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Computation of the p® order low-energy constants with tensor sources
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We present the results of calculations of the p* and p® order low-energy constants for the chiral
Lagrangian with tensor sources for both two and three flavors of pseudoscalar mesons. This is a
generalization of our previous work on similar calculations without tensor sources in terms of the quark
self-energy (p?), based on the first principle derivation of the low-energy effective Lagrangian and
computation of the low-energy constants with some rough approximations. With the help of partial
integration and some epsilon relations, we find that some p® order operators with tensor sources appearing
in the literature are related to each other. That leaves 98 independent terms for n-flavor, 92 terms for three-
flavor, and 65 terms for two-flavor cases. We also find that the odd-intrinsic-parity chiral Lagrangian with
tensor sources cannot independently exist in any order of low-energy expansion.
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L. INTRODUCTION

In the low-energy region of the strong interaction, con-
ventional perturbation theory is ineffective. If we focus on
the pseudoscalar mesons (7, K, 1), chiral perturbation
theory provides us with an effective way to deal with the
system. It can be applied not only to the strong interaction,
but also to the weak and electromagnetic interactions. It
was first introduced by Weinberg [1]. The idea is to expand
the meson part Lagrangian in terms of powers of external
momenta and the quark masses. Gasser and Leutwyler
[2,3] then extended it to the p* order and built up the
path integral formalism which enables us to compute the
various Green’s functions of the light-quark scalar, pseu-
doscalar, vector, and axial-vector currents in terms of the
chiral Lagrangian. The formulation was later generalized
to the p® order. The form of the normal part of the p® order
chiral Lagrangian had been obtained [4—6] soon after the
anomalous parts were given [7,8]. The latest and general
review on the topic can be found in [9]. Missing in this
series of work are the antisymmetric tensor currents,
although this could be partly because of the fact that tensor
currents do not appear in the Standard Model Lagrangian,
as discussed in Ref. [10]. Research on hadron matrix
elements and the study of interactions beyond the
Standard Model may need these tensor currents. Further,
antisymmetric tensor currents not only generate the con-
ventional 1™~ vector mesons, but also more exotic 11~
mesons. Therefore, studies involving both of these and
their interactions would bring in the antisymmetric cur-
rents. More importantly, for the structure of the general
currents ", the 4 X 4 T matrices generally have 16
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degrees of freedom, and one usually chooses the 16 vy
matrices 1, ¥s, ¥, ¥, ¥s» Oy to represent these freedoms.
This implies that I" can be expanded in terms of the 16 y
matrices, and one is used to calling the currents according
to their -y matrices’ structures. Taking just scalar, pseudo-
scalar, vector, and axial-vector currents cannot give the
most general bilinear light-quark currents because of in-
completeness. Adding in the tensor currents, we can get the
set of the currents completely. The results of the Green’s
functions among the currents would then be general. Six
years ago, the form of the chiral Lagrangian involving
tensor currents had been discussed first in Ref. [10].
The results were the normal parts with tensor sources
starting from p* order, and both the p* and p® order chiral
Lagrangian with tensor sources were obtained. While the
odd-intrinsic-parity parts with tensor sources were claimed
to start from p® order. Based on these results, more
progress has been made [11-13].

Within the chiral perturbation theory, if the order of
the momentum and the current quark masses’ expansion
is increased, the number of independent terms rises
rapidly. For example, in the three-flavor case, the p* order
Lagrangian has 10 terms plus 2 contact terms, but the p°
order has 90 terms plus 3 contact terms. These independent
terms generate a large number of unknown low-energy
constants (LECs). A summary of numerical results for
the LECs can be found in [14], which makes discussions
about the high order effects of the chiral Lagrangians even
more difficult and complex. Compared to dealing with
higher order chiral Lagrangians, adding tensor sources is
relatively less heavy and realistic work is possible.
Originally, LECs were fixed via the experimented data.
Now, because more LECs have appeared for high orders,
and sufficient experimental data are lacking, we can no
longer solely rely on experiment to determine these LECs.
Calculations of LECs from various models or underlying
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QCD have subsequently developed and become popular.
Indeed, not only experimented data, but theoretical calcu-
lations are also needed. With these calculations, we can
check the correctness of the models or the theory. As
members in the community of calculating LECs, we have
calculated the p* order LECs in [15,16], and then the p°®
order calculations in [17,18], including the normal and the
anomalous parts, for two- and three-flavor cases. In this
paper, we will extend our work to the tensor sources, based
on the first principle derivation of the low-energy effective
Lagrangian [19] and computation of the LECs with some
rough approximations' [15] and present all LECs up to the
p® order [21].

In Euclidean space, the chiral Lagrangian includes
the real and the imaginary parts. The real part is related
to the even-intrinsic-parity sector, and the imaginary part is
related to the odd-intrinsic-parity sector. As the tensor
source terms always appear with o,,, we can use the
following Eq. (1) to interchange even- and odd-intrinsic-
parity sectors:

I
otlys = EGW’\‘DU@- (D

It implies that when calculating the tensor source parts, one
needs to include both real and imaginary parts [22].%
This paper is organized as follows: In Sec. II, we review
our previous calculations on the real part of the chiral
Lagrangian from p? to p® order and add in the tensor
sources. In Sec. III, we review our previous calculations
on the imaginary part of the chiral Lagrangian up to p°®
order and add the tensor sources. In Sec. IV, we collect the
differences in convention between our paper and Ref. [10]
and discuss the possible dependent operators. In Sec. V, we
give our p* order results with tensor sources, and Sec. VI
presents our p% order results. Section VII is a summary.

II. CALCULATIONS INVOLVING THE REAL PART
OF THE CHIRAL LAGRANGIAN FOR ORDER p?
UP TO p® WITH TENSOR SOURCES

We have calculated the real part of chiral Lagrangian
from p? to p® order without tensor sources in Ref. [17].
Using the same method, we can also deal with the tensor

'"The detailed approximations in these computations of LECs
are taking the ladder approximation, modeling the low-energy
behavior of the gluon propagator, neglecting angle dependence
in the running coupling constant in the kernel of the Schwinger-
Dyson equation for the quark self-energy, assuming the ansatz
solution for the external source dependent Schwinger-Dyson
equation in terms of the quark self-energy, and taking the large
N, limit. The final effective action before taking the momentum
expansion was shown to be equivalent to the result of a phe-
nomenological, gauge invariant, nonlocal, and dynamical (GND)
quark model [20].

*In a private communication, Y.-L. Ma in Ref. [16] had already
obtained a similar but unpublished result in 2003.
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source part. For convenience, we give a short introduction
here, while adding in these external tensor sources.

The difference from Ref. [17] is the external tensor
sources *”. Adding them in the original external sources
s, p, v*, a*, denoted as scalar, pseudoscalar, vector and
axial-vector sources, respectively, we get the complete
sources set as follows:

J =9+ dys — s+ ipys+ oM. )

From the original QCD, the Lagrangian can be written as
the QCD Lagrangian, £(c)gc1)’ plus the external sources part,

and the generating functional reads

2] - f Dy DI DYDIDA,
X exp{i/d“x[ﬁ%CD + l_ﬂ.]l//]}

~ [Dues|i [ @ Lamw.n} = [ DUess

3)

where ¢, ¥ and A, are light-quark, heavy-quark, and
gluon fields, respectively; U is the pseudoscalar meson
field; Lcppr is the chiral Lagrangian; and S is the effec-
tive action. Because this form of the chiral Lagrangian is
explicitly U dependent at the high momentum orders and is
hard to investigate [4,5] due to its complex U and J
structures, we are used to making the chiral rotation to
simplify the Lagrangian as [15,17,19]

Jo =[QPr + QTP J[J + id[QPr + QTP ]

= Yo +haqys — sa +ipays + o0 “4)
1 - 1+
U=, P=—20, pp=—2
2 2
To separate the tensor sources into even and odd parities,

", we need the following tensor chiral projectors as

Ref. [10]:
ng)\p — %(g,u,)\gvp — gl//\g,up + l'E/LV)\p)’ (6)
1
Piuu\p _ (PgVAP)T — Z(g,u/\gup _ gVAg/.Lp _ ie;w/\p)’ (7)

1 1
Y = E(t’i” + 1), Ty = E(tﬁ” —t*7),  (8)

= PP, + PR 9)
i
MY — 124 A
O'l“,[’uy = EO-/"VZ+ - ZO-/U’GMV ’Dl,’)\p
1 -
= EO-/LV([&V - ﬂiy‘)/S) = O-/U/tll“/: (10)
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After this operation, our definitions have the simple relations
as found in [5,10] (see Appendix A). Using the same method

To obtain Eq. (10), we have used the y-matrix identity ~ as presented in [17,19], we can obtain the effective action
Eq. (1) and introduced 7#* for calculational convenience.  Sefr introduced in Eq. (3) from the first principle of QCD,

J
Sesr = —iN Trin[if + Jo — o]+ iN.Trin[if + Jo] — iN Trin[if + J] + N Tr[®g 17, ]

- 1
Finy = E(tﬁ” — tH7ys). (11)

2yt

e —i)"(N, 1
+ N, Z [d“xl ...d4x,’1—( i"(Neg
n=2 n

G0 (a1, o 2 )BT (1, X)) -+ DT () + o<_).

! N

(12)

Equation (12) is the same as Eq. (1) in [17], but J, (the external source J, including currents and densities after Goldstone
fields dependent chiral rotation ()) includes the tensor sources. @ . and I, are, respectively, the two-point rotated quark
Green’s function and the interaction part of the two-point rotated quark vertices in the presence of the external sources;
I1g, is defined by

D (x,y) = NLW?)(X) Yo = —illif + Jo — a) "' 177 (3, x), Yo =[QWPL + QT (W)PelY(x),  (13)
with subscript ¢ denoting the corresponding classical field. Gp!5" (x), X}, ..., x,, x},) is the effective gluon n-point Green’s
function, including gluon and heavy-quark contributions, and g is the strong coupling constant of QCD. Note that the last
two terms in the rhs of Eq. (12) can be shown to be independent of the pseudoscalar meson field U or ) and therefore are
just irrelevant constants in the effective action, while the second and third terms represent the variations of the path integral
measure of the light-quark field ¢r. The remaining first term relies on I1 .. @ and I1 . are related by the first equation of
(13) and determined by

=op < 4 4.1 4 4 /(_i)n+1(Ncg§)n ~00..0), / /
[®g. + E]7? + Z d'x;d’xy ... d"x,d XHTGPPIMPn (X6, 3, X1, X, - Xy, X)
n=1 :
1
X DR ) - (e ) = O ), (14)
c

[
where = is a Lagrangian multiplier which ensures  constant of QCD which depends on N, and the number
the constraint tr)[ys®], (x, x)] = 0. Equation (14) is the  of quark flavors. With these approximations, the action
Schwinger-Dyson equation (SDE) in the presence of  (12) of the chiral Lagrangian becomes
the rotated external source. In Ref. [15], we have assumed

the ansatz solution of (14) to be in the approximate form S ~ —iN,Trin[if + Jg — S(V2)]

gl y) = [X(VII? 8 = ), (15) + iN,TrIn[if + Jo] — iN,Trin[if + J] + 0<Ni).
VE = okt —ivk(x), c
(17)

where 2, is the quark self-energy which satisfies the SDE
(14) with a vanishing rotated external source. Under the
ladder approximation, this SDE in Euclidean space-time is
reduced to the standard form of

We have proved that the second and the third terms in (17)
only provide the contribution correlating to the Wess-
Zumino-Witten term. In the large N, limit, if we do not

focus on Wess-Zumino-Witten terms, we can neglect
2(p?) — 3C2(R) / Poallo =) 30) o e ’ ; ¢
A -9 P3NP
(16) Ser = —iN.TrIn[if + Jg — S(VO)]  (18)
where C,(R) is the second order Casimir operator of the
quark representation R. In our case, quarks belong to the Because in Minkowski space, it is not convenient to
SU(N,) fundamental representation; therefore, C,(R) = perform the computation, we perform the Wick rotation

(N2 —1)/2N,, and in the large N, limit, we will neglect  to change Eq. (17) to Euclidean space, with the metric
the second term of it. a,(p?) is the running coupling  tensor g’ = diag(1, 1, 1, 1):

094014-3



SHAO-ZHOU JIANG, YING ZHANG, AND QING WANG PHYSICAL REVIEW D 87, 094014 (2013)

Oly—= =il ¥ly—=xl, Y= 7le Seit = N.TrIn[# + Jo g + 2(=V3)]

Y= iv'le  vslu—=7vsle  salu— —salp = N.TrIn[f — ibq — idgys — sa T ipaYys
palu—=—rale Towlu—=~Ttowule  Toiln—"Tale + a'lu,,fgw + 3(=V)]. (20)
fooilm— itaaile  Taiolu— ita,ale. (19)

With the help of the Schwinger proper time method [23],
Here vy, ay, transform as x#, whereas 7, ,,,, are considered  the real part (or, equivalently, the even-intrinsic-parity part
(axial-)vector-(axial-)vector combined. Equation (17) in or the normal part) of Trin[- - -] in Euclidean space-time
Euclidean space is can be written as

ReTrin[d — ipg — itqys — sq + ipays + U,W#W + 3 (=V3)]
= ReTrIn[D — a',“,fgw + 3(=V2)]

— 5 Trhn [[DT T+ SIDD + 0,77+ (V)T =3 Trin[0 + N]

urlo
1 —7(0+N)
=3 }\lm — Tre 4 (remove const term)
= —Ekgnw[ fd4xtrf<x|e 7(0+N) | ) 1)

D =g —ipo —idgys — sq t ipays. (22)

Where a cutoff A is introduced into the theory to regularize the possible ultraviolet divergences. O is the old operator
without tensor sources in [17], and N is the new operator with tensor sources:

0 =[Dt + 2(-V)]D + 2(-V3)], (23)
N = =V yraty + FF Aoty yh — i gtV ys — il ot dgys — sofl! ot — T sq ot — ipo I gV ys
+ if;r)” pPaot’ys + 2(— Vz)t’“’o"‘” + tT’WE( V2)oh? + tmyt?{’awa,\p (24)

If we calculate Eq. (21) directly, it is not explicitly chiral covariant for each term in the calculation. In order to recover
the chiral covariant form to get the LECs, we would need to collect the relevant terms together by hand, which consumes
too much time. Fortunately, we found a method of keeping the chiral covariance at each step in the low-energy expansion
computation [24], and we used it successfully to obtain the LECs of the real part without tensor sources [17]. We introduce
it here briefly. Use the relations

ke + i = ok 1 e L))o ik, (25)
ok

e = ey e = | e e e e =
=5 [Vi Vel - g[Vﬁ, [Vy, VETlotar — Ve [V [Vy, VEaL ooy + 2oV (V2 [VA, VY, VETITlog af ooy

+ m[v VI, [V, [VA, [V2, VETINe2 07 a7 0oy + O(p7). (26)

Substituting (25) into the integrand in (21), we change it to

094014-4



COMPUTATION OF THE p® ORDER LOW-ENERGY ...

| —r(o(i?x)+N(iV,))| — d*k
trf<x e x) = trf W
3 d*k
~ [ e
B d*k
~ [ e
B d*k
= trf [ (277)4 e
" [ d*k
=tr; | —e
f (277.)4

—7(0(k+iV,)+N(k+iV,))
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d*k’

ik x ! e—r(o(ivx)ﬂv(ivx)) ke ikx

—7(0(k+iV,)+N(k+iV,))
— (VT TROK+IV e VT + VTN (k+iV e V)

iV i o= T(OU+iV )+ N(k+iV,) o =iV, 2

(27)

where O is the original exponent without tensor sources, which can be found in Egs. (14) and (15) in Ref. [17], and N is the

new operator with tensor sources. We have

N = ik} + PO A g — (R (6 + Aoyt -

Ftuv

iaht*’ yrotys — it ay ot yrys — 3oty ot

- tm Sqot? — sztQ Yohrys + th "Paotys + 2([k* + F"]z)t’wo’“’

+ IS (ke + PRP)o + 1T 0O ap,

O =0 - iV, 0]

L9, (99,92, [V [V, OllMogagagarog + O(p"),

120

where O = (a*, 5, p, 1*F)T and O =

. . . —uv =72 1 . wdT 4 d4k
ReTrin[d — ipg — idoys — sq t ipays + 0,0y + 2(=V?)] = _E}\lm — | d*x
—o0 J_ L T
A2

B can be found in Eq. (17) of Ref. [17], and B, = —7N.
Expanding Eq. (30) in powers of momentum, theoretically,
we can get all orders of the chiral Lagrangian. Before
giving our result, we need to discuss the difference be-
tween our paper and Ref. [10]; this will be done in Sec. I'V.

III. CALCULATIONS INVOLVING THE
IMAGINARY PART OF THE CHIRAL
LAGRANGIAN FOR ORDER p? UP TO p® WITH
TENSOR SOURCES

Because of Eq. (1) or, equivalently, (39) below in the
next section, all the odd-intrinsic-parity sectors of the
chiral Lagrangian can be changed to the even-intrinsic-
parity sectors. If one keeps ¢, and ¢_ explicit, then the odd-
intrinsic-parity sector is redundant and can be shown to be
equivalent to even-intrinsic-parity operators. If instead
only one of the two (¢, or 7_) is used, then odd-intrinsic-
parity operators are present. In Euclidean space, the odd-
intrinsic-parity sectors belong to the imaginary parts. In
other words, in Euclidean space, we can interchange the
imaginary and real tensor source dependent parts. But in
this section, we also call the parts without using Eq. (1)
imaginary parts. Now we deal with the imaginary parts of
Eq. (20) as a compensation of real parts discussion in

(28)

— J[VAI9L Olloja + (V2 194 [V Oloatsf + 5, (V2 [VE[VA 192 Ollagazata;

(29)

(ah, sq, po, TgP)T. With Egs. (21) and (27), we get

treB B - 1.

Q) (30)

Sec. II. We have calculated the p® order imaginary part’s
LECs without tensor sources in Ref. [18]. Using the same
method, we can also compute the contributions involving
the tensor source part. We repeat the process here, adding
the tensor source.

First, to confirm the Wess-Zumino-Witten terms, we
need to introduce a fifth-dimension integral. We now write
Q, in Eq. (4), as Q = ¢ *# and further introduce a para-
meter ¢ dependent rotation element Q(r) = e~ A", With
the help of relations (1) = Q and Q(0) = 1, Eq. (20)
becomes

See[U®D), J()] = N.TrIn[# + Jou + 2(=VH]=, (31

with V# = g# — ivg([). Jaow is Jo with  replaced by
Q).

Second, because we only focus on the meson terms,
adding in an extra pure source makes no sense for the
results. We insert an extra pure source term, setting ¢ = 0
in (31), with the help of

dMaw _ ll:aU

—U/vs, 9 +J s
a1 T t’)’S% Q(t)il+

= 0%(1), (32)

we can further proceed to express the chiral Lagrangian in
terms of an integration over the parameter f:
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Ser[U(®), J(] = N TrIn[# + Jo( + S(=VD]Z)

t=0,3 dependent

ot
oU

= Ne fol dm[(%[a—,r Ulys 7 + Jﬂ(z)]+ + GE(TZV%»M +Jap + 2(—V?)]’1]

We only need to calculate the 3 dependent terms in
Eq. (33), because the 2, independent terms are related to
the contact terms [17].

Finally, as in [18], expanding (33) to p* order, we can
get the Wess-Zumino-Witten term and terms related to the
tensor source. Furthermore, to the p® order, including
the tensor source, we can get the imaginary part we need.
The particular calculation after expanding (33) will be
introduced in Sec. V B.

IV. CONVENTION DIFFERENCES AND
INDEPENDENT OPERATORS

To accord with our original results and for computa-
tional convenience, we make the following changes in this
paper:

(i) To match Ref. [5] and our original results in

Ref. [17], we define

i

2{XI’ MM}, (34)

X+ = VMXi -
comparing this with
Xi,y, = v,u)(i’ (35)

of Ref. [10]. Here x, xy— and u, are analogous to
S, Pa, and aq in our notation (see details in
Appendix A).

(i1) To match the coefficients’ dimensions for a given
order, i.e., all the coefficients in a given order have
the same dimensions, we change ¢4 in Table 2 in
[10] to byti”, the analog of 7+” defined in [10].
Now, all the coefficients in the p* order are dimen-
sionless, whereas in the p6 order, their dimensions
are GeV 2.

(iii) Via partial integration and the application of the
equations of motion, Y;;5 and Y4 are not indepen-
dent. We list the new relations in Appendix B.

(iv) Reference [10] does not consider the epsilon
relations

eAp‘s“eApa” = —6gM”, (36)

eaé,uvea_&/\p — _2g,u)tgvp + Zg,upgv)t’ (37)

PHYSICAL REVIEW D 87, 094014 (2013)

1 d
= ch; dl‘E Trln [J + JQ(,) + 2(_v?)]|2 dependent

=N, fol dtTr[[aJa(;(t) + aE(—V%)]M +Jou + 2(—V,2)]*‘]

3, dependent

(33)

3, dependent

ea,u,u)\eapa'ﬁ — _gp,pgmrg)\é + g,upgvég)\tr
_ g“"g”ég)‘p + g;urgvpgltﬁ
_ g,u.égvpg/\a' + g/.u‘igvag/\p‘ (38)

Combining with Eq. (5.3) in [10],
€uvapt™f = 2it- (39)
praBt+ v

onecanreducer_t_ —f,t,andt_t, — t,t_,i.e.,
changing even t_ to the corresponding 7, and
exchanging the order of ¢, and 7_. For example,

1
V1 0 = EgVAtﬁpt+,Mp -t (40)

Hence, even 7_ terms and some (- * - f_ -1 ")
terms are not independent®. We substitute the ep-
silon relations in Y;, i = 23-30, 53, 56, 81, 83, 89,
91, 93, 104, 105, 109-111, 118, 119, finding that
most terms lead to new relations. We list all the
new relations in Appendix B. All the terms in the
lhs of (B1) are considered to be dependent and
reducible. We find that, in total, there are 22 addi-
tional dependent operators in the n-flavor case, 21
in the three-flavor case, and 13 in the two-flavor
case, leaving 98 independent operators for n fla-
vors, 92 for three flavors, and 65 for two flavors.
In Sec. IV of Ref. [17], we found the result that
without quark self-energy, all the coefficients,
except contact terms, must vanish. Now in the
present work, if we similarly ignore the quark
self-energy, without relations (36)—(39), we cannot
obtain these zero results. Instead, with relations
(36)-(39), we do reproduce the vanishing result.
This shows the importance of relations (36)—(39)
in the computation.

>To avoid confusion of our notation with that used in
Ref. [10], and for more convenience both in calculation
and displaying results, we use both tr/[- - -] in the calculation
and (---) in the result to represent the tracing over flavor
indices.
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(v) Also, with (36)—(39), adding (41)

I !
G,U-V)lpeﬁ v'A = — det(gaa ), o = M, v, /\’ p,

o =ul, v, N p 41)

one can remove all epsilons for the tensor source
terms in the chiral Lagrangian as follows. First, even
epsilons can be changed to g,,, and odd epsilons
can be reduced to 1. Second, in one-epsilon terms,
one can change ¢, to f_ or 7_ to ¢, with the help of
(39), leaving only two epsilons. Finally, using
(36)—(38) and (41), all the epsilons can be removed.
In other words, there do not exist the odd-intrinsic-
parity parts with tensor sources at any order of the
low-energy expansion, if one keeps ¢, and 7_ as
building blocks and changes them with Eq. (1).

V. THE p* ORDER CHIRAL LAGRANGIAN WITH
TENSOR SOURCES

A. Real part

With the same method used in Ref. [17], we can expand
the exponent in Eq. (30) to the order p*. Reference [10] had
given us the p* order Lagrangian of the form

‘£4,t =A <tluvf+l“,> - l.A2<l“uVl/t MV>

+ A7)+ ALY

= Z A X, (42)
n=1

Considering that our computation is done under the large
N, limit, if we only expand Eq. (30) but do not consider the
equations of motion,

Vour =5 - <’;]—f>) 3)

terms in the chiral Lagrangian with two or more traces
vanish. To avoid unnecessary complications, in this paper

we retain in the calculation only those terms with one-
trace:

Lyne = Mtrglty 0,0 0] + idatrilag yaq 14 ]

” 1
+ )\3trf[VQ‘Mth_:‘Q] + O(ﬁ)

= Zl Ax, + 0<ﬁ). (44)

Expanding Eq. (30), we get the analytic results as

/ e (277)4 e TN (-2Y)),  (45)

PHYSICAL REVIEW D 87, 094014 (2013)
o= N /‘oo dr [ d*k
2= Ne e v
LT (2)
4T3, — 87°%)),  (46)

—7(k*+32)

X (12723 —

0 d d*k
/\3 = NC fl 77- —677(k2+22)( 2722 + 272]{22 )
A2

@2m)*
(47)
and the relations between A, and A, are
A _ L A (48)
' 2b, 3
Ay, = — 1 Ay — € A (49)
2 4by 7 2by T

1
A = PRt (50)

0
Ay =0. (51)

The numerical results are listed in the second and sixth
columns in Table II.

B. Imaginary part

As in Ref. [18], we can expand the exponent in Eq. (33)
to the p* order. Using (39), we change 7. to ¢, absorb the
€ factors, and finally get the results

8
Y 2,0, (52)
n=1

-£4,i,z =

The terms 0, are listed in Table I, and z,, are listed in
Eq. (53).

TABLE 1. The obtained operators of the p* order.

on
<HU’ UTI'“ “atal + aU’ UTa, ayhy
dU U‘L l’-t/-L tal>
Wyta "tﬁ”,vv — Wytvetar)
@yt v“ﬂ”v'»
<3Uf U VeV + 2L UTvEvT)
G Ul al vy — %—’{' UV aprtl)
<0U, UT[I—WVM 8U, U‘r MVV[T»
aU U-I-t,uvt,m/ + dU, U‘rtuvtuv>

(e B B e Y e SR
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d4

z21=N¢ (2 )4(22kx2 433X3), z,=0,

73=N¢ f W(zizgx —2i323 X2 —4i33X3), z,=0,

=N fd4 (=23, X? +23/ X — 23231 X?),
“Jemt

4
z6=N¢ (j )4( 203, X2 +4i33X3),
d*k S w2 iy 25 y2
Z7:NC,[W(_2l2kX +2i3/ X —2i323 X?),
4
z3=N¢ (j ’;4(2122)(2) (53)

where X = 1/(k* + 32). Theoretically, we can integrate
(52) to confirm (42), but it is too hard to do the integral,
and even worse to extend to the p® order. Oppositely, we
differentiate (42) to compare with Eq. (52). With the relation
in Table VI, X,, in Eq. (42) can be represented by () fields
denoted in Eq. (4). Introducing a parameter ¢ as in Eq. (31),
we change X, — X,(¢), and X,, = X,,(1). Under the large
N¢ limit, our results only relate to the one-trace terms X ; 3.
With the help of Eq. (54), we can differentiate one-trace term
X1,3(1) to get Eq. (55).

aU,

UT V”

= —tyt -
ot

ar 2

Jvt U, 4 aU, ]
— | a2

at 2[’ at ar

as, _ i[ Wit Uit ]

day i [V U,
t

ar  2lP7ar
%=§'[ ’aaU U*+3U U,’f l]
ad;t“’y =é[(v;‘W taral vv
V¢ ﬂU?V” ”a—U’U)LafL—afa—Ut'Uja;’
—l——UT(V V¥ +ata )]
a\;,:”=%[ v ‘Wth V+3UtU+vu aUthdu v
+df‘a}’ T-i-a;’VfL F Ui
+V” afL—aUl
—da 3U uvu aU +VV]
1t 1l
-t r’ii—% HaaU uf, (54

PHYSICAL REVIEW D 87, 094014 (2013)

(X1, X0, X307 = A4(04, 03, 03, 04, 05, 06, 07)",

= dX;(0)/dt, (55)
200 0 0-2i22 0
Ay=]20-20 0 20 0 (56)

00 00 O 00 -1
Combined with Egs. (42), (52), (55), and (56), we get
(Ar, Ao, A3) (X Xap X30)"
= (A1, Ay, A3)A4(8y, 5y, O3, By, D5, B, 07, Og)"
= (21, 22, 23, 24, 25, %> 27, Zs)

X (04, 0y, 03, 04, Os, Bg, B3, Og)" (57)

= (A, Ay, A3)Ay

In Eq. (58), z; and A, are obtained; they are eight linear
equations with three unknown variables. Calculating the
reduced row echelon form of A, we get

1 000 -1 —-i =i O
0010 —i 0 1 0} &9
0000 O 0 0 1

We choose 0, 3¢ as independent operators to calculate A,
leaving the other five equations as strict constraints. The
analytical results are

= (Zl, 22, 23, 245 25, 265 275 Zs)- (58)

Al =

d4k 2 257 y2
A= 2 [3/X — 2, X* — 2721 X%]
4L
) = (;1 L 3X SR 4 2%0) (60)
d*k
A3 = 0 (2 )4[ 222X2] A4 = 0.

In Eq. (60), we find that unlike those terms without
tensors, which result in a fifth-dimension integral as Wess-
Zumino-Witten terms, the tensor source terms can be fully
worked out in the fourth dimension for the p* order. The
numerical results are listed in the third and seventh columns
in Table II.

As for the definition of b, we take the same spirit as that
for By, where we have taken y = 2B(s + ip) with y. =
ut yut = uxtu, and let the final p> order of the chiral

Lagrangian appear as £, = ng(u#u“ + x+) [5]. In other
words, with dimensional coefficient By, in front of operator

ut(s + zp)uJr * u(s — ip)u, the LEC of this operator be-
comes o 2 which is the same as that of another p?* order
operator u,ut. Now we choose by in such a way that it
makes A, equal to the value of L. Here, L; is the LEC of
another p* order operator ((u*u,)*) and it is the p* order
analogue of dimension coefficient F3 in the p? order chiral
Lagrangian. Although there may exist ambiguities for this

094014-8
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TABLE II. The obtained values of the p* order coefficients. The definition has some difference
from [10]. The details can be found in Sec. IV. A, , come from the real part, and A;,, come from

the imaginary part; A, are their sum.

Ny =3 Ny =2
n 10°A,, 103A,, 10°A,, m  10°A,, 103A,,, 10°A,,
176208 9018l —1662383 1 —49870% 59381 —1092:0%
2 68503 6.94701) 1379102 2 4467010 4.52759] 8.99%017
30-L428% —1550% —297:0M 3 —06030%  —0661%%  —1.26:0%
4 =0 =0 =0 4 =0 =0 =0

kind of definition (because instead of A,, one can also
choose A, by fixing its values to L3 or other L, to define
bg), we emphasize that no matter what value of b, we
choose, the final interaction strength is the same. For

example, for operator (r;"u,u,), the coefficient is A;b,
but from Eq. (60), we know A, is proportional to 1/bg;
therefore, the interaction strength A;b, is independent of
the value of b,

TABLE III. The p° order operators O,.

n 0, n 0, n 0,

1 ifag, wag, ag a0l 27 iaq ld,aq \ d*1] 53 Vo, uddaag, 13
2 iaQ‘Many(agaQ‘,\tf,‘Q + aQ‘Aai’)tﬁ"\Q) 28 iag, ud,aq, ) d”tﬁﬁ] 54 Vo, idyad, "0}
3 iag,ﬂagy,,ag’)ag,;\tﬁv)‘ﬂ 29 iag ,[d,aq ), d*t'] 55 sold,ag,,. 1]
4 iag,,a0,,a0,a061% 30 iag  Ad"ts 0,0 t’f”\Q} 56 ipolty'y, dyaq,]
5 ag uagld,ag, 7] 31 iag,{d,t gp 170} 57 Va,uVortha
6 aQVMaQ,V(d”aQ'AtZ’,\Q - [I_L‘QAdVa?z) 32 iaQ)M{d”’lﬁr,Q‘,,A, l‘li)"ﬂ} 58 l'VQ,”,,l/in/\li/’\Q
7 aQ‘#any(danyAtle/\Q =1 g d*ay) 33 iag ,aq Aty sa} 59 Vot oa"a
8 ag uag,(dyapt™y —t* o, d ag 34 iag ,soaq 60 iVa,ulpa, 7}
9 aq,uao, (dyahyt"y = 1 o, d aly) 35 id,akld,ao . 7] 61 Vo,udty so}
10 ag uag,{drag, ™70} 36 id,agq,,d"aq 1", 62 ito, 01
11 ag u(d*aq aq 1" + dVaQ‘Aa;’)t’ij\Q) 37 id,aq,[d"ag ), tﬁ’)‘ﬂ] 63 itg, ™ o2
12 ao,,(d,alsan \ 1" + d,ag ah ™) 38 id,aq,,dyah "y 64 soteoutto
13 aQ’ud,,a(”laQ,,\t’f?‘Q 39 VQ‘#V(aGaQ,Ati’}Q — t’ﬂf‘m\aﬁa;’)) 65 sat- ot
14 a0, 1+,0.01 0 40 Va,ulagaagttlo = 14 g apap) 66 d,V,dt'
15 ag, gt o, 41 Vaudaaaa, i} 67 d, Vo ,d* ek,
16 “O'Maﬂ,v’i,m’ﬁ:j\o 42 Vaunlagt] g ap — aQ,A’lJ:,AQ“svl) 68 dan,md”fi’fé
17 a0, 10,010 43 Vo,ur@aat o0 69 duts 0,01
18 aq, a0, " o, 1" 44 iag [ o, d"pol 70 dyti o ad 17,
19 g, uao, 1" o " 45 agult* o, dsql 71 dytie,ad
20 ag,u(t" g,a0.0% ~ to.ah ) 46 idyagit— 0. 10} 72 dut” o,dr"0
21 ag ut,0mang 47 id,ag 1" o). 17 73 dyt_ g ad "
22 ag (" o,a0a1"g — tQ,VAa(V)t’jf()) 48 id,aq {t” o) tﬁ,}\n} 74 d#z_‘ﬂlmd”t’jy)})
23 ag ut-amagty 49 Vo uiag, dyry} 75 ag uaq "'y, pat
24 iag,[d*aq,,d), 17] 50 iVa udag s d* 1"} 76 ag upadatty
25 iaQyM[d,,aﬁ, d,\t’i)“ﬂ] 51 iVa,wlao d’\t’f”’n} 77 in{t+yQM,,, t’i,"“}
26 iaq,,[d,ab, d\tty] 52 Vo udd aq 1720}
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C. Numerical results

In Table II, we list our p* order LECs with tensor
sources for cutoff A = 100015 MeV in Eq. (21). The
10% variation of the cutoff is considered in our calculation
to examine the effects of cutoff dependence and the result
change can be treated as the error of our calculations. The
results are taken as the values at A = 1 GeV. The super-
script is the difference caused at A = 1.1 GeV and the
subscript is the difference caused at A = 0.9 GeV, et

nA=1.1 GeV_An,A:l GeV (61)

A=t Gevly :
nLA=1GeVIA, 09 Gev—Ana=1Gev

The LECs include three and two flavors both from the
real part, A,,, and the imaginary part, A;,. We also list
the sum A, = A, + A;,. We get by = 1.32755¢ GeV in
the three-flavor case, and by = 2.01.0:05 GeV in the two-
flavor case. by in the two-flavor cases seems larger, because
of the Cayley-Hamilton relation giving more relations.

To compare with our original results, the parameters we
use to get Table II are the same as Refs. [17,18].° We
choose the running coupling constant from Ref. [25] to
solve Eq. (16), and we get the same quark self-energy as
Fig. 2 in Ref. [15], but adding the two-flavor case. Except
for the quark self-energy, we need another input parameter
F, the p? order coefficient in the chiral Lagrangian. We set
Fo = 87 MeV to get F, of about 93 MeV [17].

To examine our numerical result, we compute the mag-
netic susceptibility of the quark condensate, which we will
show is proportional to A ;. We first introduce an external
electromagnetic field A%, into the generating functional (3)
by adding in an external field term — g4, into the
Lagrangian on the exponential integrand. The generating

|

PHYSICAL REVIEW D 87, 094014 (2013)
functional is changed from Z[J] to Z[J — gA.m]. The
magnetic susceptibility of the quark condensate y is
e - -

G PF ) = Ol (Do ¢ (0)]0)

L 7~ g
Z[J - i‘]‘f‘em] 6iﬂu(x) J=0’
(62)

which leads to x{i /) = —4A,by. In the case of A =
1 GeV, we obtain

4Aby _ 4Aby
(fp)  NyF§B,

Comparing this result with those in Refs. [26-28] gives
the results —(8.16 * 0.41) GeV 2, —2.7 GeV 2, and
—3.3 GeV 2, respectively. There is a factor of 1 ~ 3 dif-
ference between our result and the references. Although we
choose F; = 87 MeV instead of F, = 92.4 MeV in the
quark condensate, it will decrease the absolute value of our
result a little bit, but the correction is not enough. We leave
the investigation of this discrepancy to future studies.

=—-73GeV2 (63)

X =

VI. THE p% ORDER CHIRAL LAGRANGIAN WITH
TENSOR SOURCES

A. Real part

Continuing our process in Sec. V, we can obtain the p6
order results directly. Before listing our results, we first
introduce the existing results. Reference [10] gave the p°
order Lagrangian as follows:

SI7 KTY, + 3contact terms  n flavors
Sett| 5 tensor sources = f d*x{ Y19 CT0, + 3 contact terms three flavors. (64)
5 ¢I'P, + 3 contact terms  two flavors
I

Here, we use the notation Y,,, O,, P, to denote n, three, 77 _ 1
and two flavors’ independent monomials, which can be Sett| o tensor sources = f d4x[z Zi[0,] + 0(?)]
found in Table 2 in Ref. [10], and K, CT, ¢TI for their n=1 ¢
coefficients. For reasons in Sec. IV and Appendix B, (65)

some of them are not independent, but we use the
same numbers. If one monomial is not independent, we
just neglect it.

In our calculation, expanding Eq. (21) as the p* order,
we only get one-trace terms without the equation of motion

“Notice that A with subscript n, A,, means the p* order
coefficients in Eq. (60), but A without the subscript is the cutoff
in our calculation introduced in Eq. (28).

SIn order to match the N s = 2 result, we choose a heavy-quark
number 4 here, instead of 2 in Refs. [17,18]. (Heavy-quark fields
are integrated out and absorbed into the effective gluon
propagator.)

The terms O, are the p® order operators we can obtain
from our calculation, and Z! are the corresponding
coefficients. For those operators with more than one
. . = . M )\ .
derivative, for example Og = d, V() ,d) 1%, the deriva-
tives are arranged in such a way that each V, M” and

4+ 0.» has a derivative and we do not put two derivatives
in one operator. We list all operators in Table III.
With the help of a computer, we can get the coefficients
ZT, listed in Appendix C. Making use of Table VI,
relations for our coefficients ZI' and KI, listed in
Appendix D, can be obtained directly. Combining

094014-10
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TABLE IV. The p® order operators in the large N limits, O%".

n orv Y; n orv Y;

1 ity fupu®, uu}y/ by Y, /by 29 (- L2, upur])/ by Yeo/bg
2 ity youutu’uy)/by Y,/bq 30 (1o (P2 uPuy — upu” fE4)) /by Y70/bo
3 ity utuyutu)/ by Y5/by 31 (o, (P upu” — u”uy f244))/ by Y71/bo
4 ity fup, uutu”}y/ by Y,/by 32t w2y — up fEA )/ by Y75/bg
5 <t+,wfﬁyl4)\“/\>/b% Y9/b(2) 33 (HW{IMV’ X+1)/Boby Y74/Boby
6 (tsppupt"ut)/ b3 Y10/b§ 34 (- A f2" x=1/Boby Y35/Boby
7 (1 uyu”)/ B Yi/bf 35 (t+ w727, x-1)/Bobo Y16/Bobo
8 <t+#,,tﬁ’\u”u,\)/b% Y1,/b§ 36 it AL5" D/ bo —Y35/by + ﬁ Ygo
9 Aty WUy + uptt ur)) /by Y3/b} 37 i1 172 B /B3 Ys1/b}
10 (14w’ X +)/Bobj Y31/Bobj 38 ity fENf7 0/ o Ys4/bo
1Tty x- + 714" x )/ Bobj 2Y3,/Bybj 39 (if+wf/i)lfi)‘>/bo Yss/by
12 it 4, A%, 13}/ Bobg —2Y3,/Bybg + m Y35 40 it AP 500/ bo Yy6/bg
13 ity X+, u*u’})/Boby Y39/Boby 41 i<t+wt’+”th>/b?, Ygs/bj
14 ity ut x 1 u”)/Boby Y40/Boby 42 it 150/ b5 Yoo/ b3
15 Kt_ ix—, u*u’})/Boby Y43/Byby 43 (V"N f 000/ bo You/bg
16 (it_,,u* x _u”)/Byb, Y44/Boby 44 iVt [h#, u"]) /by Yos5/bq
17 (1 uthiu”)/ by Ya4/bo — ﬁ Yys 45 iVEL,, [R7, uy1) /by Yo6/ by
18 (t—  Autu?, h3}) /by Yy3/bo — ﬁns 46 i(VHEELf7, up D)/ by Yo7/bg
19 (o (W uput — utuyh™)) /by Y47/bo 47 KVFL AL, u, 1)/ by Zy/by *
20 (t— (R utuy — uputh*))/ by Y4s/by 48 KV 1 L2, ur])/ by Zy/by ®
21ty (uph" u — uthuy))/by Y49/bg 49 iVH#e_ A f5 ua b/ bo Yog/bg
22 (Vt,, V) b Ys1/b 50 iV t_ AfEY uth) /by Yo9/bo
23 <V’ut’f’v)‘t+“>/b(2) Y52/b(2) 51 KVt_,, /i)" u”})/bg Y100/ bo
24 (e A5 uputy) /by Ys57/bg 52 iV 1", 1) Jut)/ b Y0s/b}
25 <f+#y“Af'iVuA>/b0 Ysg/bo 53 i(V"ti)‘{t_M, u, 1)/ b Zs/b§ ¢
26 <t+,ul/(f/-t)\uyu)\ + uu” 1)/ by Ys9/by 54 (V[ X 4 o u, 1)/ Boby Y112/Boby
27 <I+W(f’+”uw” + u”u, i)/ by Ye0/bo 55 ("X~ u, 1)/ Bobyg Y113/Boby
28 (a1 uy + uaf1 u))/ by Ys1/bo 56 ity h# A1)/ by Yi1a/bo
ZZI = I_%Yl +Y, - Y591+ Yor +3Y76 — You — Yoo — Yo7 + Y14

Zy=3Y1 + Y3 =Yy +35Y30 t Yaot+ Yoo — Yo + Yg4 — Yos + Y113 — Yy14e

Zy=—1Yo— 1Yot Y +1Y3 + 1Yy _417/1@5 —3Ys1 +2Ysy — Yoo + Yios — 4Y115 + 2150

Appendixes B, C, and D, and using the parameters in 56

Sec. VC, we obtain both two and three flavors’ numeri- Lo = Z KW oL, (66)
cal results, and list them in the second and sixth columns n=1

in Table V.

B. Imaginary part

As in Sec. V B, continuing our process to the p® order,
we can derive the p® order LECs too. In the large N limits,
without using the equations of motion, and removing the
contact terms, we get 56 independent terms, 0LV and list
them in Table IV. We also list their relation to Y; of
Ref. [10]. As in Eq. (44), in p% order, we get

where KTV are the coefficients related to OI'V.
Introducing a parameter ¢ to O'", we change OV —
OI'W(¢). Then differentiating 0" (¢), we get, in like man-
ner to (55),

orY, oy, ..

STWAT _ 4 (ATW ATW 5T,W\T
Vs 5 O0s5)" = A0, 057, ..., O339)",

oY =dor"(r)/dr (67)

and
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TABLE V. The obtained values of the p® order LECs. CT denote the three-flavor coefficients, and ¢!, denote two flavors. n, m are the
number of independent monomials in [10] with some difference. The subscripts r, i denote the LECs from the real part and imaginary
part of the chiral Lagrangian. As some monomials are not independent, we denote their coefficients by a preceding symbol ““- - -*’. The
details can be found in Sec. IV. The value = 0 means that the constants vanish in the large N limit.

PHYSICAL REVIEW D 87, 094014 (2013)

n 10° GeV2CT, 103 GeV2CT,  10° GeV2CT  m 10° GeV2cT,, 10° GeV2eT,,  10° GeV2cl,
1 220405 2.0670% 426135

2 3.937018 3.947018 7.87703 1 3.531011 3.38703%8 6.91553
3 —3.3055% —3.55,038 —6.85. 541 2 1515605 0.99%553 250,513
4 —1.71%901 —1.46:0 —3.17366

5 =0 =0 =0

6 =0 =0 =0

7 ~0.2970% —0.9474 ~1.23709 3 ~0.1370% —0.417383 —0.5330%6
8 —0.085 6% 0.18250 0.105503 4 —0.04350 0.0750} 0.04:501
9 1.24+0% —~0.70;9% 055709 5 049736} —0.333363 0-16-55>
10 491703 0,613 —ssE 6 205080 02255 22850
1 1147010 0.6174%4 1764014 7 049735 027433 076655
12 =0 =0 =0

13 =0 =0 =0

14 =0 =0 =0

15 =0 =0 =0

16 =0 =0 =0

17 =0 =0 =0 8 =0 =0 =0

18 =0 =0 =0 9 =0 =0 =0

19 10

20 11

21 12

22

23

24

25 13

26 —1.447006 ~2,02+008 ~3.47100 14 ~0.63700 ~0.89%004 —1.521551
27 1462043 296343} 448% s 0.61.%; 126,51 R
28 =0 =0 =0 16 =0 =0 =0

29 =0 =0 =0 17 =0 =0 =0

30 0.581004 0.28+902 0.86120¢ 18 0.18%90} 0.09%901 0.2749%
31 =0 =0 =0 19 =0 =0 =0

32 =0 =0 =0

33 =0 =0 =0

34 —0.4335%0 —4.08,53 —4.51508% 20 —0.415530 —2.76.55% =3.17558
35 —5.263451 —7.92.0% —13.18.15 21 —3.63.0¢6> —5.3530% —8.98.05
36 =0 =0 =0

37 =0 = =0

38 5,347,030 ~4.93708 ~1027708 22 —2.99.5% —2.7350% —57240%
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TABLE 5.
n 10° GeV2(CT, 10° Gev2(T, 10° GeV2CT m 103 GeV2cT,, 10° GeV2c,
39 6.73+0.19 23 2217002 6.45333
40 4.30755

41 =0

4 ~5.87,02 24 —1.94700 —3.87:035
43 6.84+032 25 2234011 448703
a4 13.06038 26 4.29103 8.57403%
45 =0 27 =0 =0

46 ~0.847012 28 0.0479% —0.27300
47 —18.77712 29 —6.11704 —8.1330%
48 30

49 =0 =0 =0 31 =0 =0 =0

50 =0 =0 =0 32 =0 =0 =0

51 33

52 ~0.2374Y7 34 —0.05;00 —0.21353
53 2715512 35 0.917004 1.8155%8
54 ~6.58702 36 ~2.117497 —4.127358
55 ~3.237028 37 —1.07;214 —2.40333}
56 ~5.32,014 38 — 174700 —3.30,31%
57 =0

58 =0

59 =0

60 =0

61 =0

62 —5.72742% 39 —1.87;011 —3.78%030
63 ~13.157080 40 ~4.26.53% —8.547049
64 12.22+934 41 2.42+011 7.977538
65 015780 42 0.0420} 0.05:566
66 =0 43 =0 =0

67 2627013 44 1457007 L6766
68 —3.92303% 45 —0.36065 —0.961515
69 —8.9970:3¢ 46 —2.817921 —5.97:53
70 =0 47 =0 =0

71 =0 48 —0.827004 —1.65:5%
72 =0

73 3.34705

74 49

75 = = =0 50 =0 = =0

76

77 —2.447013 51 ~0.76799 —1.56:5%
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TABLE 5. (Continued)

n 10’ GeV2CT, 10* GeV2CT, 10° GeV2Cl m 10° GeV3cl, 10* GeV2c], 10° GeV2cl,
78 546031 55170% 10.97+934 52 3457008 3.487018 693503
o AR —aosdR 9engE s ey 3R 620y
80 =0 =0 =0

81 7.9910:34 10.127962 18.11%}1e 54 3.44702% 4377028 7.817532
82 55

83 ~7.07:34 ~1.0673% —8120% 56 296703 ~0.407083 ~33670%
84 57

85 =0 =0 =0 58 =0 =0 =0

86

87 —22.85; 132 —23.697 1% —46.5433 59 —15.16;999 —15.7239%3 —-30.88.4%3
88 -0.8175:%2 —0.63.093 —1.4430 60 —0.43%5:92 -0.31.00% —-0.7353:59
89 507552 5197923 10.2610:39 61 3.377518 3.457510 6.827034
90 1.557011 1.6970:98 3.2475%0 62 1.1470:98 1.2370.%¢ 2.38%018
91 4.8240%2 4.78+92) 9.607043 63 3.227003 3.19%013 6.411230
92 —4.933333 —5.1233% —10.04333) 64 =3.195% —3.32:033 —6.51.533
93 9.51 04 9.49+042 19.01198¢ 65 6.317539 6.307929 12.614589
94 =0 =0 =0

95 =0 =0 =0

96 =0 =0 =0

97 66

98 6.92704¢ 3.357939 10.2810.57 67 2.937939 141709 4.3470%
99 =0 =0 =0 68 =0 =0 =0
100 =0 =0 =0 69 =0 =0 =0
101 =0 =0 =0 70 =0 =0 =0
102

103

104

105 —3.067919 0.0019% —3.067919 71 —1.967919 0.0019% —1.967519
106 —2079% ~6.97734 —04lE T2 —1580% —4747031 ~6.32;0%
107 —0.15+2%¢ 0.06-5:99 —0.09+27 73 0.0175% 0.15709! 0.1573:%
108 74

109 75

110 =0 =0 =0

IV RIY L RIYYGTY, O

1t >

W

2t 0"

AT, W _ (pT.W oT.W T, W ATW ATW A
L OTINT = (RTW BTV, .. REM)A((0TY, 0FY, ..., 0

_ (pT.W 5T.W c T . W\ T,.W ZT,W 1T, W
= (RTY REV, . REMYRTY KTV, RE)T

)T

(68)

= (BT, RIY, L RTW A = (RTY, BRIV, REYY. (69)
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OLW in p® order are the same as 6, in p* order, and K"V
are the same as z, in p* order. There are 339 01" and
K Z’W, which are too many to be listed here. Moreover, Ag is
the same as A, in p* order too. Using (69), we can also get
OI'W, which are listed in Appendix E. Combined with
Table IV, we can get the analytical results from the imagi-
nary part. The numerical results are listed in the third and
seventh columns in Table V.

C. Numerical results

In Table V, we list our p® order LECs with tensor
sources, including the three- and two-flavor cases, and
the results for the real and the imaginary parts. Similar
to the p4 order, we calculated the values with A = 1 GeV,
and use the superscript and subscript to denote the
differences caused with A = 1.1 GeV and A = 0.9 GeV,
respectively:

T —cT
CT Cn,A:].l GeV Cn,A:l GeV
n,A=1GeV
7cT
n,A=0.9 GeV n,A=1 GeV
oo (70)
T n,A=1.1 GeV n,A=1 GeV
CnA=1Gev ;
CnA=09Gev  nA=1Gev

CT'\ and ¢!, denote the three- and two-flavor cases,

respectively. Because of the relations given in
Appendix B, some terms are not independent; we denote
their coefficients by the symbol ““---”. In Ref. [10], the
coefficients were multiplied by a suitable power of b, to
express these with the same dimensional units. We choose
by at the end in Sec. V B.

The calculation process is too complicated; to avoid
possible mistakes, the expansion in Egs. (30) and (33)
and most of the other calculations are done by computer.
To check the correctness of our results, we examine them
in various alternative ways. First, because these results
contain the original results in [17,18], if we switch off
the tensor sources, as a check, we must recover the original
results. Second, some terms in Table III and the p6 order
operators in Table 53 have two parts; we calculate them
separately. C, P, and Hermitian invariance constrain the
two parts of the coefficients to be equal (or with a minus
sign difference). Our analytical results for the separate
parts must give the same coefficients. Third, if we switch
off the quark self-energy, all the LECs, except the contact
terms, must be zeros [17]. This places a strong restriction
on our results. We found that this restriction can be realized
only when we use the new relations given in Appendix B.
Fourth, in the p6 order, because of the strict constraint
conditions in Eq. (§9), we have 339 — 56 = 283 constraint
conditions. They are also a strong restriction on our results.
With all the above assessments, we are confident of the
reliability of our numerical results for LECs.
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The authors of Ref. [10] told us that operators contrib-
uting to the odd-intrinsic-parity part with tensor fields start
from the p® order, and we showed in Sec. IV that the odd-
intrinsic-parity parts with tensor fields cannot indepen-
dently exist. So we have obtained all the LECs to the p°
order, with scalar, pseudoscalar, vector, axial-vector, and
tensor sources, including the normal and anomalous parts,
and two- and three-flavor cases. We found that in our
method, all the contact terms’ coefficients are divergent,
except H, in the p* order normal part.

VII. SUMMARY

To summarize our results, we extended our previous
computation for LECs in Refs. [15,17] include tensor
sources, and obtain all LECs of order p* and p® for the
chiral Lagrangian. We find that the operators given in
Ref. [10] are not all independent because of certain rela-
tions involving epsilon. Adding these relations, we can
reduce 22 operators for n-flavor, 21 for three-flavor, and
13 for two-flavor cases, leaving 98 independent operators
for n-flavor, 92 for three-flavor, and 65 for two-flavor
cases. Our LECs are presented with numerical values for
both two- and three-flavor cases. We also find that the
odd-intrinsic-parity parts’ chiral Lagrangian with tensor
sources cannot independently exist. Thus, up to the p°
order, we have already given all the LECs’ values,
although, in obtaining these values, we have made many
approximations. As a first step in estimating values, these
results not only provide the sign and order of magnitude,
but also the quantitative information of LECs. With im-
provements in the computation procedure, we expect more
precise results to be obtained in the future. Another direc-
tion of research is applying the present chiral Lagrangian
with tensor sources, adding the known LECs to various
low-energy (7, K, m) processes. We hope more physical
results can be obtained.
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APPENDIX A: RELATIONS AMONG OUR
SYMBOLS AND THOSE USED IN REF. [10]

To help in understanding the mutual relation between
the notations in our current formulation and those in
Ref. [10], we provide a comparison in Table VI.
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TABLE VI. Comparison between notations introduced in Ref. [10] (first and third columns)
and those defined in the current paper (second and fourth columns).

Ref. [10] Present paper Ref. [10] Present paper

V& d* X“  4iByd*po — 4iBysgaly — 4iByag sq
u Q jintd 2VEY = 2i(afya} — afaf)

ut 2af, VAfRY 2dMVE" = 2idMafyaf — afal)
X X i —2(d*a}y, — d"af)

X+ 4Bysq VA fuy —2(d*d*a}, — d*d”aly)

Xk 4Byd*sq + 4Bypgag + 4Boalhpa  h*Y 2(d*a}), + d"afy

X- 4iBypq r« —ivl

e s v '

APPENDIX B: NEW RELATIONS

In this appendix, we list the new relations when using the epsilon relations in Sec. IV. The left-hand sides of (B1) are
considered to be dependent and reducible.

Y23=%Y9_Y12, Y24=%Y9_Y11, Yys =Y — Y3, Y26=%Y14_Y15’ Y27=%Y16_Y18r
Y28=%Y16_Y17’ Yyg=Yi9— Yo, Yo=Yy =Y, Y53=_%Y11+%Y12+%Y51_Y52+Y90,
Y56=1Y54_Y55’ Y81_1Y32_LY35r Y83_1Y36_LY38_Y82» Ygg = Ygs, Yo; =Yoo,

2 2 2ny 2 2ny
Yo3 = Yo, Y104_1Y32_LY35, Y100 _1Y36_LY38 Y  Y10= _1Y82+1Y92 +1Y106+ Yio7,

272 o, 273 o, PR R
Yin= _1Y36+LY38+1Y82+1Y92+1Y106+ Yies, Yis= _lyl + Y2_1Y57+ Ysg + Ygq — Yog + Yo7 + Y114,
4 dn; 2 2 2 2 2

1 1 1

Y116:§Y69_Y70+Y72+§Y75_n_fYSO_Y86_2Y98_Y99’ Yi19=0. (B1)

APPENDIX C: Z, COEFFICIENTS

i 10 40 2 8
Zr = fdl( —-10733, + ?7'4/(22/( + ?7'422 - §Tsk42k - 27°K233 — 57522],

B 8 40 8
Zr = [dK +10733, — §T4k22k - ?74213( +279K233 + 57'522],

B 40 2 8
Zr = [dK —10733; + 474K23, + ?7422 — §T5k42k —27k*33 — 57522],
Zr = /dK

i 2 4 1
Zg = [dK +4T3Ek - §T4k22k - §T422 - §T4k42;€i|,

B 40 2 8
—107'32k + 2T4k22k + ?7422 + 575k42k - 2751822 - gTSEZ]’

3 3

[ 22 1 8
zr = [ dk| — 2273, + Louesy v o, + 57422],
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z;=fd1<
zg=[d1<
zg=fd1(_

VANES [dK

ZIT2=/dK
Z{3=[d1<
Z{4=fd1(

Zfs=de
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4 8 2
+673%; + Tk — §74k22k —37 33 — 57'4/(42;(],
4 4 1
+4T3Ek_§7'4k22k_§7'422 9 4]{42/]
3 4 4 4 as3 1 s
—4AP3 + TS+ o — Tk
3 3 9
[ 3 32y 4 4 4 8 as3_2 apav
—67’2k+7'k2k+§rk2k+§7'2k—§7k2k,
[ 20 4
Z1 =de —?732 +3 T+ 3r4k22k+ 742* 4k42']
2 2
+ §T4k22k - 57’4]{422],
2
+4T32k+2r3k22;—574k22k—- 33 - 4k42’]
23 5 392 4 2 ag4 422844
+27 —ET‘k —87'2k+§rk +27’k2k+§7 Pl
2 4 32 392 4 2 apa a2 _ 16 4gy
—47r° + 7k +16T'Ek+§7k — 4TS — T30 |,
[ 2 312 392 4 2 apa aav2 o 10 4gy
+471° — 37k —16T'Ek+§’rk +47'k2k+?7' 200

le6=de

z1 =[d1(

zT, = de_
VANES [dK—
zr = de_
zr =/dK-
Zl, = [dK—
zr, = [dK
Zl, = [dK—

272 + %7’31(2 + 27332 — %7’4164 — %r“k&%],

2 4
+472 — Pk — 4732% - §T4k4 + §T4k22%i|,
2 4
—472 + 373k + 47332 — §T4k4 — §T4k22%],

1 8
+27%2 — 73k? — 87332 + §T4k4 + 274232 + 57422],

1 4
+712 — 47337 — §T4k4 + k232 + 57421],

272 + k% — l7'4k4 + gT4k22%],
9 3
1 2
—72 + §T4k4 + 57'4](22%],

4 2
+§T3Ek - T3k22§( - §T4k22k +

[ 2 2
25, = [ar[ 575+ S0

3 3

1 2 1
574](42]/( + §T4k42k2§<2 + §7.5,y<42k —

PHYSICAL REVIEW D 87, 094014 (2013)

4
5 rkszsp |

4k42 212 4k2232/2

[ 2 2 4 1 4

2l = [d]( —§T3Ek + §T4k22k - §T4k42k2;(2 - §TSk42k + §T5k42z2§(2:|,
1 2

Z}, = [dK +§T3k22; +§T4k22k —§ A — 4k42 32 - —75k42 + 975k42*2’2]
[ 8

2l = de —6733,; + 1073k22k2§3 + §T4k22k 423 4k42/ - 9

254 2523 543/2 525/2
—§Tk2k—§ kK233 + - k235 k*33 3%
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2 2 4 1 4
Zgg = de +§T3Ek + §74k22k - §7'4k42k2§{2 - §7'5k42k + 57%“222?],
21 = [ax| +arr = 202 — aps2 zr = [ax[+52 - 2o - 2oy
30 | 3 Ky 31 3 3 37 kY
7T [ 22,7 30 352 T _ 24 372 3v2 - 8 4as2 16 gy
= | dK| =37 +67‘k +2027 | 25 = | dK| —47* + Pk* + 167‘2,(—?7 k Ek—?T 20
[ 8 16
zZt, = de —472 + 2732 + 167337 — 57'4/(22% - ?7422],
7T [ 4 3 3250 4 2 4p2 VUspasr _2 apas o 1 54 4 sipaviyn
1s=|dK 37 S, + Tk Ek+§rk2k—§rk2k——7'k 225 _§Tk Ek-l-—TkEkEk ,
i 4
2, = [ak] -ors, + 1073k22k2§3+§74k22k+ M3} - Srs] - s, SP - D e sp
_ 375k42k _%Tskzzi PESISP + SkZESE’Z]
1 2
zZL = /dK T TREL A TR - 5 A3 — 4k42 32— —Tsk42k + 975k4232'2]
2 2
Z;S = [dK +§’T3Ek _§T3k222],
25, = [ak[ -2 75, + SRR + 205, 45 5] - Lo
39 - ?T 3T T k T 9T kI
i 2
Zl, = [dK +6733, + 57'3]{22;( - 27423, — = 423 4k42’ I
- 10
2, = [ax[+ 575, - TR - PR - —T4z,§+§f4k4z;],
Zl, = de +6733, + 57'3](22;( - 27423, — 423 4k42’ A
- 10 2 4 2
25— [ak[+ 375+ 200 - S, - 3 - 9T4k4z;],
8 4 4
Zl, = de —472 + 273k% + 4732%], ZZS = de[+ §7'2 - §T3k2 - §T3E%],
[ 5 8 5 4
Zh = de 272 + 873/8 + 2732§], ZL = de[—gfrZ + §T3k2 + §T3Eﬁ],
i 2 1 2
zr - f aK| +6r2 = 7k 47322], z1, - f dKI:+§T3Ek — 5T - §T4k4zkz;3],
2 4 4 1 2
Zl = de +§722§( + §T3Ek - §T3E%E§( +273K23, 32 — §T4k42;( - §7'4k42k2§(2],
T [, 3 T sposr o X agass o 2 apas wn
ZSI zde +T’Ek_87'k2k+§7'k Ek+§7k2’k2k N
T [ 2 05 23 2 3105 2323 3RS, S — L A2 4145
ZL = | dK| + =73 +—T‘Ek+—7‘k2— 223 T 2Tk K3+ = Tkz
52 37703 3 k 9

2 4
+STRRIP 4R
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Z; [dKl:+ 732k 3](22/ +_ 4k4E/ 7'4](42](2;(2],

9

T 3125 44/244 n T 82 1 35 4 350
Zi, = | dK| += TkE— kE—grkEkEk, Zis = dK+§T _ng_gTEk’
zr - f dK[+27], zr - f dK[-273, +27°K23) — 273K23, 37

T _ 16 , 372 332 T _ 40 30
Zig = | dK 3T + 37k + 4735 |, Ziy = | dK +§T -7k
zZl = /dK[—Tz], Zl = /dK[+372 - Pk — 27337, zZl, = /dKI:+4TZEk - 27323, — 27322],
Zl, = de[—4T22k +27Kk73, ], Zi, = [dK[—6722k + 27023 + 4737,

Zl, = de[+2T2Ek —273k23, ],
2
Z€6 = j.dKl:_i__TzE;{ 3k2§/ 3k42/? 4k42' _ 4k42 2/2]
zi,= [ dK[+ P3, - PRE] - 5 PREEIE - S PRI - P,
U sass 12 a4 /2242%/2
+§Tk Ek+§7'k Ekzk +§Tk E}{Ek )

-1 4 2 1 2
2l = [aK] - GrRS, + SPREER — PRSP + S + S e n P
zZl = [dK-—sz oo Loy %7415‘222’2]
9 | 3 3 18 9 k=l
Zr = [dK-+§72 ! szE’z ! k2 —%7322 + 273k2323,2 +i74k4 +17'4k222
70 | 6 2 27 30 Tk =k 718 6 k
2
4k4 AN/ 4k2 4 /2:|
=5 2225 3 202

-1 1 1 2
ZT=[dK——2—— Pl + —Ah — 4k42/2]
7 | 737 73 BT K TR

-1 1 1 2
2;2 - de_"‘gTz § ’;k +ET k § 4k422222]
T __ -12 122/2 132 144244212
Z73— dK- 57’ _E kZ 3Tk _ETIC +§Tk2k2k y

-1 1 1 2
Zl, = de +§7'2 + §T3k2 — E74k4 + 5 4k42%222j|, 2l = de[—47'2 + Pk + 47332,
21, = [aKt-ar +27°%0) 25, = [aktr2rsy 1)

s [ dT
77(k~+2) =
/dK N[(2)4 b [ C2)

A2
APPENDIX D: ZI' AND KI’S RELATIONS

This appendix list relations between our coefficients, ZZ, and those in Ref. [10], K. Some coefficients vanish because
of the new relations in Appendix B.
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1 1 1
KT =+ ZT — VAR zZr o+ zr - Zr + Zr + ZT — 77
! 16b0 ! 16b 2 16b 2% 16b0 » 32b0 6+ 32b st at 16b 42
1
KT — ZT ZT ZT ZT ZT ZT ZT ZT ZT
2 16b0 8b 2 16b, 3° 16b st 8b o™ by Ch 16b 517+ 4b, o1 " by 8
1
KaT: FbOZT ng+_OZ§9__Z§9 16b ZsT7 ng"_zgs
1
KT_ + ZT ZT ZT ZT zT zT zT ZT _ T
16b0 8b, % 2t 16b 39 16b0 40 16b0 2 16b 57 7 8h,
=0 KI=0 kT=0 kl=0 KT—+WZT 4b(2,ZlT7 SbZZlTS 8sz,Tg 37 Z§]
K{O = 4b2 Zgl - 4b2 Z;Q 4b2 Zg:i 8b2 Zgl
KT] =+ 4—]?(2) 2{6 4b2 Z{S 2b2 Zgl 4b2 Zg-S 4b2 Z§9 2b2 Z;I 2b2 Z;Z
1 1
KTZ =+ 4_%2{5 4b2 2{9 4b2 Z?S 4b2 Z§9 2b2 Z;I Zb% Z;Z
1 1
K{3=—4—%Z§0+4b222+4b22§1 Ki,=0 K1T5=0 K1T6=0 K{;=0 Kf;=0
K1T9:0 KzTozo K2Tl:0 Ksz:O KSTI 4B bzzg4 4B, bzsts
1 1 1
Kl =+—2ZI +——ZI — r—__z0 -zl + 7L Kl =0 KI,=0
32 8[92 31 4]92 32 b(z) 46 bz 47 bz 48 ZBOb% 77 33 34
1 1 1 1
Ksrsz_wz3T1_4N bzstz 2NbeZZ6 8N, bzzZ7 8N, bZZZS K36 0 K3T7:0 K3Ts:O
1 1
KL, = zr — ZL zZ% zr - ZT, + zr —— 7T + ZT — 7
39 16b0 26 16b 16b 16Bob0 33 16Bob0 4 SB ho o1 16b o6 " 8b, ot 16b,
1 1 1
K‘{O:_'__Zg()_gb Z Z 16BO Z34 8B b Z44_8b Z Zg;7 8bOZgS Ké{l:O K{ZZO
1 1
KL, = Z Zr + zZI + ZT ——ZT +—2zf——— 7T
43 10 1630 45 16b 50 51 Sbo 54 SB b 60 16B b() 75
1 1
Kj=+—2,——2Zl, ——Zl ——— 7l Kl = zl — VAR Zr + zr
T 0 138, T 8h, 16Bb 76 T4 8N by 10 16N by P 4N by stF 4N by
1 1 1
KI'=0 KL =-— zr - Zl+ ZT + ZT -z —-—Zr
46 4 16b, 16b0 16b a7 0 16b 2 16b 33
1 1
Kl =— zZr— Zr— oLy L Loy
48 16b0 16b0 16b0 0 8b it 16b 2t 16b 53
1
KI, = zZT — ZT + zr — zl ——ZzI  KI =0
49 — 16b0 11 16b 12 16b0 49 16b 50 8b 51 50
1 1 1 1
KSTl:_4_b(2)Z3Tl+b_(2)Z7To_2bzz;2 Z7T3 2,92234 Kst +b2ZT __2259"'_22;1"'_22;2__22;4
1
K5T4=0 K5T5=0 K§7=_32b ZsTé 32b Z3Ts 024{1 K5T8= 16b Z§6_16b ng 8b, 24{3
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Lo Lo Lop 1oy
Sbo 40 Sb 57 2b 67 4b0 68

1
Z§9 ZsT7 Zg7 + EZ&;
0 0

1
K5T9 = _8_190257 -

1 1
L T_L
8by 8by 2 8b, *
KGTz:O Kg3:0 K64_0 K6TS=0 K(];6=O K6T7=0 Kg8=0

1
K6T1 = +8_ng7 Zgg

1
KL = Zr— zZr + Zl + zr
69 16b0 16b0 N 16b 2t 16b 53
1 1 3
KL =+ Zr - Zr+ zr + ZT -zl —— 7T
0 16b, 16b0 16b) s0F 31 16b 52 16b 53
1
Kl=+—20 ——Z0'+ — 7+ —Z, —— 7T
n 16b0 16b0 16b0 N 16b0 52 16b 53
1
KL, = Zr + 7R ¢ AL U N (N N U S {7,
" 1630170 55+ SBb ot s 16b 2t 16b 3 8b, st 16B bo 55+ SBb 60
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