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We use results of fits to the OPAL spectral data, obtained from nonstrange hadronic � decays, to

evaluate the difference between the vector and axial current correlators, �V�AðQ2Þ. The behavior of

�V�AðQ2Þ near Euclidean momentumQ2 ¼ 0 is used to determine the effective low-energy constants Leff
10

and Ceff
87 related to the renormalized low-energy constants Lr

10 and Cr
87 in the chiral Lagrangian. We also

investigate how well two-loop chiral perturbation theory describes �V�AðQ2Þ as a function of Q2. This is

the first determination of Leff
10 and Ceff

87 to employ a fully self-consistent model for the violations of quark-

hadron duality in both the vector and axial channels. We also discuss the values of the coefficients C6;V�A

and C8;V�A governing the dimension-six and -eight contributions to the operator product expansion

representation of �V�AðQ2Þ.
DOI: 10.1103/PhysRevD.87.094008 PACS numbers: 12.39.Fe, 11.30.Rd, 12.38.�t

I. INTRODUCTION

Recently, we reanalyzed the OPAL spectral function data
for nonstrange hadronic � decays [1], the main aim being a
determination of a value for the strong coupling at the �
mass, �sðm2

�Þ, with a complete error analysis [2,3]. Among
the new elements in this analysis were the use of spectral-
functionmomentswith a good perturbative behavior [4] and
a complete and self-consistent treatment of nonperturbative
effects [3,5]. This, in turn, requires a quantitative treatment
of quark-hadron duality violations (DVs) due to the clear
presence of hadronic resonances in the spectral function
data. The latter was accomplished by employing a model
developed in Refs. [6,7] that we will also use in the present
article. While the analysis necessarily relies on this model,
we demonstrated that the complete theoretical parametri-
zation of the spectral-function moments including the dual-
ity violating (DV) part provides a very good description of
the experimental data. We chose to use OPAL data, rather
than ALEPH data [8], because of the incompleteness of the
data correlations [9] for the latter.

While the central results in Refs. [2,3] were based on fits
to only the vector channel data, we also carried out simul-
taneous fits to the vector and axial channel data as a
consistency check on our results. As a by-product, we
thus have a quantitative theoretical description of the vec-
tor and axial spectral functions �VðtÞ and �AðtÞ from t ¼
tmin � 1:3 GeV2 to t ¼ 1. This lets us evaluate dispersive
integrals over �VðtÞ � �AðtÞ as a function of Euclidean
momentum Q quantitatively from the data. (For explicit

expressions, see Eqs. (2.1) and (2.10) below.) This, in turn,
allows us to extract certain low-energy constants (LECs)
appearing in the chiral Lagrangian, as well as some of the
coefficients appearing in the operator product expansion
(OPE), from the low and high Q2 behavior of �V�AðQ2Þ,
respectively. The determination of these LECs and OPE
coefficients is the aim of the present article. As we will
explain in detail below, we determine �V�AðQ2Þ by sum-
ming over experimental data up to t ¼ tswitch and using our
fitted spectral functions for t 2 ½tswitch;1Þ, where we will
choose tswitch 2 ½tmin ; m

2
�� (m� is the � mass).

This article is organized as follows. In Sec. II we give a
brief overview of the necessary theory, including a reder-
ivation of the Weinberg sum rules beyond the chiral limit
tailored to our analysis. In Sec. III we explain our strategy
for the numerical evaluation of �V�AðQ2Þ and other re-
lated functions from the OPAL data. In Sec. IV we present
and discuss our results. We include an investigation of a
fit of �V�AðQ2Þ to chiral perturbation theory (ChPT) to
two-loop order. Our conclusions are contained in Sec. V.

II. OVERVIEW OF THEORY

The LECs and OPE condensates this article aims to
extract are all related to �V�AðQ2Þ, defined by1

�V�AðQ2Þ ¼
Z 1

0
dt

�VðtÞ � �AðtÞ
tþQ2

; (2.1)

with Q2 the Euclidean external momentum and �V (�A)
the nonstrange I ¼ 1 vector (axial) spectral functions
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summing the angular momentum J ¼ 1 and J ¼ 0 contri-
butions. Here and in what follows, we take, for conve-
nience, �A to be the axial spectral function without the
contribution from the pion pole.

The difference �V � �A is constrained by the Weinberg
sum rules [10]. It is useful to briefly review their derivation,
beginning with the second sum rule, because of the subtle-
ties involved at nonzero quark mass. Following Ref. [11],
and showing contributions from the pion pole explicitly
because it is not contained in �AðtÞ, we write

Z s0

0
dtwðtÞð�VðtÞ � �AðtÞÞ � 2f2�wðm2

�Þ

¼ � 1

2�i

I
jzj¼s0

dzwðzÞ�V�AðzÞ

¼ � 1

2�i

I
jzj¼s0

dzwðzÞ�OPE
V�AðzÞ

� 1

2�i

I
jzj¼s0

dzwðzÞ�DV
V�AðzÞ; (2.2)

where wðtÞ is a polynomial in t, and where we split

�V�AðzÞ ¼ �OPE
V�AðzÞ þ�DV

V�AðzÞ (2.3)

into the OPE and DV parts, following Ref. [6]. The OPE
part has the form

�OPE
V�Að�Q2Þ ¼ X1

k¼1

C2k;V�A

ðQ2Þk ; (2.4)

with, for three flavors [11,12],

C2;V�A¼��sð�2Þ
�3

muð�2Þmdð�2Þ

�
�
1��sð�2Þ

�

�
17

4
log

Q2

�2
þc

��
þ��� ; (2.5a)

C4;V�A¼�8

3

�s

�
f2�m

2
�þ��� ; (2.5b)

where � is the renormalization scale, mu;dð�2Þ denote the
running up and down quark masses, and c is a numerical
constant for which the value is not required in what fol-
lows. In Eq. (2.5b), isospin symmetry has been assumed,
and the Gell-Mann–Oakes–Renner relation has been used
to express the product of the average light quark mass and
quark condensate in terms of f� and m�. Contributions
from higher-dimensional operators will be neglected. Next,
in order to derive the secondWeinberg sum rule, we choose
wðtÞ ¼ t. Expressing the DV part of Eq. (2.2) in terms of
the DV parts of the vector and axial spectral functions [6],

�DV
V ðtÞ � �DV

A ðtÞ ¼ 1

�
Im�DV

V�AðtÞ; (2.6)

and evaluating the OPE part using Eq. (2.5) and (2.2) can
be rewritten as

Z s0

0
dt tð�VðtÞ��AðtÞÞþ

Z 1

s0

dt tð�DV
V ðtÞ��DV

A ðtÞÞ

¼2f2�m
2
�

�
1þ4

3

�sðs0Þ
�

�
þ 17

4�2

�
�sðs0Þ
�

�
2
muðs0Þmdðs0Þs0;

(2.7)

where we set �2 ¼ s0. This is the version of the second
Weinberg sum rule we will employ. A similar derivation,
choosing wðtÞ ¼ 1, leads to the first Weinberg sum rule,

Z s0

0
dtð�VðtÞ � �AðtÞÞ þ

Z 1

s0

dtð�DV
V ðtÞ � �DV

A ðtÞÞ ¼ 2f2�;

(2.8)

where we already dropped the correction coming from the
OPE contributions to the right-hand side of Eq. (2.2), as
these are numerically tiny for the s0 of interest to us. Our
conventions are such that f� ¼ 92:21ð14Þ MeV.
The effective LECs Leff

10 and Ceff
87 are defined from the

expansion of �V�AðQ2Þ around Q2 ¼ 0 [13–15]:

�V�AðQ2Þ ¼ �8Leff
10 � 16Ceff

87Q
2 þOðQ4Þ; (2.9)

while the OPE condensates C6;V�A and C8;V�A are defined

from the high-Q2 expansion (2.4).

We will also use functions �ðwÞ
V�A involving additional

polynomial weight factors wðxÞ, defined by

�ðwÞ
V�AðQ2Þ ¼

Z 1

0
dt wðt=s0Þ�VðtÞ � �AðtÞ

tþQ2
: (2.10)

The weights we will consider are

wkðxÞ ¼ ð1� xÞk; k ¼ 1; 2: (2.11)

Using theWeinberg sum rules, Eqs. (2.7) and (2.8), one finds

�8Leff
10 ¼�V�Að0Þ¼�ðw1Þ

V�Að0Þþ
2f2�
s0

¼�ðw2Þ
V�Að0Þþ

4f2�
s0

�
1� 17

16�2

�
�sðs0Þ
�

�
2muðs0Þmdðs0Þ

f2�

�m2
�

2s0

�
1þ4

3

�sðs0Þ
�

��
; (2.12)

yielding alternative ways to evaluate Leff
10 . Similar equations

can be derived for Ceff
87 . In these equations, we assumed that

�ðwÞ
V�AðQ2Þ can be written as in Eq. (2.10), using the experi-

mental spectral functions for t � s0 and the approximation

�VðtÞ � �AðtÞ � �DV
V ðtÞ � �DV

A ðtÞ; t � s0; (2.13)

above s0, cf. Eq. (2.7). This approximation involves the
assumption that OPE contributions, in principle, present in
the theoretical representation of �V � �A are numerically
tiny and can be safely neglected.We can test this assumption
by evaluating the OPE corrections in Eq. (2.12), which in
that equation appear as the terms depending on �sðs0Þ.
Setting s0 ¼ m2

� and using �sðm2
�Þ=� � 0:1 and
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mu;dðm2
�Þ< 10 MeV, we find that the second term inside

the square brackets is at most of order 10�5. The term
proportional to m2

��sðs0Þ=s0 inside the square brackets is
of order 4� 10�4 at the � mass. For values of s0 down
to 1:5 GeV2, it will be larger, but even an order of magni-
tude will not affect our results below.2 In fact, the contribu-
tion from the term 2f2�m

2
�=s

2
0 to Leff

10 itself is very small,

about 2� 10�5. For our purposes, the dimension-two
and -four OPE corrections to the approximation (2.13)
turn out to be completely negligible, and it will be justified
to drop the terms in Eq. (2.12) containing factors of�sðs0Þ in
Sec. IV below.3

For the DV part of the vector and axial spectral func-
tions, we will use the parametrization

�DV
V=AðtÞ ¼ e��V=A��V=At sin ð�V=A þ �V=AtÞ; (2.14)

where �V=A, �V=A, �V=A, and �V=A are eight free DV

parameters, which are fitted to moments of the experimen-
tal spectral functions. For a detailed discussion and history
of this parametrization, see Refs. [6,7,17].

III. STRATEGYAND DATA

Wewill evaluate�V�AðQ2Þ and�ðwkÞ
V�AðQ2Þ using OPAL

experimental data [1] for the spectral functions �VðtÞ and
�AðtÞ for t � s0 ¼ tswitch, and approximating the difference
�VðtÞ � �AðtÞ by Eq. (2.13) for t � s0 ¼ tswitch, with val-
ues for the DV parameters from our previous fits to the
data. We used adjusted OPAL data, updated to reflect
current values of exclusive mode hadronic �-decay branch-
ing fractions, as described in Ref. [2]. Wewill choose tswitch
to be the upper end of OPAL bin N, obtaining

�ðwÞ
V�AðQ2Þ ¼ XN

i¼1

�twðt½i�=tswitchÞ�Vðt½i�Þ � �Aðt½i�Þ
t½i� þQ2

þ
Z 1

tswitch

dtwðt=tswitchÞ�
DV
V ðtÞ � �DV

A ðtÞ
tþQ2

:

(3.1)

Here �t ¼ 0:032 GeV2 is the OPAL bin width, and t½i� ¼
ði� 1=2Þ�t is the midpoint value of the ith bin; tswitch ¼
t½N� þ �t=2 ¼ N�t. �V�AðQ2Þ is obtained by setting the
polynomial weight w ¼ 1.

The simplest fits from which the DV parameters were
obtained were fits to the separate vector and axial versions
of Eq. (2.2) withwðtÞ ¼ 1, using OPAL data to evaluate the
moments

IV=Aðs0Þ ¼
Z s0

0
dt�V=AðtÞ (3.2)

through a Riemann-sum approximation like the one shown
in Eq. (3.1) and varying s0 between a given smin and m2

�.
For wðtÞ ¼ 1, all OPE contributions except the D ¼ 0
perturbative ones are negligible, and a fit to IV=Aðs0Þ
thus yields �s and the DV parameters of the channel in
question.4 The value of smin was determined by requiring a
good quality match between the experimental IV=Aðs0Þ and
fitted theoretical representations and stability of the fit
parameters with respect to variation of smin . In this article,
we will always choose tswitch ¼ smin .

5 Our central results
were obtained with the choice smin ¼ 1:504 GeV2.6 We
have also used the more elaborate moments with weights
1� ðt=s0Þ2 and the ‘‘� kinematic weight’’ ð1� t=s0Þ2 �
ð1þ 2t=s0Þ inserted into Eq. (3.2); the perturbative part of
all moments was evaluated using both fixed-order and
contour-improved [18] perturbation theory (FOPT and
CIPT, respectively). The nontrivially weighted moments
also give access to the OPE coefficients C6;V=A and C8;V=A.

Both pure vector and combined vector and axial channel
fits were investigated. For a detailed account of all these
fits, we refer to Refs. [2,3]. The fit results employed here
are always those from Ref. [2], unless otherwise noted.
We have fully propagated all errors and correlations in

the results we will report on below. In particular, the DV
parameter values used in Eq. (3.1) are correlated with the
data, and we have computed these correlations using the
linear error propagation method summarized in the appen-
dix of Ref. [3] [see, in particular, Eq. (A.4) of that refer-
ence, which can be used to express the parameter-data
covariances in terms of the data covariance matrix].

IV. RESULTS

We will begin with presenting the results for Leff
10 and

Ceff
87 as defined by Eq. (2.9), using Eq. (2.12) as well. After

that, we will check the convergence of chiral perturbation
theory by fitting the Q2 dependence to the two-loop ex-
pressions for �V�A calculated in Ref. [14]. Then, in
Sec. IVD, we will revisit the dimension-six and -eight
OPE coefficients.

A. Leff
10 and Ceff

87

Table I shows results relevant for Leff
10 . This LEC can be

directly obtained from the second column using Eq. (2.9)
or from the fourth or sixth column using Eq. (2.12). The
DV parts of these integrals, corresponding to the second
term on the right-hand side of Eq. (3.1), are shown in the

2We will, therefore, also not worry about higher-order correc-
tions in �s omitted from Eqs. (2.7) and (2.12) above, even though
typically the perturbative expansions of the coefficients C2k;V�A

converge slowly for the J ¼ 0 component.
3A less quantitative version of this argument appeared in

Ref. [16].

4�s was enforced to be equal in the two channels.
5We have explored taking tswitch > smin and find that this leads

to results fully consistent with the choice tswitch ¼ smin and no
reduction in errors.

6This value corresponds to the upper end of OPAL bin 47.
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third, fifth and seventh columns. Note that the (absolute)
errors become smaller with increasing k in Eq. (2.11), i.e.,
with more pinching at smin ¼ tswitch. We also note that the
results are essentially independent of smin and whether one
chooses the FOPT or CIPT scheme for the evaluation of
the truncated perturbative series. This is a consequence of
the fact that the integrals are almost completely determined
by the data part, i.e., the sum on the first line of Eq. (3.1), as
can be seen from the always small contribution from the
DV part of the integrals. Wewill, henceforth, use the FOPT
results at smin ¼ 1:504 GeV2.

From Eq. (2.9), we find

Leff
10 ¼ ð�6:52� 0:14Þ � 10�3 ðfrom �V�Að0ÞÞ: (4.1)

Using Eq. (2.12), one may also compute Leff
10 from the other

values shown in Table I; the results are always consistent

within errors. In fact, using �
ðw1;2Þ
V�A and Eq. (2.12), we

obtain the somewhat more precise values:

Leff
10 ¼ ð�6:52� 0:11Þ� 10�3 ðfrom�ðw1Þ

V�Að0ÞÞ; (4.2a)

¼ ð�6:45� 0:09Þ� 10�3 ðfrom�ðw2Þ
V�Að0ÞÞ: (4.2b)

These values are in good agreement with the value found
recently in Ref. [19], except that our best error is twice as
large. There are (at least) two reasons for this difference in
errors, both of which point to the error in Ref. [19] being
underestimated.7 First, Refs. [16,19] used a DV ansatz of
the functional form shown in Eq. (2.14) for the difference
�DV
V � �DV

A , instead of using this form for each channel
separately. That implies that Refs. [16,19] used only four
parameters to describe duality violations in V � A,
whereas we use eight. The simplified four-parameter
form assumed in Refs. [16,19] would be valid if it hap-
pened, for some reason, that �V ¼ �A and�V ¼ �A. Since
we find very different values for �V and �A in our fits to
both the OPAL data [2] and the ALEPH data [20], this
condition is, however, not satisfied. The theoretical

systematic error associated with the breakdown of this
assumption is, of course, not included in the error estimates
of Refs. [16,19]. These comments remain relevant even if
an ansatz of the form (2.14) gives a reasonable description
of the difference �VðtÞ � �AðtÞ for large enough t: a model
description of duality violations is only acceptable if it
describes the resonance physics at higher energies in
both the vector and axial channels individually. The second
reason for our larger error is that Ref. [19] used the
formally more precise (but, in practice, incomplete)
ALEPH data [9]. If ALEPH data with corrected correlation
matrices were to become available, we anticipate that
errors would be reduced relative to those obtained using
the OPAL data for our fits as well.
Values for the derivative of �V�AðQ2Þ with respect to

Q2 at Q2 ¼ 0 are shown in Table II. As one would expect,
the results show the same robustness with respect to the
various fits of Ref. [2] as those in Table I. Using Eq. (3.1),
we find

Ceff
87 ¼ ð8:47� 0:29Þ � 10�3 GeV�2: (4.3)

This value again agrees with that found in Ref. [19], but our
error is again about twice as large. Using the cubic doubly
pinched weight of Ref. [5] in Eq. (2.10) as was done in
Ref. [19] does not lead to a smaller error in our case. The
same comments about the reasons for our larger error as
discussed above for Leff

10 apply here as well.

TABLE II. Values of �0
V�A at Q2 ¼ 0 obtained by differenti-

ating Eq. (2.1) with respect to Q2. We always take the switch
point between data and the duality-violating part of the spectral
function at tswitch ¼ smin . The superscript DV indicates the
contribution from the second term on the right-hand side of
Eq. (3.1). Duality violation parameters are from the fits of
Ref. [2], Table III. Results from fits using FOPT are shown
above the line, and those from CIPT are shown below.

smin �0
V�Að0Þ �0DV

V�Að0Þ
1.408 �0:1356ð47Þ 0.0029

1.504 �0:1355ð47Þ 0.0016

1.600 �0:1356ð47Þ 0.0004

1.504 �0:1355ð47Þ 0.0016

TABLE I. Values of�V�A,�
ðw1Þ
V�A and�ðw2Þ

V�A atQ2 ¼ 0. We always take the switch point between data and the duality-violating part
of the spectral function at tswitch ¼ smin (values for smin are in GeV2). The superscript DV indicates the contribution from the second
term on the right-hand side of Eq. (3.1). Duality violation parameters are from the fits of Ref. [2], Table III. Results from fits using
FOPT are shown above the line, and those from CIPT are shown below.

smin �V�Að0Þ �DV
V�Að0Þ �ðw1Þ

V�Að0Þ �ðw1ÞDV
V�A ð0Þ �ðw2Þ

V�Að0Þ �ðw2ÞDV
V�A ð0Þ

1.408 0.0522(10) �0:0039 0.04019(88) �0:00042 0.02738(72) 0.00028

1.504 0.0522(11) �0:0019 0.04083(90) �0:00071 0.02915(72) 0.00033

1.600 0.0523(11) �0:0001 0.04081(90) �0:00066 0.02916(72) 0.00013

1.504 0.0522(11) �0:0019 0.04081(91) �0:00072 0.02916(72) 0.00034

7For more comments on the comparison with Ref. [19], we
refer to the conclusion.
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We have repeated the analysis presented here using fit
values for the DV parameters reported in Table 5 of
Ref. [2], again taking all correlations into account. The
results for Leff

10 and Ceff
87 are virtually identical to those

reported above.

B. Connection to chiral perturbation theory

The LECs Leff
10 and Ceff

87 , which are defined by the values

at Q2 ¼ 0 of �V�AðQ2Þ and its derivative [cf. Eq. (2.9)],
are connected to LECs in the order-p6 chiral Lagrangian
through the relations [15]

�V�Að0Þ¼�8Leff
10 ¼�8Lr

10ð�Þð1�4ð2��þ�KÞÞþ16ð2��þ�KÞLr
9ð�Þ� 1

16�2

�
1� log

�2

m2
�

þ1

3
log

m2
K

m2
�

�

�8G2Lð�;0Þ�32m2
�ðCr

61ð�Þ�Cr
12ð�Þ�Cr

80ð�ÞÞ�32ð2m2
Kþm2

�ÞðCr
62ð�Þ�Cr

13ð�Þ�Cr
81ð�ÞÞ; (4.4a)

��0
V�Að0Þ¼16Ceff

87 ¼16Cr
87ð�Þþ 1

480�2

�
1

m2
�

þ 2

m2
K

�
�8

@G2Lð�;sÞ
@s

��������s¼0
� 1

4�2f2�

�
1� log

�2

m2
�

þ1

3
log

m2
K

m2
�

�
Lr
9ð�Þ; (4.4b)

�P¼ m2
P

32�2f2�
log

m2
P

�2
: (4.4c)

Here the superscript r denotes the values of LECs
renormalized at scale �, which we will take below to be
� ¼ 0:77 GeV.

The complete order-p6 ChPT expression for �V�AðQ2Þ
can be written as a function of Q2 in terms of the renor-
malized LECs Lr

9;10 and Cr
12;13;61;62;80;81;87 using the results

of Ref. [14].8 Choosing � ¼ 0:77 GeV, and using m� ¼
139:570 MeV andmK ¼ 495:65 MeV, theQ2 dependence
of�V�AðQ2Þ in chiral perturbation theory to order p6 takes
the form

�V�AðQ2Þ ¼ �12:165Lr
10 � 32m2

�ðCr
61 � Cr

12 � Cr
80Þ

� 32ð2m2
K þm2

�ÞðCr
62 � Cr

13 � Cr
81Þ

� 16Cr
87Q

2 þ RðQ2;Lr
9Þ; (4.5)

where RðQ2;Lr
9Þ is a fully known nonanalytic function in

Q2 coming from one- and two-loop contributions in ChPT,
including one-loop contributions with a vertex containing
Lr
9. Note that RðQ2;Lr

9Þ also depends on the scale �, even

though we have not explicitly indicated any such depen-
dence in Eq. (4.5), because we evaluated the numerical
value of the coefficient of Lr

10 at � ¼ 0:77 GeV. This
implies that both RðQ2;Lr

9Þ and all LECs appearing in

this equation are to be evaluated at this value of �. At
Q2 ¼ 0, Eq. (4.5) yields Eq. (4.4) through the relation (2.9).

If we fit �V�AðQ2Þ to this order-p6 expression, we can
explore the range in Q2 for which order-p6 ChPT is a valid
approximation. Note that the order-p6 expression is not
linear inQ2, even though Eq. (2.9), which one obtains upon
reexpanding the order-p6 ChPT expression for Q2 < 4m2

�,
is linear in Q2.9 With m� and mK fixed to their physical
values, the data can, of course, not be used to separate the
Q2-independent part of Eq. (4.5) into its individual

order-p4 and order-p6 components without additional in-
put. Such input can, in principle, be obtained from lattice
studies employing a range of light quark masses.
We have carried out a fit to Eq. (4.5) in terms of Lr

10 and

Cr
87, using given values for all the other LECs on the right-

hand side of Eq. (4.4). Specifically, we chose the central
values Lr

9ð�Þ¼0:00593 [21], 4m2
�ðCr

61ð�Þ�Cr
12ð�Þ�

Cr
80ð�ÞÞ¼�0:000067, and Cr

62ð�Þ � Cr
13ð�Þ � Cr

81ð�Þ ¼
0 [15] at � ¼ 0:77 GeV,10 for which Eq. (4.4) becomes

Leff
10 ¼ 1:521Lr

10ð� ¼ 0:77GeVÞ � 0:000288; (4.6a)

Ceff
87 ¼ Cr

87ð� ¼ 0:77GeVÞ þ 0:00328 GeV�2; (4.6b)

where we also used m	 ¼ 547:853 MeV (the latter is

needed for the evaluation of the loop contributions to the
constants in these equations).
Fits to ChPT at order p6 are shown in Fig. 1. The blue

(dashed) curve shows a fit with a maximum Q2 value
Q2

max ¼ 0:24 GeV2, while the red (continuous) curve
shows a fit with Q2

max ¼ 0:10 GeV2. The fits were per-
formed using points beginning at Q2 ¼ 0 and spaced by
0:01 GeV2. These data, computed from Eq. (3.1), are
strongly correlated and not amenable to a standard 
2 fit,
forcing us to perform a fit with diagonal inverse-squared-
error weighting.11 The full data correlations are then taken
into account in the quoted errors using the technique
described in the appendix of Ref. [3].
Clearly, the blue curve does not provide a good fit, while

the red curve does. We conclude that ChPT at this order
gives a good match to �V�AðQ2Þ up to Q � 300 MeV,
which is about twice the pion mass. The ChPT fits are
virtually linear, suggesting consistency with the extraction
of Leff

10 and Ceff
87 from Eq. (2.9). From the ChPT fit corre-

sponding to the red curve in Fig. 1, we obtain the values

8We do not quote those results here because of their length.
9The threshold in the dispersive integral for�V�AðQ2Þ is 4m2

�,
and not m2

�, since the � pole contribution was subtracted in
defining �AðtÞ.

10Errors on these values are only needed if one wishes to
convert values for Leff

10 and Ceff
87 into values for Lr

10 and Cr
87.

For such an analysis, we refer to Sec. IVC.
11Thinning out the data does not help.
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Lr
10¼�4:08ð9Þ�10�3 and Cr

87¼3:97ð18Þ�10�3GeV�2,

which correspond to

Leff
10 ¼ ð�6:49� 0:14Þ � 10�3;

Ceff
87 ¼ ð7:25� 0:18Þ � 10�3 GeV�2:

(4.7)

The value for Leff
10 is completely consistent with Eqs. (4.1)

and (4.2), but this is not the case for the value ofCeff
87 , which

is not consistent within errors with Eq. (4.3). The reason for
this is that the value in Eq. (4.3) was obtained from the
behavior of �V�AðQ2Þ near Q2 ¼ 0, while the value in
Eq. (4.7) was obtained by a fit of�V�AðQ2Þ over the range
0 � Q2 � Q2

max ¼ 0:1 GeV2. Values for Ceff
87 obtained by

varying Q2
max are shown as the black points (crosses) in

Fig. 2. This figure shows that ChPT to order p6 does a
reasonable job in describing �V�AðQ2Þ, but clearly
order-p8 effects, not included in the chiral fits, are present
in the data. In contrast, the value of Leff

10 is barely affected

by varying Q2
max ; it varies by less than the errors quoted in

Eq. (4.2) over the range shown in Fig. 2.
The presence of order-p8 effects can be checked by

redoing the ChPT fits, but now using Eq. (4.5) with an
extra term þDQ4 added. This is, of course, a phenomeno-
logical fit, because the order-p8 structure is more compli-
cated than just such a simple term. But Fig. 1 shows that the
deteriorating quality of the fits with larger values of Q2

max

is due to some curvature showing up in�V�AðQ2Þ at larger
Q2, and we expect this extra term to capture this curvature
reasonably well. We show the results for Ceff

87 as a function

of Q2
max with this new term included in the fit as the blue

points (filled circles) in Fig. 2. Indeed, the values for Ceff
87

become much less sensitive toQ2
max , with values consistent

with Eq. (4.3) over a much larger range. We also find that
Leff
10 does not change significantly as a consequence of this

exercise: instead of the value in Eq. (4.7), we now obtain
Leff
10 ¼ ð�6:52� 0:14Þ � 10�3. The phenomenological

coefficient D varies between 0.2 and 0.1 over the interval
shown in the figure.
The lesson of this exploration is that any values of Lr

10

and Cr
87 obtained from Leff

10 and Ceff
87 using (as in Ref. [15])

the order-p6 ChPT relations of Eq. (4.4) must be treated
with some care. While terms beyond order p6 in the chiral
counting associated with higher powers of Q2 can be
removed by takingQ2 to zero, those associated with higher
powers of the quark masses are fixed by the nonzero,
physical meson masses and cannot be removed. Such con-
tributions are present in the relations between Leff

10 and Lr
10

and Ceff
87 and Cr

87 to arbitrarily high chiral order. The

variation in the fitted value of Cr
87 with Q2

max [the source

of the variation of Ceff
87 displayed in Fig. 2, cf. Eq. (4.6b)]

indicates nontrivial Q2-dependent contributions of order
p8 and beyond, raising the possibility of analogous mass-
dependent, Q2-independent order-p8 (and beyond) contri-
butions as well.
The impact of such order-p8 (and higher) contributions

will be more significant for the relation between Ceff
87 and

Cr
87 than for that between Leff

10 and Lr
10 since in the former

case the missing order-p8 terms are only one chiral order
higher than the LEC of interest, Cr

87, whereas in the latter

case, the missing terms begin two chiral orders higher than
Lr
10. Even so, the order-p8 and higher contributions need

not be completely negligible for Lr
10. In fact, ignoring the

contributions of the order-p6 LECs C12;13;61;62;80;81 to the

relation between Leff
10 and Lr

10, the effects of the mass-

dependent order-p6 terms are significant, changing the
coefficient of Lr

10 from 1 at order p4 to 1.521 at order p6

in Eq. (4.6a) and altering the best fit results for Lr
10 by about

30% between order p4 and order p6. A further shift in Lr
10

0.00 0.05 0.10 0.15 0.20 0.25
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C87
eff from ChPT

FIG. 2 (color online). Black points (crosses) show values of
Ceff
87 obtained from the ChPT fits as a function of Q2

max , the

maximum Q2 value used in the fit. The red point (diamond)
at Q2

max ¼ 0 is the value of Eq. (4.3), for comparison. The blue
points (filled circles) have been obtained from a fit to Eq. (4.5)
with a term proportional to Q4 added to it; see text for further
details.
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FIG. 1 (color online). ChPT fits at order p6 to �V�AðQ2Þ. The
blue (dashed) curve includes Q2 values up to 0:24 GeV2; the red
(continuous) curve includes Q2 values up to 0:10 GeV2.
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by about 0:32 � 10% due to order-p8 effects would thus
not be unexpected. Similarly, a difference of about 30%
between the order-p6 and order-p8 values for Cr

87 would

not be surprising.
In conclusion, if estimates for Lr

10 andC
r
87 obtained from

Leff
10 and Ceff

87 are used in the computation of some other

physical quantity, propagating the error quoted in Eqs. (4.2)
and (4.3) would not include additional systematic errors due
to the omission of order-p8 terms in ChPT. This general
perspective applies, of course, to the next subsection, in
which we attempt to extract values for Lr

10 and Cr
87 from

our analysis.

C. Estimates for Lr
10 and Cr

87

In this subsection, we convert the values of Eqs. (4.2b)
and (4.3) for Leff

10 and Ceff
87 into values for Lr

10ð�Þ and

Cr
87ð�Þ. We will leave the � dependence of all LECs

implicit, where it is to be understood that all numerical
values have been evaluated at � ¼ 0:77 GeV. From
Eq. (4.4a), it is clear that this requires input on the two
order-p6 LEC combinations,

C0 	 32m2
�ðCr

12 � Cr
61 þ Cr

80Þ;
C1 	 32ðm2

� þ 2m2
KÞðCr

13 � Cr
62 þ Cr

81Þ:
(4.8)

The results for �V�Að0Þ we obtained above from the �
spectral functions correspond to the rather strongly con-
strained relation,

Lr
10 ¼ �0:004143ð89ÞOPALð74ÞLr

9
þ 0:0822ðC0 þ C1Þ;

(4.9)

where the first component of the error on the right-hand
side is experimental and the second component is due to
the uncertainty on the input employed for Lr

9 [21].

While the LECs in C0 are all zeroth order in 1=Nc and
those in C1 are first order, the ratio ðm2

� þ 2m2
KÞ=m2

� ’ 26
of factors multiplying the LECs in C1 and C0 more
than compensates for the 1=Nc suppression, potentially
making C1 the numerically more important of the two.
Unfortunately, while some estimates exist for the LECs
entering C0, nothing is known of those entering C1.

In Ref. [15], this situation was handled as follows. The
combination C0 was first determined using existing esti-
mates of Cr

12 [22], C
r
61 [23,24], and Cr

80 [25]. The combi-

nationC1, for which no analogous estimates exist, was then
set to zero and assigned an error based on the assumption

jCr
13 � Cr

62 þ Cr
81j<

1

3
jCr

12 � Cr
61 þ Cr

80j; (4.10)

the 1=3 on the rhs reflecting the 1=Nc suppression. The
uncertainty on Lr

10 reported in Ref. [15] is entirely domi-

nated by the resulting error on C1. It is thus relevant to
assess whether or not this assumption is a sufficiently
conservative one.

We consider first the input values employed on the right-
hand side of Eq. (4.10). The value Cr

12 ¼ ð0:4� 6:3Þ �
10�5 GeV�2 has been determined from a highly con-
strained, mildly model-dependent treatment of the K�
scalar form factor [22].12 This value is in rough agreement
with estimates obtained in the resonance chiral perturba-
tion theory (RChPT) model [26,27]. RChPT estimates also
exist for Cr

61 [14,24] and Cr
80 [14,25]. The Cr

61 and Cr
80

estimates of Ref. [14] are numerically equal, as are the Cr
61

estimate of Ref. [24] and Cr
80 estimate of Ref. [25]. One

thus expects significant cancellation between the Cr
61 and

Cr
80 contributions to C0. To the best of our knowledge, the

RChPT estimates of Refs. [14,25] are the only sources of
information on Cr

80. Averaging the two central values

yields Cr
80 ¼ ð2:0� 0:5Þ � 10�3 GeV�2, the error reflect-

ing only the uncertainties on experimental inputs to the
underlying RChPT fits and not the systematic error from
the use of RChPT. Finally, Cr

61 has been determined from

an inverse-weighted finite-energy sum rule involving the
difference of nonstrange and strange vector-channel spec-
tral functions measured in hadronic � decays [23,24].13

Updating the input to that analysis, to reflect current values
of various input parameters that differ significantly from
those available at the time Ref. [23] appeared, and using
the above values for Cr

12 and C
r
80,

14 one finds Cr
61 ¼ ð1:4�

0:3Þ � 10�3 GeV�2 [28], and thus

C0 ¼ ð3:8� 5:3Þ � 10�4: (4.11)

There is, indeed, a rather strong cancellation between
the Cr

61 and Cr
80 contributions to C0. From the RChPT

perspective, where the LECs appearing in C0 receive
strong resonance contributions, while those appearing in
C1 do not, there is no reason to suppose that a similar
cancellation will be operative in C1. An alternate, more
(but still not excessively) conservative assumption, which
avoids presuming any such strong cancellation in C1,
would be

12Note that the definitions ofCr
12 here and in Ref. [22] differ by a

factor of f2�. Furthermore, even though the input values employed
in Ref. [22] for both fK=f� and Fþð0Þ were somewhat different
frommodernvalues, the corresponding shifts inCr

12 largely cancel
such that it practically stays the same.
13The result quoted in Ref. [24] is actually supposed to repre-
sent, up to a change in notation, that obtained in Ref. [23].
Owing to a sign transcription error, however, the result employed
for the difference of the nonstrange and strange correlators at
Q2 ¼ 0, needed in the evaluation of Cr

61, has been inadvertently
shifted, altering the result for Cr

61. The original result of Ref. [23]
corresponds to Cr

61 ¼ ð8:1� 3:9Þ � 10�4 GeV�2. We thank
Bachir Moussallam for clarifying this point.
14For Cr

80, for which, to the best of our knowledge, no experi-
mental estimate exists, we have used the difference between the
RChPT value and the (updated) experimental value of Cr

61 as an
estimate of the systematic uncertainty on Cr

80 associated with the
use of the RChPT framework. This component has been added in
quadrature to the error obtained in the RChPT fits, already
quoted in the text, to obtain the total error on Cr

80.
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jCr
13 � Cr

62 þ Cr
81j<

1

3
½jCr

12j þ jCr
61j þ jCr

80j�: (4.12)

This bound, however, is a factor of about 7 larger than
that of Eq. (4.10) and would lead to a rather large uncer-
tainty, 
0:0016, on Lr

10, still without any clear sense of

whether the assumption underlying it is a sufficiently con-
servative one.

An alternative approach to dealing with this problem has
been considered in Ref. [29]. The idea is to consider them�

and mK dependence of

��ðQ2Þ 	 �L
V�AðQ2Þ ��V�AðQ2Þ; (4.13)

the difference between the V � A correlator �L
V�AðQ2Þ

evaluated on the lattice, for unphysical values of the pion
and kaon masses and the same correlator for the physical
mass case, obtained from the � spectral functions. Since
the same combinations of order-p6 LECs enter the physical
and unphysical mass cases, the difference of the correlators
for the two cases can be written in the form

��ðQ2Þ ¼ �RLðQ2Þ þ �L
10L

r
10 þ �L

0C0 þ �L
1C1; (4.14)

where�RLðQ2Þ and theQ2-independent coefficients �L
10;0;1

are known in terms of the lattice and physical meson
masses and the renormalization scale �. Of course, all
LECs are mass-independent (this is also true for the effec-
tive order-p8 coefficient D, at least to order p8). Using
Eqs. (4.9) and (4.14) yields a constraint on C0 and C1 for
each set of lattice values for m� and mK, as well as each
value of Q2, with different Q2 values at constant lattice
meson masses providing self-consistency checks. This as-
sumes that lattice results have been extrapolated to the
continuum limit; as we will rely on preliminary results
from Ref. [29], which has yet to study this issue, we will
neglect the effect of nonzero lattice spacing.

In Ref. [29], these constraints have been analyzed using
nf ¼ 2þ 1 domain wall fermion ensembles with a�1 ¼
1:37 GeV and m� ¼ 171, 248 MeV [30] and a�1 ¼
2:28 GeV and m� ¼ 289, 344 MeV [31] generated by
the RBC/UKQCD collaboration, leading to the preliminary
result15

C0 þ C1 ¼ ð1:3� 1:0Þ � 10�2: (4.15)

Note that the associated result for C0, C0 ¼ �ð8:1�
8:2Þ � 10�4, agrees with the estimate of Eq. (4.11) within
errors, confirming the utility of RChPT in estimating
the order of magnitude for Cr

80. Note also that the central

value for C1 is about two times larger than allowed by the
bound (4.10).16 This, of course, is important for the deter-
mination of Lr

10.

With the lattice result (4.15) as input, we finally obtain

Lr
10ð� ¼ 0:77 GeVÞ ¼ ð�3:1� 0:8Þ � 10�3; (4.16)

with the error entirely dominated by that on C0 þ C1. It
should be kept in mind that not all systematic errors
associated with the use of lattice values for �V�AðQ2Þ
have been taken into account.
While, to order p6, the determination of Cr

87 from Ceff
87

does not suffer from the presence of terms analogous to C0

and C1, such mass-dependent, but Q2-independent, contri-
butions would appear in Ceff

87 at order p8. In the case of Lr
10,

including the order-p6 C0 þ C1 contribution using the
lattice estimate leads to a 
25% reduction compared to
the value that would be obtained neglecting them. We
take this 
25% shift as being typical of what one might
expect for contributions toQ2 ¼ 0 quantities from missing
higher-order mass-dependent terms. We hence assign an
additional 25% uncertainty to the result we find from
Eq. (4.7) for Cr

87, which was obtained from an analysis

including Q2-dependent, but not mass-dependent, order-p8

contributions. Our final result for Cr
87 thus becomes

Cr
87ð� ¼ 0:77 GeVÞ ¼ ð4� 1Þ � 10�3 GeV�2: (4.17)

D. V �A condensates

In this subsection, we consider the values of the OPE
coefficients C6;V�A and C8;V�A, defined in Eq. (2.4). In

Ref. [2], we presented fit results for C6;V=A and C8;V=A

obtained using sum rules involving weights up to degree
three, from which it is straightforward to obtain C6;V�A and

C8;V�A. From the fits at smin ¼ 1:504 GeV2, and including

all correlations, we find the values

C6;V�A ¼ ð�10:5� 2:8Þ� 10�3 GeV6 ðFOPTÞ;
¼ ð�11:3� 2:4Þ� 10�3 GeV6 ðCIPTÞ; (4.18a)

C8;V�A ¼ ð14� 7Þ� 10�3 GeV8 ðFOPTÞ;
¼ ð16� 6Þ� 10�3 GeV8 ðCIPTÞ: (4.18b)

Changes as a function of varying smin are small compared
to the errors shown in Eq. (4.18).
It is interesting to compare these values with those we

would obtain from the original OPAL data, to which no
correction reflecting modern values for the � hadronic
branching fractions have been applied. In this case, we
find, using the fits reported in Table 5 of Ref. [3],

C6;V�A ¼ ð�3� 4Þ � 10�3 GeV6 ðFOPTÞ;
¼ ð�4� 4Þ � 10�3 GeV6 ðCIPTÞ; (4.19a)

C8;V�A ¼ ð�3� 12Þ � 10�3 GeV8 ðFOPTÞ;
¼ ð0� 12Þ � 10�3 GeV8 ðCIPTÞ: (4.19b)

The results for C6;V�A and C8;V�A are barely consistent

between the updated and original OPAL data. The relatively
large differences between the ‘‘updated’’ and ‘‘original’’

15In Ref. [29], only the pion mass varies significantly, with the
kaon mass staying within 15% of its physical value [30,31]. We
thank the authors of Ref. [29] for making their preliminary
results on C0 þ C1 available to us in advance of publication.
16It is in the range of the more conservative bound (4.12).
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data are not a big surprise: these OPE coefficients parame-
trize the most subleading part of the fits carried out in
Refs. [2,3]. Moreover, it was found that the fits reported in
Table 5 of Ref. [2], while consistent with simpler fits, are at
the ‘‘statistical edge’’ of what can be extracted from the
OPAL data.

One can avoid using the fits of Table 5 of Ref. [2] by
employing the sum rule (2.2) with a judicious choice of the
weights wðtÞ. As we have seen, �VðtÞ � �AðtÞ can be ob-
tained from the simpler fits reported in Table 3 of Ref. [2].
An obvious possibility is to choose wðtÞ ¼ t2 or wðtÞ ¼ t3,
forwhich the right-hand side of Eq. (2.2) immediately yields
C6;V�A, respectively, �C8;V�A. We find results consistent

with those reported in Eq. (4.18), with comparable errors.
However, using the moments of Ref. [5], which involve

a double-pinching factor ðt� tswitchÞ2, we can do better.17
Choosing wðtÞ ¼ ðt� tswitchÞ2 or wðtÞ ¼ ðt� tswitchÞ2ðtþ
2tswitchÞ, Eq. (2.2) implies

C6;V�A¼
XN
i¼1

�tðt½i�� tswitchÞ2ð�Vðt½i�Þ��Aðt½i�ÞÞ�2f2�ðm2
�� tswitchÞ2þ

Z 1

tswitch

dtðt� tswitchÞ2ð�DV
V ðtÞ��DV

A ðtÞÞ; (4.20a)

C8;V�A¼�XN
i¼1

�tðt½i�� tswitchÞ2ðt½i�þ2tswitchÞð�Vðt½i�Þ��Aðt½i�ÞÞþ2f2�ðm2
�� tswitchÞ2ðm2

�þ2tswitchÞ

�
Z 1

tswitch

dtðt� tswitchÞ2ðtþ2tswitchÞð�DV
V ðtÞ��DV

A ðtÞÞ: (4.20b)

In these expressions, the sums over bins, as well as the
pion-pole terms, are obtained from data, the latter with
negligible errors.18 These sum rules have two advantages:
(1) they suppress the data at higher t, which have larger
errors, and (2) they suppress the contribution from the
DV-integral terms [5,19], replacing these contributions,
in effect, by the pion-pole terms, which are known with
great precision.

We present the results in Table III. The DV parts are
significantly smaller than those we would obtain with
wðtÞ ¼ t2 or wðtÞ¼t3, especially for C6;V�A, but also for

C8;V�A. And, indeed, errors are also significantly smaller

than those of Eq. (4.18), as we expected. We note, however,
that there is some discrepancy between the values of
Table III and Eq. (4.18). The results of Table III are based
on results from simpler and more stable fits reported in
Table 3 ofRef. [2].19Therefore,we take as our central results
for C6;V�A and C8;V�A the values from Table III above,

C6;V�A ¼ ð�6:6� 1:1Þ � 10�3 GeV6;

C8;V�A ¼ ð5� 5Þ � 10�3 GeV8;
(4.21)

where the central values are the averages of the values in
Table III, and the errors have been obtained by adding the

fitting error at smin ¼ 1:504 GeV2 and the variation as a
function of smin in quadrature.
In Fig. 3, we compare our results with other results in the

literature. Updating the OPAL datawithout includingDVs in
the analysis causes the central values of the OPAL-based
results of Ref. [32] to shift fromC6;V�A¼�5:4�10�3GeV6

and C8;V�A¼�1:4�10�3GeV8 to C6;V�A ¼ �5:0�
10�3 GeV6 andC8;V�A ¼ �3:4� 10�3 GeV8. A compari-

son of the latter set to the results of the present analysis then
shows directly the impact of the inclusion of DVs.20

We note, in particular, that our values do not agree with
those found in Ref. [19]. While our discussion above
indicates that the determination of C6;V�A and C8;V�A is

limited by the quality of the data, we also recall that
Ref. [19] used a much more restricted parametrization of
duality violations in the V � A channel, with four instead
of eight parameters.
It is interesting to compare our results forC6;V�A with an

analytical expression that is available at the next-to-leading
order [33] (see also Ref. [34]):

C6;V�A¼�32

9
�

�
1þ 119

24�
�sðs0Þ

�
�sðs0Þð�1þ�5Þh �qqðs0Þi2

�2

3
�2
sðs0Þð~�1þ ~�5Þh �qqðs0Þi2: (4.22)

TABLE III. C6;V�A (in GeV6) and C8;V�A (in GeV8) from
Eq. (4.20). The superscript DV indicates the part coming from
the DV integrals in Eq. (4.20). Duality-violation parameters are
from the fits of Ref. [2], Table III. Results from fits using FOPT
are shown above the line, and those from CIPT are shown
below.

smin 103C6;V�A 103CDV
6;V�A 103C8;V�A 103CDV

8;V�A

1.408 �7:3ð5Þ 0.8 8(2) �3
1.504 �6:2ð9Þ 1.2 3(4) �5
1.600 �6:4ð8Þ 0.3 4(4) �1

1.504 �6:2ð9Þ 1.2 3(4) �5

17This method was also employed in Ref. [19].
18Order-�s corrections from dimension-two and -four terms in
the OPE are again completely negligible.
19For an extensive discussion of the quality of these fits, we
refer to Ref. [2].

20The reader should note that, for the s0 employed in the fits of
Ref. [32], integrated DVs have the opposite sign to those shown
in Table III.
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The parameters �1;5 and ~�1;5 parametrize deviations from

the so-called vacuum saturation approximation (VSA), in
which they are all normalized to unity. Values for �1;5 from

our fits have already been discussed in Refs. [2,3].
Numerically, at s0 � m2

�, the second line of Eq. (4.22)
only contributes about a few percent, so that precise values
for ~�1;5 are irrelevant. On the other hand, in the VSA, the

first line of Eq. (4.22) yields

CVSA
6;V�A ¼ �4:4� 10�3 GeV6; (4.23)

where h �qqðm2
�Þi ¼ �ð272 MeVÞ3 [35] together with our

result for �sðm2
�Þ have been employed. As the next-to-

leading order correction in Eq. (4.22) amounts to about
50%, an error of that size should be attributed to the
numerical value (4.23). Therefore, the difference between
our central fit result of Eqs. (4.21) and (4.22) could either
be due to higher-order QCD corrections or a breaking of
the VSA. At any rate, no significant deviations from the
VSA are observed, and the results in Eqs. (4.21) and (4.23)
are nicely compatible.

V. CONCLUSION

We used results of earlier fits to the nonstrange vector-
and axial-channel spectral functions obtained from OPAL
hadronic � decay data in order to estimate the low-energy
constant combinations Leff

10 and Ceff
87 as well as the operator

product coefficientsC6;V�A andC8;V�A. Our best values are

Leff
10 ¼ ð�6:45� 0:09Þ � 10�3;

Ceff
87 ¼ ð8:47� 0:29Þ � 10�3 GeV�2;

C6;V�A ¼ ð�6:6� 1:1Þ � 10�3 GeV6;

C8;V�A ¼ ð5� 5Þ � 10�3 GeV8:

(5.1)

For a comparison with the values of Leff
10 and Ceff

87 obtained

in Ref. [19], we refer to Sec. IVA. For comparisons with
other values for C6;V�A and C8;V�A obtained in the litera-

ture, see Fig. 3. As emphasized in Sec. IVD, forC6;V�A and

C8;V�A, the results are rather sensitive to small variations in

the data and to the details of the fits. In contrast, we expect
the results for Leff

10 and Ceff
87 to be rather robust, since these

values are dominated by the low-Q2 range of the data,

where the experimental errors are small. For a comparison
of the low-Q2 behavior of �V�AðQ2Þ with ChPT to order
p6, we refer to Sec. IVB. We find that order-p8 effects, not
included in our chiral fits, are clearly visible in Cr

87 but not

in Lr
10. This is consistent with what one would expect:

taking into account order-p6 terms stabilizes the values
of the LECs at lower order. In Sec. IVC, we presented and
discussed preliminary estimates of Lr

10 and Cr
87.

We demonstrated in both Refs. [2,3] that our fits satisfy
bothWeinberg sum rules as well as the Das et al. (DGMLY)
sum rule for the pion electromagnetic self-energy [36]
within errors, though none of these were enforced in the
fits. The situation is thus very much analogous to that of the
analysis of Refs. [16,19]. There, the set of ‘‘acceptable’’ DV
parameter combinations was generated by requiring the
corresponding DV contributions to the Weinberg and
DGMLY sum rules to be such that all three sum rules
were satisfied within the experimental errors on the data
part of these sum rules, i.e., the integral from 0 to s0 in
Eq. (2.2). On this point, there is thus no relevant difference
between the strategies employed in Refs. [2,3,16,19].
There are important differences, however. First,

Refs. [16,19] started from an ansatz of the form (2.14)
for the DV part of �V � �A involving only four parameters
rather than four for each of the two channels separately.
The possibility that the vector and axial DV contributions
are such as to allow the V � A combination to be expressed
in this simplified form, however, is not supported by the
results of our fits to the individual vector and axial chan-
nels. Furthermore, the procedure of Ref. [16], described in
more detail in Ref. [37], does not take into account the
correlations between the data and DV parameters induced
by the use of the Weinberg and DGMLY sum rules. Neither
were the correlations between the data and the DV parame-
ters taken into account when using their results to evaluate
the quantities of interest, Leff

10 , etc. In our analysis, we have

taken these correlations fully into account and find them to
have a significant effect.
Finally, most of the earlier results shown in Fig. 3 are

based on ALEPH data [8,38]. At least for those earlier
works that employed the 2005/2008 version of these data
[8], the incompleteness of the 2005/2008 correlation
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FIG. 3 (color online). Comparison with other recent values [19,32,39] for C6;V�A (left panel) and C8;V�A (right panel).
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matrices [9] should be born in mind when appraising these
results. We wish to reiterate the expectation that inclusive
spectral functions extracted from BABAR or Belle would
be of great help in reducing the uncertainties onC6;V�A and

C8;V�A, for the reasons already discussed in Ref. [2].
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[16] M. González-Alonso, A. Pich, and J. Prades, Phys. Rev. D

81, 074007 (2010).
[17] B. Blok, M.A. Shifman, and D.X. Zhang, Phys. Rev. D

57, 2691 (1998); 59, 019901(E) (1998); I. I. Y. Bigi, M.A.
Shifman, N. Uraltsev, and A. I. Vainshtein, Phys. Rev. D
59, 054011 (1999); M.A. Shifman, arXiv:hep-ph/
0009131; M. Golterman, S. Peris, B. Phily, and E. de
Rafael, J. High Energy Phys. 01 (2002) 024.

[18] A. A. Pivovarov, Z. Phys. C 53, 461 (1992); Yad. Fiz. 54,
1114 (1991) [Sov. J. Nucl. Phys. 54, 676 (1991)]; F. Le
Diberder and A. Pich, Phys. Lett. B 286, 147 (1992).
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