
m2

4k2T2

1þ4k2T2

� Cdðp;qÞ; (35)

where WðpiÞ is defined by (26), k0 is (32), and the sub-
tracted function Cd eliminates the double accounting at the
averaging of the 4-points phase correlator, it is associated
with the third term in Eq. (34). This term reduces the
intercept of the correlation function as one can see below.
The coefficient � in the expression for k0 should be

chosen from the requirement of a good agreement between
the correlation function calculated using the approximation
(30) and the one calculated numerically using the exact
expression for the space part of the phase correlator (28).
For the typical freeze-out temperature Tf:o: ¼ m� ¼ m, the
value of k is k ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

Tf:o:m
p ¼ 0:14 GeV. Having fixed

the value of this parameter, we present in Fig. 1 the
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comparison of the side projections of the correlation func-
tions calculated numerically using (28) without subtraction
of the double accounting and corresponding analytical
expressions [the first two terms in (35)]. The values of �
at different system sizes are presented. For fairly small
systems, R � 0:5–1:5 fm, they are about unity, � � 1, and
are decreasing, � ! 0, when the system size R grows up.

As follows from Eq. (35), the observed Gaussian inter-
ferometry radii of the system are reduced as compared to
the standard results (we mark it by st index) for the
interferometry radii for the Gaussian source. The reduc-
tions for side- (S), out- (O), and long- (L) interferometry
radii in the LCMS system (pL ¼ 0) are

R2
S

R2
S;st

¼ 4k20R
2
T

1þ4k20R
2
T

;

R2
O

R2
O;st

¼
�
R2
T

4k20R
2
T

1þ4k20R
2
T

þT2v2
out

4k2T2

1þ4k2T2

�
=ðR2

T þT2v2
outÞ;

R2
L

R2
L;st

¼ 4k20R
2
L

1þ4k20R
2
L

; (36)

where vout ¼ pout=m 
 1.
By means of Eq. (33) one can calculate the subtracting

correlation function Cd corresponding to the third term in
Eq. (39). It brings the result

Cdðp;qÞ ¼ Fðk20R2; k2T2Þ

� e
� 2q2k2

0
R4ð1þ8k2

0
R2Þ

ð1þ4k2
0
R2Þð1þ8k2

0
R2þ8k4

0
R4Þ�

2k2T4ðp�qÞ2ð1þ8k2T2Þ
m2ð1þ4p2T2Þð1þ8k2T2þ8k4T4Þ

(37)

Fðk20R2;k2T2Þ

¼
�
k0
k

�
3=2 ð1þ4k2T2Þ1=2ð1þ4k20R

2Þ3=2
ð1þ8k2T2þ8k4T4Þ1=2ð1þ8k20R

2þ8k40R
4Þ3=2 :

(38)

One can note that the preexponential coefficient
Fðk20R2; k2T2Þ tends to zero at large k20R

2 and/or k2T2

and tends to unity when both of these quantities tend to
zero. In the former case of large sizes and/or hard radiation,
the intercept of the correlation function tends to 2 and in
the latter case, when the sizes of the source are very small
and/or radiation is soft, the intercept tends to 1. For ex-
ample, at T ¼ 0

k2R2 � 1; Cðp;qÞ ¼ 1þ e�q2R2
; (39)

which is associated with the standard results, and

k2R2 
 1; Cðp;qÞ � 1: (40)

The last result corresponds to the indistinguishable
positions of the emitters due to the uncertainty principle
in the case of very small sources and/or soft particle
radiation.
We illustrate realistic cases in Fig. 2 for side projection

of the correlation function. Despite the fact that the corre-
lation function at small k2R2 loses the Gaussian form
presented by the second term in (35), the Gaussian fits still
follow the tendencies of the analytic results (36), which
demonstrate the reduction of the interferometry radii when
the sizes of the sources become small. The elimination of
the double accounting also leads to the reduction of the
intercept of the correlation function when the system size
shrinks. So, there is the positive correlation between ob-
served interferometry radii and the intercept when the
system size is changing. The analytic results reproduce
the exact ones at � ¼ 2 (R ¼ 0:1 fm), � ¼ 1:6 (R ¼
0:5 fm), � ¼ 0:8 (R ¼ 1:5 fm). It is worth noting that at
large enough system sizes, R> 2–3 fm, the effects practi-
cally disappear. Note that such marginal values are typical
for the peripheral Aþ A [21] and, probably, for pþ Pb
collisions at the LHC.

B. Thermal density matrix in the wave
packet formalism

In the previous subsection we considered the analytical
model where the particle emission events are localized
within the sizes of the wave packets and are mutually
independent and incoherent at the distances which exceed
these sizes.6 The important question is whether, if the
system is thermal, this approach can reproduce the thermal
distribution function in the thermodynamic limit of large

q, GeV/c
0 0.2 0.4 0.6 0.8 1

 C
(q

)

1

1.2

1.4

1.6

1.8

2 C(q), R = 0.5 fm, exact

 = 1.6αC(q), R = 0.5 fm, 

 = 0.8αC(q), R = 1.5 fm, exact & 

 = 0.2αC(q), R = 5.0 fm, exact & 

FIG. 1. The comparison of the correlation functions in side
direction without subtraction of the double accounting with
corresponding analytical approximations. The � parameter val-
ues, which give a good agreement with the exact results, are
presented for different system sizes. For R ¼ 1:5 and 5 fm the
curves are merged, while for R ¼ 0:5 fm there is a disagreement
with exact result at large q. The momentum dispersion k ¼ m ¼
0:14 GeV, p ¼ 0, T ¼ R.

6Remember that in the limiting case of the pointlike emission
from the 4-point xi, the wave function of the single event in
momentum representation is / eipxi .
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globally equilibrated systems. The thermal density matrix

for such systems is �th / e�H=T . For ideal systems it is
diagonal in the basis of momentum eigenfunctions, which
for one particle are the plane waves; in the coordinate
representation they are c pðxÞ / eipx, where (x ¼ �, r)

and p is the particle 4-momentum. In the thermal system

the plane waves obtain the weight �th
pp / e�p2=2mT , and the

total density matrix for single particle states is in the
coordinate representation,

�ðr; r0Þ /
Z

d3p�th
ppc pðrÞc �

pðr0Þ / e�mTðr�r0Þ2=2: (41)

One can see that within the thermal de Broglie wavelength

(without multiplier
ffiffiffiffiffiffiffi
2�

p
) 	coh ¼ 1=

ffiffiffiffiffiffiffiffi
mT

p
, the density ma-

trix has the nondiagonal terms. These terms in the density
matrix have essentially quantum nature and express the
interference effects and phase correlations [22] within the
distance 	coh. Just the same area characterized by 	coh with
mT ¼ �p2 � k2 is taken into account at the averaging of
the phase correlations in this paper: at t1 ¼ t2 for Gaussian

wave packets heið�ðx1Þ��ðx2ÞÞi ¼ e�
�p2ðx1�x2Þ2

2 .
The Wigner function corresponding to the density

matrix (41) is

fWðp; rÞ ¼ ð2�Þ�3
Z

d3seips�

�
r� s

2
; rþ s

2

�

/ e�p2=2mT ! gðrÞe�p2=2mT: (42)

The Wigner function of the globally thermalized system
does not depend on coordinates r; it means that the integral
of fWðr; pÞ over r is infinity. It reflects the fact that the
plane waves are not localized wave functions. At the same
time one can expect that for the systems with homogeneity
lengths much larger than the mean particle wavelengths,
the finiteness correction is trivial and can be done in the

way presented by the last term in Eq. (42). Symbolically it
is marked by arrow transition in Eq. (42) to some normal-
ized coordinate distribution function gðrÞ. Such a simple
way is not correct, however, when the mean wavelength is
comparable or less than the homogeneity lengths7 [23].
One possibility to find corrections for the system’s
finiteness is to change the plane wave basis—the set
of nonlocalized and coherent-over-whole-space wave
functions—to localized wave packets corresponding to a
realistic case of local emissions from the different sites of
the radiating (thermal) source. Below, we present the ex-
ample of an essentially finite thermal model not pretending
for a general theoretical consideration of the problem.
In Sec. IVA as the basic functions are used the wave

packets with the ‘‘primeval’’ momentum spectrum fðpÞ /
exp ð�p2=2k2Þ related to the single fixed emitter. One can
take into account, however, that if one deals with a truly
thermal system, then the velocities of the wave packets
have to be thermalized, while until now we considered the
fixed emitters which radiate the wave packets with zero
mean momentum, P ¼ hpi ¼ 0. Let us introduce nonzero
mean momentum P for single wave packet [24] and try to
construct the finite system, which in the stationary case and
thermodynamic limit tends to be described by the thermal
Wigner function (42). To analyze the stationary system,
one should consider the emission of the wave packets at
any fixed time, say, t ¼ 0. The spectrum of the single

emitter we choose in the thermal form is fðp; xiÞ /
e�ðp�PÞ2=2mT . Then the wave function of such a single
wave packet at � ¼ t ¼ 0 takes the form
(i) in momentum representation,

c xi;Pðp;�¼ 0Þ¼ eiðp�PÞxiei’ðxi;PÞe�ðp�PÞ2=4mT; (43)

(ii) in coordinate representation,

c xi;Pðr; � ¼ 0Þ ¼ ð2mTÞ3=4
�3=4

e�mTðr�xiÞ2þiPrei’ðxi;PÞ:

(44)

One can note that the size of a single i-emitter is defined

by the heat de Broglie wavelength, �1=
ffiffiffiffiffiffiffiffi
mT

p
.

In the wave packets’ approach, we consider the ampli-
tudes, not probabilities, because of the quantum effects of
interference and phase correlations within thermal de
Broglie wavelength or, in other words, because of the
uncertainty principle. So we include the heatlike distribu-
tion FðPÞ / exp ð�P2=2mTÞ for average momentum P as
a coefficient in the superposition of the wave packets with
different P. Then one can write, similarly to (24), the full
amplitude at � ¼ 0,
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FIG. 2. The behavior of the two-particle Bose-Einstein corre-
lation function (side projection), where the uncertainty principle
and correction for double accounting are utilized. The momen-
tum dispersion k ¼ m ¼ 0:14 GeV, p ¼ 0, T ¼ R.

7For gðrÞ / e�r2=2R2
the homogeneity length coincides with

the Gaussian radius R.
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AðpÞ ¼ c
Z

d3xd3P�ðxÞFðPÞc x;Pðp; � ¼ 0Þ; (45)

where the centers x of the wave packet emission are

distributed similarly to Eq. (25), where �ðxÞ ¼
1

ð2�R2Þ3=4 e
�x2=4R2

and quantity �2ðxiÞ, which is the probabil-
ity distribution of the emitter centers in the case of random
phases �ðxiÞ, is normalized to unity. Let us suppose that

heið�ðx1;P1Þ��ðx2;P2ÞÞi ¼ heið�ðx1Þ��ðx2ÞÞi�3ðP1 � P2Þ: (46)

Then the Wigner function is

fWðp; rÞ ¼ ð2�Þ�3
Z

d3se�irs

�
A

�
p� s

2

�
A�

�
pþ s

2

��

/ e
� p2

2mT
1þ8mTR2

1:5þ8mTR2e�r2=2R2
: (47)

As one can see, the representation of the thermal system
in the wave packets’ basis that accounts for the coherence
effects within heat de Broglie wavelength brings the stan-
dard results for the systems with homogeneity lengths
larger than the thermal wavelength and different results
for small enough systems. Noticeable deviations from the
standard result take place for mTR2 < 1. It is conditioned
by the coherence effects between closely spaced emitters
in the thermal system. As for the femtoscopy scales, the
detailed calculations demonstrate that noticeable devia-
tions from the corresponding results of Sec. IVA appear
only for extremely small systems with effective sizes less
than 0.5 fm at the typical temperatures T ¼ 150 MeV.

V. NONFEMTOSCOPIC CORRELATIONS

The problem of nonfemtoscopic correlations is of great
importance for the interferometry analysis of small sys-
tems and was studied in many papers, particularly in the
recent paper [25]. Nonfemtoscopic correlations are usually
referred to as those not directly connected with the spatio-
temporal scales of the emitter, e.g., the correlations stem-
ming from the momentum-energy conservation [26]. In
this sense they differ from the QS and FSI correlations,
which serve as the basis for the correlation femtoscopy
method and are therefore often called femtoscopic ones.

The strong interest in the question of the nonfemtoscopy
correlations is motivated in particular by the fact that for
relatively small systems, they appreciably affect the com-
plete two-particle correlation function, forming the so-
called correlation baseline. It has an influence on the
interpretation of the interferometry radii momentum de-
pendence in pþ p collisions with high multiplicities
[27–29], where the different mechanisms of spectra for-
mation are under discussion. Therefore, for successful and
unambiguous application of the correlation femtoscopy
method to the case of elementary particle collisions, one
needs to know the mechanisms of nonfemtoscopic corre-
lations to separate the femtoscopic and nonfemtoscopic
ones. The important problem in this regard is whether we

can factorize out the part corresponding to the nonfemto-
scopic correlations from the total correlation function. In
the next two subsections we intend to investigate the
possibility of such factorization with respect to the non-
femtoscopy correlations of the two kinds having different
physical origin: minijets fragmentation and event-by-event
initial state fluctuation. The analysis is performed numeri-
cally within the simple models of three- and two-particle
emission accounting for the respective nonfemtoscopic
correlations.

A. Nonfemtoscopic correlations from minijets

To trace in detail the genesis of nonfemtoscopic corre-
lations and their interplay with the femtoscopic ones in our
model, and also to make the model description more clear
and consistent, we start our consideration of three-particle
emission from the case when emitted particles are totally
uncorrelated, and then in a stepwise way include both types
of correlations into the model. Thus, at first, QS correla-
tions are assumed to be absent, as if the particles were
considered as only equivalent but not identical in the
meaning common for quantum mechanics, and therefore
distinguishable like in a classical system. Interactions be-
tween particles, and hence the FSI correlations, are also
ignored.
In such an approach, if we deal with three particles

having momenta p1, p2, and p3, which are emitted inde-
pendently with the amplitudes Aðp1Þ, Aðp2Þ, and Aðp3Þ, the
three-particle emission probability is

W0ðp1; p2; p3Þ ¼ hAðp1ÞA�ðp1ÞihAðp2ÞA�ðp2Þi
� hAðp3ÞA�ðp3Þi

¼ W0ðp1ÞW0ðp2ÞW0ðp3Þ; (48)

where the amplitude AðpÞ has the form (24) and averaging
is performed over all random-phase emission events in the
same way as in the Sec. III C.
In the next step we switch on the nonfemtoscopy corre-

lations, supposing that two of three observed particles origi-
nate from a minijet, and the third one is emitted separately.
Then to take into account the correlation between the former
two particles, induced by the fact that they came from the
same minijet (or cluster in momentum space), one should
modify the expression (48) for the three-particle emission
probability [25] (the factor �ðp1 þ p2 þ p3Þ will be ex-
plained below; at the moment it is just unity),

WNFðp1; p2; p3Þ

¼ 1

3!

X3
i�j¼1

W0ðp1ÞW0ðp2ÞW0ðp3ÞjQðpi; pjÞj2

� �ðp1 þ p2 þ p3Þ: (49)

Here the factor Qðpi; pjÞ ¼ exp ð� ðpi�pjÞ2
2
2 Þ describes men-

tioned ‘‘minijet fragmentation’’ correlation between the
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particles with momenta pi and pj. The summation over

indices i, j takes into account that cluster can be formed
by different pairs of particles.

To also describe the correlations induced by the energy-
momentum conservation law, one should include a delta
function like �4ðp1 þ p2 þ p3Þ into the right-hand side of
Eq. (49). However, in our analysis we shall use the ‘‘soft’’
form of the energy-momentum conservation law, where the
delta function is substituted by its Gaussian-like approxi-
mation, keeping in mind that the conservation law being
strictly kept for the whole system of produced particles can
be only approximately fulfilled for the subsystem of iden-
tical bosons under consideration. Then the approximate
momentum conservation takes the form

�4ðp1 þ p2 þ p3Þ ! �ðp1 þ p2 þ p3Þ
¼ Ce�ðp1þp2þp3Þ2=d2 : (50)

The expressions for the single- and two-particle emis-
sion probabilities WNFðp1Þ and WNFðp1; p2Þ can be found

as the simple average of differentWNFðp1; p2; p3Þ integrals
over ‘‘extra’’ momenta, which correspond to different
possible variants of which exact particle (particle pair) is
observed. We have three such integrals in the single-
particle spectrum and six integrals in the two-particle one,

WNFðp1Þ ¼ 1

3

X
i

Z
d4p�

1d
4p�

2d
4p�

3�
4ðp1 � p�

i Þ

�WNFðp�
1; p

�
2; p

�
3Þ; (51)

WNFðp1; p2Þ ¼ 1

6

X
i�j

Z
d4p�

1d
4p�

2d
4p�

3�
4ðp1 � p�

i Þ

� �4ðp2 � p�
j ÞWNFðp�

1; p
�
2; p

�
3Þ; (52)

where � means Dirac delta.
The Eq. (50) defines now� in Eq. (49). The correspond-

ing correlation function CNFðp; qÞ being the ratio of two-
particle spectrum (52) to the product of single-particle
spectra (51) is

CNFðp; qÞ ¼ WNFðp1; p2Þ
WNFðp1ÞWNFðp2Þ

¼ 2

3
Cmixðp; qÞ þ 1

3
Cjetðp; qÞ; (53)

where Cmixðp; qÞ denotes the contribution to the correla-
tion function corresponding to the pairs formed by the
‘‘independent’’ particle and the particle from the cluster,
while Cjetðp; qÞ is another contribution related to the pairs
where both particles belong to the cluster.

Now it is time to include Bose-Einstein correlations in
our consideration. To do this we should start considering
our particles as identical ones. This means that calculating
the three-particle emission probability, we cannot anymore
just sum the single-particle emission probability products

corresponding to different emission variants as we
did before. Instead of this we should compose the symme-
trized amplitude of such emission as the sum of the
amplitudes corresponding to different specific ways of final
state realization,

Aðp1; p2; p3Þ ¼ 1ffiffiffiffiffi
3!

p X3
i�j¼1

Aðp1ÞAðp2ÞAðp3ÞQðpi; pjÞ

¼ 1ffiffiffiffiffi
3!

p ðAp1
þ Ap2

þ Ap3
Þ; (54)

where Api
denotes the amplitude of the state when particle

with momentum pi does not come from the cluster. The
desired probability is given by

Wðp1; p2; p3Þ ¼ �ðp1 þ p2 þ p3ÞhjAðp1; p2; p3Þj2i: (55)

However, as an estimate in the current study, we suppose
that amplitudes Api

in (54) related to different cluster

compositions are almost orthogonal, so that the interfer-
ence terms between them are negligible, and so the

expression (55) forWðp1; p2; p3Þ contains only the follow-
ing diagonal terms8:

Wðp1; p2; p3Þ ¼ 1

3!
�ðp1 þ p2 þ p3Þ

� X3
i�j¼1

hAðp1ÞA�ðp1ÞAðp2ÞA�ðp2Þ

� Aðp3ÞA�ðp3ÞijQðpi; pjÞj2: (56)

This to some extent corresponds to the quasiclassical ap-
proximation used in most event generators.
The average,

hAðp1ÞA�ðp1ÞAðp2ÞA�ðp2ÞAðp3ÞA�ðp3Þi
¼ c6

Z
d4x1d

4x2d
4x3d

4x01d
4x02d

4x03

� eiðp1x1þp2x2þp3x3�p1x
0
1
�p2x

0
2
�p3x

0
3
Þfðp1Þfðp2Þfðp3Þ

� �ðx1Þ�ðx2Þ�ðx3Þ�ðx01Þ�ðx02Þ�ðx03Þ
� heið’ðx1Þþ’ðx2Þþ’ðx3Þ�’ðx01Þ�’ðx02Þ�’ðx03ÞÞi (57)

in (56) contains the 6-point phase correlator

heið’ðx1Þþ’ðx2Þþ’ðx3Þ�’ðx0
1
Þ�’ðx0

2
Þ�’ðx0

3
ÞÞi, which can be

decomposed into the sum of products of three two-point
correlators (21),

8Such a suggestion can be justified if one assumes that at
different i the amplitudes Api

are almost isolated from each other
in momentum space.
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heið’ðx1Þþ’ðx2Þþ’ðx3Þ�’ðx0
1
Þ�’ðx0

2
Þ�’ðx0

3
ÞÞi

¼Gx1x
0
1
Gx2x

0
2
Gx3x

0
3
þGx1x

0
2
Gx2x

0
1
Gx3x

0
3
þGx1x

0
3
Gx2x

0
2
Gx3x

0
1

þGx1x
0
1
Gx2x

0
3
Gx3x

0
2
þGx1x

0
2
Gx2x

0
3
Gx3x

0
1

þGx1x
0
3
Gx2x

0
1
Gx3x

0
2
: (58)

Here, however, we do not include the terms removing the
double counting to simplify further calculations.

The three-particle emission probabilityWBEðp1; p2; p3Þ,
corresponding to the case when only QS correlations be-
tween particles are considered, can be written as

WBEðp1; p2; p3Þ
¼ hAðp1ÞA�ðp1ÞAðp2ÞA�ðp2ÞAðp3ÞA�ðp3Þi: (59)

Now to investigate the possibility of separation of the
femtoscopic correlations from nonfemtoscopic ones,
we introduce the full correlation function Cðp; qÞ, includ-
ing both femtoscopic (Bose-Einstein) and nonfemtoscopic
(minijet and conservation law) correlations, and CBEðp; qÞ
accounting only for QS correlations. The corresponding
single- and two-particle emission probabilities Wðp1Þ,
Wðp1; p2Þ and WBEðp1Þ, WBEðp1; p2Þ necessary for the
calculation of the correlation functions are obtained from
(56) and (59) similarly to the CNFðp; qÞ case [see Eqs. (51)
and (52)]. And the CFs themselves naturally are

Cðp; qÞ ¼ Wðp1; p2Þ
Wðp1ÞWðp2Þ ; (60)

CBEðp; qÞ ¼ WBEðp1; p2Þ
WBEðp1ÞWBEðp2Þ : (61)

Figure 3 illustrates the relation between the femtoscopic
and nonfemtoscopic correlations in our simple model. It
appears that for a certain range of parameters consistent
with more or less realistic description of the three-pion
emission from a small system with the size�1 fm, k�m�

and not very small p the full correlation function can be
roundly factorized in the two parts corresponding to the
femtoscopic and nonfemtoscopic correlations.

As the system size increases the accordance between
CBEðqÞ and CðqÞ=CNFðqÞ gets worse, both functions begin
to differ by the value about a few percent. Such behavior at
the system size increase can be explained by a growing
mismatch between the large system size and the small
number (only three) of emitted particles.

B. Nonfemtoscopic correlations from fluctuating
initial state

Another type of correlations not induced by the quantum
statistics effects are the correlations connected with
existence of subensembles of events with different emis-
sion functions that leads to the corresponding fluctuations
in single-particle and two-particle momentum spectra.

In hydrodynamical models of nucleus-nucleus and
proton-proton collisions, these fluctuations can be caused
by asymmetrically fluctuating initial densities used for the
hydro stage of the model.
Let us consider the effect of such correlations on the

resulting correlation function in the example of a simple
analytical model of two-particle emission. Disregarding
at first the QS correlations, we take into account the
event-by-event emission function fluctuation by averaging
the symmetrized two-particle emission probability over
the ensemble of states corresponding to the events with
different initial conditions,

WNFðp1; p2Þ ¼ �ðp1 þ p2Þ
X
i

�ðuiÞW0ðp1; uiÞW0ðp2;uiÞ;

(62)

where ui denotes the ith type of initial conditions and �ðuiÞ
is the distribution over initial conditions,

P
i�ðuiÞ ¼ 1. The

single-particle ui-dependent probability W0ðp1; uiÞ has
the structure analogous to (26), differing from the latter
by the expression for the primary momentum spectrum,

fðpÞ / e
� p2

2k2 ! e
�ðp�ui Þ2

2k2 : (63)

The distribution �ðuiÞ is supposed to be the Gaussian one,

�ðuiÞ ¼ a3

�3=2 e
�u2

i a
2
. As in the previous subsection, we use

the soft form of momentum conservation law, expressed by

the factor �ðp1 þ p2Þ ¼ Ce�ðp1þp2Þ2=d2 .
To obtain averaged single-particle spectra WNFðp1Þ and

WNFðp2Þ, we integrate (62) over corresponding momenta,
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FIG. 3. The correlation function CðqÞ (60) accounting for the
nonfemtoscopic correlations due to minijet/cluster formation and
momentum conservation law, CNFðqÞ (53), is compared with the
pure QS correlation function CBEðqÞ (61). One can see that the
full CF is quite well factorized into the QS and nonfemtoscopic
parts. The model parameters are 
 ¼ 0:5 GeV=c, p ¼
0:35 GeV=c, k ¼ 0:1 GeV=c, R ¼ 1 fm, T ¼ 0.
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WNFðp1ð2ÞÞ ¼
Z

d4p2ð1ÞWNFðp1; p2Þ: (64)

The corresponding expression for the nonfemtoscopic
correlation function takes the form

CNFðp1; p2Þ ¼ WNFðp1; p2Þ
WNFðp1ÞWNFðp2Þ : (65)

Depending on the ratio between parameters d, describ-
ing momentum conservation, and a, describing initial
conditions fluctuations, the baseline formed by the CNF

function can be growing, constant, or decreasing with q
(see Fig. 4).

The full correlation function C is found similarly to the
CNF case, starting with the appropriate expression for the
averaged two-particle spectrum. To obtain the latter, one
needs to take Eq. (62) and substitute the product
W0ðp1; uiÞW0ðp2; uiÞ in it by the ui-dependent two-particle
spectrum accounting for the QS correlations. This one
coincides with (33) up to the primary momentum spectrum
fðpÞ, which should be modified according to (63).

The correlation function CBE, accounting only for Bose-
Einstein correlations, can be derived analogously to C and
CNF, taking Wðp1; p2Þ in the form (33), which can be
considered as the limiting case of (62) when ui ¼ 0 and
�ðp1 þ p2Þ is unity. The single-particle spectra Wðp1;2Þ
are then calculated using (64).

We see that fluctuating initial conditions for hydro can
cause nonfemtoscopic correlations similar to those result-
ing from minijet fragmentation. Figure 5 illustrates the
possibility of approximate factorization of its contribution

to the full correlation function at the values of main model
parameters introduced in the previous subsection and
decreasing baseline. Quite a similar situation takes place
for the case of growing baseline. However, when the base-
line is constant, the three C, CBE, and C=CNF curves just
merge. Also, as opposed to the previously analyzed minijet
correlations case, for the fluctuation correlation part of full
correlation function, the possibility to be factorized out is
observed not only for small systems but also, and even
more pronounced, for the large ones.

VI. CONCLUSIONS

We discussed the principal problems of the correlation
interferometry of small sources, in particular, the similarity
and the principal difference between Hanbury Brown and
Twiss intensity interferometry and pion correlation inter-
ferometry methods. The main subject of the paper is to
build the correlation femtoscopy method that is going
beyond the standard approach of independent/random par-
ticle emission. It is found that the uncertainty principle
leads to (partial) indistinguishability of closely located
emitters, which fundamentally impedes their full indepen-
dence and incoherence. The partial coherence of emitted
particles is because of the quantum nature of particle
emission and happens even if there is no specific
mechanism to produce a coherent component of the source
radiation. The measure of distinguishability/indistinguish-
ability and mutual coherence of the two emitted wave
packets is associated with their overlap integral. In thermal
systems the role of corresponding coherent length is played
by the thermal de Broglie wavelength.
The formalism of partially coherent phases in the am-

plitudes of located close individual emitters is developed
for the quantitative analysis. The specific treatment is

q, GeV/c
0 0.2 0.4 0.6 0.8 1

 C
(q

)

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
-1(q), a = 35 (GeV/c)NFC
-1(q), a = 48 (GeV/c)NFC
-1(q), a = 60 (GeV/c)NFC

FIG. 4. The nonfemtoscopic correlation function (65) (‘‘base-
line’’) at the fluctuating initial conditions for hydrodynamic
expansion of the system. Depending on the relation between
the value of the parameter a, characterizing the strength of the
fluctuations, and the parameter d ¼ 1 GeV=c, which describes
the softening of the momentum conservation law for the pion
subsystem, the baselines can be growing, constant, or decreasing
with momentum difference q. The rest of the parameters have
the values p ¼ 0:35 GeV=c, k ¼ 0:1 GeV=c, R ¼ 1 fm, T ¼ 0.
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FIG. 5. Factorization of the femtoscopic and nonfemtoscopic
correlations when the latter are induced by fluctuating
initial conditions for hydrodynamics. The parameters a¼
35 ðGeV=cÞ�1, d ¼ 1 GeV=c, p¼0:35GeV=c, k¼0:1GeV=c,
R ¼ 1 fm, T ¼ 0.
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required for elimination of the double accounting to the
correlation function from the configurations in the four-
point phase correlator when all individual emission cen-
ters are close. It is shown that the effects are significant
for the systems with the sizes and emission duration times
about 1 fm, and they are expressed in the reduction of the
interferometry radii and suppression of the Bose-Einstein
correlation functions. There is the positive correlation
between the source size and the intercept of the correla-
tion function. At the typical slopes of the momentum
spectra in pþ p and Aþ A collisions, these effects are
negligible for fairly large sources with radii about or more
than 2–3 fm.

The peculiarities of the nonfemtoscopic correlations
caused by minijets and fluctuations of the initial states of
the systems formed in pp and eþe� collisions are analyzed
also. The factorization property for the contributions of

femtoscopic and nonfemtoscopic correlations into the
complete correlation function is demonstrated in a wide
range of parameter values in the simple analytic models.
The application of the theoretical results to pp and eþe�

collisions will be done in separate works.
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[16] R. Lednický, V. L. Lyuboshits, and M. I. Podgoretsky,
J. Nucl. Phys. 38, 251 (1983).

[17] V. V. Berestetsky, E.M. Lifshits, and L. P. Pitaevsky,
Relativistic Quantum Theory, Part 1 (Nauka, Moscow,
1968).

[18] U. A. Wiedemann and U. Heinz, Phys. Rep. 319, 145
(1999).

[19] M. I. Podgoretsky and R. Lednický, JINR, Reports
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