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We investigate the unpolarized pion and kaon fragmentation functions using the nonlocal chiral-quark

model. In this model the interactions between the quarks and pseudoscalar mesons is manifested

nonlocally. In addition, the explicit flavor SU(3) symmetry breaking effect is taken into account in terms

of the current quark masses. The results of our model are evaluated to higher Q2 value Q2 ¼ 4 GeV2 by

the QCD evolution. Then we compare them with the empirical parametrizations. We find that our results

are in relatively good agreement with the empirical parametrizations and the other theoretical estimations.
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I. INTRODUCTION

Fragmentation functions are an important ingredient for
understanding the structure of the hadrons, because they
play a crucial role in analyzing the processes involving
hadrons. For example, one needs the unpolarized fragmen-
tation functions to analyze the semi-inclusive processes in
the electron-positron scattering, deep-inelastic proton-
proton scattering, and so on [1–11]. Furthermore, to extract
the chiral-odd transversity parton distribution of the nu-
cleon one needsmore complicated fragmentation functions,
such as the polarized dihadron fragmentation functions and
the Collins fragmentation functions. Because of their fun-
damental importance, those functions have been studied
intensively for decades but still not fully understood yet.

The unpolarized fragmentation function Dh
qðzÞ repre-

sents the probability for a quark q to emit a hadron h
with the light-cone momentum fraction z. It can be written
with the light-cone coordinate as follows [12,13]:

Dh
qðz; �Þ ¼ �z2

Z 1

0
Dh

qðz;k?; �Þdk2?;

Dh
qðz;k2T; �Þ ¼ 1

4z

Z
dkþTr½�ðk; p;�Þ���jzk�¼p� :

(1)

Here, k� ¼ ðk0 � k3Þ=
ffiffiffi
2

p
and the correlation �ðk; p;�Þ is

defined as

�ðk; p;�Þ ¼ X
X

Z d4�

ð2�Þ4 e
þik��h0jc ð�Þjh; Xi

� hh; Xjc ð0Þj0i; (2)

where k, p indicate the four-momenta for the initial quark
and fragmented hadron, respectively. In addition, z is the

longitudinal light-cone momentum fraction possessed
by the hadron and � denotes a renormalization scale
at which the fragmentation process is computed.
Furthermore, k? is the transverse momentum of the initial
quark and kT ¼ k� ½ðk � pÞ=jpj2� p is the transverse
momentum of the initial quark with respect to the direction
of the momentum of the produced hadron. Finally, X
appearing above stands for intermediate quarks. Notice
all the calculations done here are carried out in the frame
where the z axis is chosen to be the direction of k.
Consequently, one has k? ¼ 0 and kT � 0 in this frame.
The integrated fragmentation function satisfies the mo-
mentum sum rule:

Z 1

0

X
h

zDh
qðz;�Þdz ¼ 1; (3)

where h represents all the fragmented hadrons. Equation
(3) means that all of the momentum of the initial quark q is
transferred into the momenta of the fragmented hadrons.
Empirically, information of Dh

qðzÞ has to be extracted from
the available high-energy lepton-scattering data by global
analysis with appropriate parametrizations satisfying
certain constraints [14–19].
From theoretical points of view, it is impossible to study

fragmentation functions directly by lattice QCD because
they are defined in Minkowski space. Nevertheless, there
have been numerous works for the fragmentation functions
based on the effective QCD models so far. In Ref. [20], the
Nambu–Jona-Lasinio (NJL) model has been used to cal-
culate the fragmentation functions. The model of quark
gluon string has also been applied to study the fragmenta-
tion functions in Ref. [21]. Besides, the quark-diquark
model has been used to compute the fragmentation
functions of the baryon in Refs. [22,23]. The Collins
fragmentation functions, which play an essential role in
the transverse-spin physics, have been studied as well in
the quark-pseudoscalar (PS) meson coupling model
[12,13,24]. Note that dihadron fragmentation functions
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have been investigated in the same theoretical formalism
[25]. For brevity, we will simply call the unpolarized
fragmentation functions as the fragmentation functions
from now on. In Refs. [26,27], we have already employed
the nonlocal chiral quark model (NLChQM) with the
explicit flavor SU(3) symmetry breaking to calculate the
elementary fragmentation functions. These instanton-
motivated approaches were also used to compute the quark
distribution amplitues by manifesting the nonlocal quark-
pseudoscalar (PS) meson interactions [28–31]. NLChQM
have been applied to determine various nonperturbative
quantities and obtained the results which are in good
agreement with experiments as well as lattice QCD simu-
lations [32–37]. The elementary fragmentation functions
calculated in Refs. [26,27] are the functions in Eq. (2) with
the following approximation:X
X

jh;Xihh;Xj � jh¼ q �Q;X¼Qihh¼ q �Q;X ¼Qj: (4)

Here h denotes the PS meson. In other words, we just
calculate the one-step fragmentation process: qðkÞ !
hðpÞ þQðk� pÞ depicted in Fig. 1. Here the PS meson
h consists of the quark q and the antiquark �Q.

InRefs. [26,26], the renormalized fragmentation functions
are obtained by rescaling the elementary fragmentation func-
tions. After evolution to higher energy scale, the results of the
renormalized fragmentation functions agreewith the empiri-
cal ones reasonably well except at small z. However, such
renormalized fragmentation functions do not satisfy the sum
rules of Eq. (3). Furthermore some of the fragmentation
functions, such as u ! �� and s ! Kþ, are zero because
their elementary fragmentation functions are identical zero.
Hence, it is necessary to include the quark-jet contribution
from many-step fragmentation processes.

In Refs. [20,38–40], the NJL model has been applied for
the fragmentation functions including the quark-jets and
resonances. The momentum sum rules are satisfied auto-
matically according to their approach. It turned out that the
quark-jet contributions provide considerable contributions
to the various fragmentation functions at the small z region.
The approach in Refs. [20,38–40] is actually applicable
for any effective model. With this method, one can
generate the fragmentation functions Dh

qðzÞ by solving the

coupled differential-integral equations where the elementary
fragmentation functions dhqðzÞ appear in the kernel. In this

article, we will extend our previous works in Refs. [26,27]

by including the quark-jet contribution of the fragmentation
functions using the method developed in Refs. [20,38–40].
Wewill evolve our results to higherQ2 values. Then we will
compare our results with the empirical parametrizations and
the results from the NJL-jet model.
The present work is organized as follows: In Sec. II,

we briefly sketch our results of the elementary fragmenta-
tion functions based on NLChQM. In Sec. III, we explain
the method of calculating the quark-jet contribution to
the fragmentation functions and apply this method to our
model. In Sec. IV, we present and discuss our numerical
results of fragmentation functions at Q2 ¼ 4 GeV2. The
final section is devoted for the conclusions and future
perspectives.

II. ELEMENTARY FRAGMENTATION
FUNCTIONS IN NLCHQM

In this section, we briefly explain how to derive the
elementary fragmentation functions in NLChQM. This
model is motivated from the dilute instanton liquid model
(DILM) [41–45] in which the nonperturbative QCD effects
are from the nontrivial quark-instanton interactions in the
dilute instanton ensemble. However, DILM is defined in
Euclidean space since the (anti)instantons are well defined
there as the tunneling between the infinitely degenerate
QCD vacua. However, there are still some works which
generalize DILM to calculate some physical quantities
such as the light-cone wave function which are properly
defined only in Minkowski space [28–31]. Following those
studies, we adopt the effective chiral action (EChA) from
NLChQM in Minkowski space as follows:

S eff½mq; h� ¼ �iSp ln

�
i6@� m̂q �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð@Q2Þ

q
U�5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð ~@2Þ

q �
;

(5)

where Sp denotes the functional trace Tr
R
d4xhxj . . . jxi

over all the relevant spin spaces. m̂q represents SU(3)

current-quark mass matrix, diagðmu;md;msÞ, respectively.
Here we choose the following values: ðmu;md;msÞ ¼
ð5; 5; 150Þ MeV. As mentioned in Refs. [26,27], to derive
EChA Eq. (5) we simply replace the Euclidean metric for
the (anti)instanton effective chiral action by the one of
Minkowski space. The interactions between the quarks
and the nonperturbative QCD vacuum generate the
momentum-dependent effective quark mass Mð@2Þ which
can be written in a simple n-pole type form factor as
follows [28–31]:

Mð@2Þ ¼ M0

�
n�2

n�2 � @2 þ i�

�
n
; (6)

where n indicates a positive integer number and M0 is a
parameter which will be determined later. We will choose
n ¼ 2 as in the instanton model [30,31]. In Eq. (6) � � �
stands for the model renormalization scale. It is related to
the average (anti)instanton size �� in principle and takes the

FIG. 1 (color online). Schematic figures for the fragmentation
functions, in which the solid and dashed lines denote the quark
and pseudoscalar meson, respectively.
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value � � 600 MeV [45]. The nonlinear PS-meson field,
i.e., U�5 takes a simple form (i.e., Ref. [45]) with the
normalization chosen to be consistent with the definition
of the fragmentation function in Eq. (1) [12]:

U�5ðhÞ ¼ exp

�
i�5ð� � hÞ

2Fh

�

¼ 1þ i�5ð� � hÞ
2Fh

� ð� � hÞ2
8F2

h

þ � � � ; (7)

where Fh and �
a stand for the weak-decay constant for the

PS meson h and the Gell-Mann matrix. The flavor SU(3)
octet PS-meson fields are given as

� �h¼ ffiffiffi
2

p
1ffiffi
2

p �0 þ 1ffiffi
6

p � �þ Kþ

�� ��0 þ 1ffiffi
6

p � K0

K� K0 � 2ffiffi
6

p �

0
BBBB@

1
CCCCA: (8)

By expanding the nonlinear PS-meson field from EChA in
Eq. (5), one derives the following effective interaction
Lagrangian density in the coordinate space for the nonlocal
quark-quark-PS meson vertex:

L qQh ¼ i

2Fh

�Q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð@Q2Þ

q
�5ð� � hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð ~@2Þ

q
q: (9)

As a result, we reach a concise expression for the elemen-
tary fragmentation function qðkÞ ! hðpÞ þQðk� pÞ from
NLChQM:

dhqðz;k2T; �Þ

¼ Chq
8�3zð1� zÞ

MkMr

2F2
h

�
�
zðk2 � �M2

qÞ þ ðk2 þ �M2
q � 2 �Mq

�MQ � 2k � pÞ
ðk2 � �M2

qÞ2
�
;

(10)

where k2 ¼ ðzk2T þ �M2
QÞ=ð1� zÞ þm2

h=z, which is due to

the implicit delta function 	½ðk� pÞ2 � �M2
Q� in Eq. (2).

This delta function can be seen from the cut in Fig. 1 [24].
Here Chq indicates the flavor factor for the corresponding

fragmentation processes and is given in Table I. Notice the
flavor for the initial quark q in Eq. (10) is written explicitly.
Finally Mkand Mr are two additional effective quarks

masses which will be specified shortly. Furthermore, the
momentum dependent effective quark mass reads

M‘ ¼ M0

�
2�2

2�2 � ‘2 þ i�

�
2
: (11)

Here we have used the notation: �Mq � mq þM0. The

value of M0 can be fixed self-consistently within the in-
stanton model [32–35,41–45] with the phenomenological
(anti)instanton parameters �� � 1=3 fm and �R � 1 fm.
This will lead to M0 � 350 MeV. The masses for the
pion and kaon are chosen to be m�;K ¼ ð140; 495Þ MeV
throughout the present work. Taking all the considerations
into account, one arrives at a concise expression for the
elementary fragmentation functions:

dhqðz;k2T;�Þ¼ Chq
8�3

MkMr

2F2
h

� z½z2k2Tþ½ðz�1Þ �Mqþ �MQ�2�
½z2k2Tþzðz�1Þ �M2

qþz �M2
Qþð1�zÞm2

h�2
;

(12)

where Mk and Mr are the momentum-dependent
quark masses manifesting the nonlocal quark-PS meson
interactions:

Mk ¼ M0½2�2zð1� zÞ�2
½z2k2T þ zðz� 1Þð2�2 �	2Þ þ z �M2

Q þ ð1� zÞm2
h�2

;

Mr ¼ M0ð2�2Þ2
ð2�2 � �M2

QÞ2
: (13)

As in Ref. [26], a free and finite-valued parameter 	 has
been introduced in the denominator to avoid the unphysical
singularities. Notice the singularities arise in the vicinity of
ðz; kTÞ ¼ 0 due the present parametrization of the effective
quark mass as in Eq. (6). At the renormalization scale in
our model, the elementary fragmentation function can be
evaluated further by integrating Eq. (12) over kT :

dhqðz; �Þ ¼ 2�z2
Z 1

0
dhqðz; k2T; �ÞkTdkT: (14)

Note that Mk and Mr both depend on kT such that the
integration in Eq. (14) converges.

III. FRAGMENTATION FUNCTIONS WITH THE
QUARK-JET CONTRIBUTION

To calculate the quark-jet contribution to the fragmen-
tation functions within our model, we follow the approach
in Refs. [20,38–40]. The elementary fragmentation func-

tions d̂hqðzÞ are redefined as follows:

X
h

Z
d̂hqðzÞ ¼

X
Q

Z
d̂Qq ðzÞdz ¼ 1; (15)

where the complementary fragmentation functions d̂Qq ðzÞ
are given by

TABLE I. Flavor factors in Eq. (1).

Chq �0 �þ �� K0 �K0 Kþ K�

u 1=2 1 0 0 0 1 0

d 1=2 0 1 1 0 0 0

s 0 0 0 0 1 0 1

�u 1=2 0 1 0 0 0 1
�d 1=2 1 0 0 1 0 0

�s 0 0 0 1 0 1 0
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d̂
Q
q ðzÞ ¼ d̂hqð1� zÞ; h ¼ q �Q: (16)

The fragmentation functions Dh
qðzÞ should satisfy the

following integral equation:

Dh
qðzÞdz ¼ d̂hqðzÞdzþ

X
Q

Z 1

z
dyd̂Qq ðyÞDh

Q

�
z

y

�
dz

y
: (17)

Note that Dh
qðzÞdz in Eq. (17) has an interpretation:

Dh
qðzÞdz is the probability for a quark q to emit a hadron

which carries the light-cone momentum fraction from z to

zþ dz. d̂Qq ðyÞdy is the probability for a quark q to emit a

hadron with flavor composition q �Q. The final quark be-
comes Q with the light-cone momentum fraction from y to
yþ dy. Equation (17) actually describes a fragmentation
cascade process of hadron emissions of a single quark
depicted in Fig. 2.

To solve the coupled integral equations [Eq. (17)], we
apply the Monte Carlo (MC) method developed in
Ref. [39]. Namely, we simulate the fragmentation cascade
of a quark Ntot times and each time the fragmentation
cascade stops after the quark emits Nlinks hadrons. The
fragmentation function Dh

qðzÞ is then extracted through

the average number of type h hadron with light-cone
momentum fraction z to zþ �z, Nh

qðz; zþ �zÞ, by

Dh
qðzÞ�z ¼ 1

Ntot

X
Ntot

Nh
qðz; zþ�zÞ: (18)

When Nlinks increases, one finds that D
h
qðzÞ�z increases

in the low z regime. This is due to the fact that when more
steps of a fragmentation cascade are considered, more
hadrons with low z are emitted. One interesting feature is
that when z ! 0, zdhqðzÞ ! 0 but zDh

qðzÞ ! constant. This

is true for both of the NJL-jet model and our model. The
value of Dh

qðzÞ�z becomes insensitive to the value of Ntot

and Nlinks when Ntot and Nlinks are large enough, implying
that the result of the MC simulation converges to the
solution of Eq. (17). When Nlinks reaches 8 the result is
already convergent in the case of the NJL model [39].
However, for our model the results start to converge as
Nlinks � 15. This can be explained by the fact that in the
NJL model the peaks of the elementary fragmentation
functions occur at higher z value than in NLChQM. It
indicates that the probability of a quark carrying medium
momentum fraction (0:4 	 z 	 0:8) emitting a hadron is
larger in our model than in the NJL model. Hence, the MC

simulation of NLChQM needs a larger value of Nlinks to
reach convergence.
In this article the initial quark is only limited to be the

light quark, namely, q ¼ u, d, s. In addition, the
fragmented hadrons only contain pions and kaons.
Naively one has 42 fragmentation functions. According
to charge conjugation and isospin symmetry, there are
only 11 independent ones. Notice among these 11 elemen-
tary fragmentation functions, only four of them are not
zero. We call these direct fragmentation functions:

D�þ
u ðzÞ ¼ D��

d ðzÞ ¼ D��
�u ðzÞ ¼ D�þ

�d
ðzÞ;

D�0

u ðzÞ ¼ D�0

d ðzÞ ¼ D�0

�u ðzÞ ¼ D�0

�d
ðzÞ;

DKþ
u ðzÞ ¼ DK0

d ðzÞ ¼ DK�
�u ðzÞ ¼ DK0

�d
ðzÞ;

DK�
s ðzÞ ¼ DK0

s ðzÞ ¼ DKþ
�s ðzÞ ¼ DK0

�s ðzÞ:
In Fig. 3 we present zD�þ

u ðzÞ, zD�0

u ðzÞ, zDKþ
u ðzÞ, and

zDK�
s ðzÞ at �2 ¼ 0:36 GeV2. The solid lines represent

the nonlocal chiral quark model (NLChQM) results and
the dotted lines stand for the corresponding calculations
determined from the NJL-jet model.
Here we briefly discuss the main features of the results

of our model and the NJL-jet model. The direct fragmen-
tation functions ones are presented in Fig. 3. In the case of
u ! �þ, we find that the shapes of the curves of these two
models are very different. The peak of our curve occurs at
z ¼ 0:5, but the peak of the NJL-jet curve takes place at
z ¼ 0:8. When z � 0:6 our result is smaller than the NJL-
jet one. Between z ¼ 0:4 and z ¼ 0:6, NLChQM result
increases as z decreases but the NJL-jet curves decrease.
Below z ¼ 0:4 the two curves behave similarly but the
magnitude of the NLChQM result is about twice of the
NJL-jet result. Between z ¼ 0 and z ¼ 0:2 there are pla-
teaus for both curves. In our model, the possibility for the
fragmented pion carrying a small momentum fraction
(z	0:4) is much larger than in the NJL-jet model.

Another direct fragmentation function of pions is D�0

u ðzÞ.
The elementary fragmentation function d�

0

u ðzÞ is exactly

one half of d�
þ

u ðzÞ, d�0

u ðzÞ ¼ 1
2d

�þ
u ðzÞ. After including the

quark-jet contribution the shapes of zD�0

u and zD�þ
u be-

come quite different. Our zD�0

u is quite flat between 0 	
z 	 0:4, then it decreases as z increase as z � 0:4. On the

contrary, our zD�þ
u is flat between 0 	 z 	 0:2, then it

increases as z increases until z
 0:4. For z � 0:4 the curve

of zD�þ
u decreases as z increases. It shows that the effect of

2=Q 21 =Q Q =Q
2 4Q3 4Q =Qh h h4h3 31h Q5

q Q1 Q2 Q4 Q5Q3

1=qQ

FIG. 2. Quark fragmentation cascade process.
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including the quark-jet is very pronounced in our model
compared to the NJL-jet model. It is worth mentioning

that the relation zD�0

u � 1
2D

�þ
u is held for z � 0:6 for both

of the models. This can be explained as follows: since it is

difficult for a quark which has already emitted hadrons in
the cascade process to be fragmented into a hadron with
high momentum fraction, the quark-jet contribution is less
important at the high z regime. For the fragmentation
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FIG. 3 (color online). The fragmentation functions of zD�þ
u ðzÞ (upper panel, left), zD�0

u ðzÞ (upper panel, right), zDK�
s ðzÞ

(bottom panel, left) and zDKþ
u ðzÞ (bottom panel, right). The dashed lines denote the results of the NJL model. The solid lines stand

for the results of the nonlocal chiral quark model employed in our calculations.
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chiral quark model employed in our calculations.
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process of s ! K�, we find that the quark-jet contribution
is small for both of the models. The value of zDK�

s in the
regime z 	 0:2 is negligible. However, for the fragmenta-
tion process of u ! Kþ, it is clear that our result is much
smaller than the NJL-jet result. It is of no surprise because
our elementary fragmentation function dK

�
u ðzÞ is very

small.
From Table I, several elementary fragmentation func-

tions, such as d�
�

u and d�
þ

s , are identically zero. After
including the quark-jet contributions, those fragmentation
functions are no longer zero. We call these fragmentation
functions indirect fragmentation functions and they are
generated from the process of fragmentation cascade
(i.e., Fig. 2). Those indirect fragmentation functions are
listed as follows:

D��
u ðzÞ ¼ D�þ

d ðzÞ ¼ D�þ
�u ðzÞ ¼ D��

�d
ðzÞ;

DK�
u ðzÞ ¼ DK0

d ðzÞ ¼ DKþ
�u ðzÞ ¼ DK0

�d
ðzÞ;

DK0

u ðzÞ ¼ DKþ
d ðzÞ ¼ DK0

�u ðzÞ ¼ DK�
�d
ðzÞ;

DK0

u ðzÞ ¼ DK�
d ðzÞ ¼ DK0

�u ðzÞ ¼ DKþ
�d
ðzÞ;

DKþ
s ðzÞ ¼ DK0

s ðzÞ ¼ DK�
�s ðzÞ ¼ DK0

�s ðzÞ;
D�þ

s ðzÞ ¼ D��
s ðzÞ ¼ D��

�s ðzÞ ¼ DKþ
�s ðzÞ;

D�0

s ðzÞ ¼ D�0

�s ðzÞ:
For the indirect fragmentation functions of pions depicted
in Fig. 4, we first observe that in NLChQM the shape of

zD��
u ðzÞ is somehow similar to zD�0

u ðzÞ. However, the

plateau of the zD��
u ðzÞ (0 	 z 	 0:2) is only half of the

one for zD�0

u ðzÞ (0 	 z 	 0:4). The magnitudes of zD��
u ðzÞ

and zD�0

u ðzÞ are roughly the same at 0 	 z 	 0:2. As z

increases zD��
u ðzÞ decreases much faster than zD�0

u does.
When comparing with the NJL-model, we find that in the
low z regime theNLChQMcurve is almost twice larger than
the NJL-jet result, but the two curves are very close as

z � 0:5. The results of zD�0

s ðzÞ and zD�þ
s ðzÞ are almost

identical. Unlike zD��
u , these two fragmentation functions

monotonically decrease even from very small z. Again the
NLChQM results are larger than the NJL-jet results in the
regime of 0 	 z 	 0:2. It is because the fragmented �þ
meson here is emitted by the multistep processes, such as
s ! K�u, u ! �þd. Since the peak of dK

�
s ðzÞ is around

z ¼ 0:8, the secondary u quark most likely carries small

momentum fraction z 	 0:2. The value ofD�þ
u ðz ¼ 0:2Þ of

NLChQM is larger than the corresponding one in the NJL-
jet model. As a result the chance of an s quark to be
fragmented into a pion is larger in NLChQM.
In Fig. 5 we present four indirect fragmentation

functions of the kaons, zDK0

u ðzÞ, zD �K0

u ðzÞ, zDK�
u ðzÞ, and

zDKþ
s ðzÞ. The common feature of NLChQM results is

that they are all almost one order magnitude smaller than
the pion ones. In contrast to the pion ones, the NJL-jet
results are much larger than ours. It is because these
indirect fragmentation functions are related to the kaon
elementary fragmentation functions which are tiny.
Consequently, those associated indirect kaon fragmenta-
tion functions are also suppressed. For example, the pro-
cess s ! K0 is the combination of the two processes such
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FIG. 5 (color online). The fragmentation functions of zDK0

u ðzÞ (upper panel, left), zD
�K0

u ðzÞ (upper panel, right), zDK�
u ðzÞ

(bottom panel, left), and zDKþ
s ðzÞ (bottom panel, right). The dashed lines denote the results of the NJL model. The solid lines stand

for the results of the nonlocal chiral quark model employed in our calculations.
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as u ! �þd, d ! K0s. Since dK
0

d ðzÞ ¼ dK
þ

u ðzÞ is very

small, naturally DK0

s is also very small.
In summary, we find that our results are substantially

different from the NJL-jet model results after including the
quark-jet contribution. For pion ones the NLChQM results
are higher than the NJL-jet ones in the medium and low z
regime. For the kaon ones the situation is rather different.
For s ! K� we arrive at a result similar to that from the
NJL-jet model, but our investigation implies that the
process of u ! Kþ is highly suppressed. For the other
channels NLChQM results are always smaller than the
NJL-jet model.

IV. NUMERICAL RESULTS
OF THE FRAGMENTATION
FUNCTIONS AT Q2 ¼ 4 GeV2

In this section we will present our results at Q2 ¼
4 GeV2 and compare them with the empirical parametri-
zations and the NJL-jet model results. We employ
QCDNUM17 [46,47], which is an implementation of the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation, to
evolve our results from Q2 ¼ 0:36 GeV2 to Q2 ¼
4 GeV2. Since D�þ

u ðzÞ is the most pronounced process,
therefore, the initial momentum for evolution is deter-
mined by a reasonable agreement between our evolution

result of D�þ
u ðzÞ with two empirical parametrizations,

namely the HKNS parametrization [15] and the DSS pa-
rametrization [18]. These two empirical parametrizations
are used for comparison of other fragmentation functions
as well. The results of direct fragmentation functions
evolved to Q2 ¼ 4 GeV2 are given in Fig. 6. The dashed
lines denote the results of the NJL model. In addition, the
solid lines stand for the results of the nonlocal chiral quark
model employed in our calculations. Finally, the dotted
and dot-dashed lines are the HKNS curve and DSS curve,
respectively. The uncertainty bands are provided by the
HKNS parametrization.

The NLChQM result of zD�þ
u ðzÞ is within the uncertainty

band of the HKNS result. In the high z regime our result is
consistent with the two parametrizations and the NJL-jet
model. In the medium z region (0:3 	 z 	 0:7), the
NLChQM result is slightly higher than HKNS and DSS.
Between z ¼ 0:1 and z ¼ 0:4, it appears to be a plateau
then turns up at z ¼ 0:1. On the contrary, the NL-jet result
is slightly below the HKNS and DSS parametrizations
between z ¼ 0:2 and z ¼ 0:4 and turns up at z ¼ 0:2. In

the case of zD�0

u , the NLChQM result is slightly higher than
the two parametrizations between z ¼ 0:3 and z ¼ 0:7.
On the contrary, the NJL-jet result is clearly below the
uncertainty between z ¼ 0:2 to z ¼ 0:4. For both cases of

zD�þ
u and zD�0

u , the results of NLChQM and NJL-jet agree
with HNKS and DSS quite well in the high z regime

z � 0:7. We now turn our attention to the case of zDKþ
u .
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FIG. 6 (color online). The fragmentation functions of zD�0

u ðzÞ (upper panel, right) and zD�þ
u ðzÞ (upper panel, left), zDKþ

u ðzÞ
(bottom panel, right) and zDK�

s ðzÞ (bottom panel, left). While the dashed lines denote the results of the NJL model, the solid lines stand
for the results of the nonlocal chiral quark model. The dotted lines are the HKNS curves and the dot-dashed lines are DSS curves.
HKNS and DSS are two empirical parametrizations of the fragmentation functions. The uncertainty bands are according to HKNS
parametrizations.
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We find that both NLChQM and NJL-jet curves are within
the uncertainty band. However, the shapes of the two curves
are completely different. The NLChQM curve increases
from z ¼ 0 to z ¼ 0:05 then decreases rapidly from 0.05 to
0.2, after which it decreases slowly. The NJL-jet curve
simply decreases as z increases. Unfortunately, neither of
them catches the feature of the empirical curves. Model
results are too small compared with the empirical ones in
the region of z � 0:7. Between z ¼ 0:4 and 0.7, the NJL-jet
model result is comparable with the two empirical parame-
trizations. On the contrary, the NLChQM result is always
too small. In the low z region, the NLChQM curve becomes
comparable with the empirical ones but the NJL-jet model
becomes far too large. The fragmentation function zDK�

s ðzÞ
is probably the most problematic one for the model calcu-
lations. On the one hand, the NLChQM curve is too large
compared with the empirical curves in the high z region, but
it turns out to lie between the two empirical curves in the
region of z 	 0:4. On the other hand, the NJL-jet curve
agrees with the DSS curve in the high z region quite well
but becomes far too large as z 	 0:1. Both model curves
fall outside the uncertainty band of HNKS parametrization
from the medium to the high z regime.

Now, let us discuss the indirect fragmentation func-
tions. The ones of pions are depicted in Fig. 7. The most
successful channel for the NLChQM model is zD��

u .
Between z ¼ 1 and z ¼ 0:2, the NLChQM curve agrees

with both HKNS and DSS very well. Between z ¼ 0:1
and z ¼ 0:2 the NLChQM curve still coincides with
DSS and is a little bit higher than the HKNS curve.
This excellent agreement disappears when z 	 0:1.
Compared with the NLChQM curve, the NJL-jet result
locates at the lower edge of the uncertainty band in the
high z region and turns upward at z ¼ 0:3. For the frag-
mentation process of s ! �, both NLChQM and NJL-jet
models give a very similar result. However, they both
underestimate the fragmentation functions in the medium
and high z region. The low z behavior of both results also
fails to catch the feature of the empirical curves. It
remains a challenge for further study.
The indirect ones for kaons are depicted in Fig. 8. The

NLChQM results for zDK0

u , zD
�K0

u , and zDK�
u are almost

identical to zDKþ
u . However, unlike the case of zDKþ

u ,

NLChQM results of zDK0

u , zD
�K0

u , and zDK�
u agree with

DSS curves excellently between z ¼ 0:2 and z ¼ 1. At
low z regime NLChQM curves overshoot a little bit but
still in a reasonable good agreement with the empirical
curves. Notice that our results are all within the uncertainty
band except in the extremely low z region. The last chan-

nel we discuss is zDKþ
s . Remarkably, the result of zDKþ

s is
almost identical to the one of u ! K. Again our model
agrees with the DSS curve in the high and the medium z
region and is above the empirical curves in the low z
regime.
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FIG. 7 (color online). The fragmentation functions of zD��
u ðzÞ (upper panel) and zD�0

s ðzÞ (bottom panel, left) and zD�þ
s ðzÞ

(bottom panel, right). The dashed lines denote the result of the NJL model. The solid lines represent the results of the
nonlocal chiral quark model. The dotted lines are the HKNS curves and the dot-dashed lines are the DSS curves. HKNS and
DSS are two empirical parametrizations of the fragmentation functions. The uncertainty bands are according to the HKNS
parametrizations.
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V. SUMMARYAND OUTLOOK

In this article, we have investigated the quark-jet
contribution to the fragmentation functions of the pions
and the kaons using NLChQM and evolute them to
Q2 ¼ 4 GeV2. The current-quark masses, ðmu;md;msÞ ¼
ð5; 5; 150Þ MeV have been used in our calculations. We
summarize the important observations in the present work
as follows:

(i) For the direct pion fragmentation functions,
NLChQM results agree with the empirical data quite
well except at the extremely low z regime.

(ii) In the case of direct kaon fragmentation functions,

our result of zDKþ
u is underestimated in the high and

the medium z regime. On the other hand, our result
of zDK�

s is overestimated in the high z regime. It is
out of the uncertainty band of HKNS parametriza-
tion, too. Nevertheless, our zDK�

s is still between
HKNS and DSS parametrizations from medium to
low z regime.

(iii) The most successful channel for NLChQM is
u ! ��. The agreement between the results of
NLChQM and the empirical curves is excellent
except in the extremely low z regime.

(iv) For other indirect pion fragmentation functions,

such as zD�0

s and zD�þ
s , our results are mostly

within the uncertainty band except in the low
z 	 0:1 region. Besides our results for those chan-
nels are very similar to the NJL-jet ones.

(v) For the indirect kaon fragmentation functions,
NLChQM results agree with the DDS parametriza-
tion for 0:2 	 z 	 1. Furthermore, these indirect
fragmentation functions lie mostly inside the uncer-
tainty bands.

In summary, we have shown that NLChQM provides
a promising framework to calculate the unpolarized
fragmentation functions. The results agree with the
empirical parametrizations quite well in most of the
channels. In particular for the indirect channel u !
��, the agreement between our calculations and DSS
parameterization is impressive. Note that our result for
u ! �� is surprising since intuitively one expects
model calculations would lead to a much better result
for u ! �þ than u ! ��.
There are several directions to improve and extend our

current calculations. For example, we have not taken into
account the axial-current conservation in the present frame-
work, which may become problematic for the nonlocal
quark-PS meson interactions [30]. In Ref. [48] this contri-
bution has been taken into account to modify the quark
distribution functions. However, it is not straightforward to
include this effect into the calculations of the elementary
fragmentation functions. This work is in progress. Another
issue is to include � and �0 in the fragmented mesons.
Furthermore, one should also include the vector mesons and
baryons in the fragmented hadrons. We expect to continue
to study more complicated fragmentation functions, such as
unpolarized dihadron fragmentation functions, Collins

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

z

zD
uK

0

HKNS
NJL
nonlocal
DSS

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

z

zD
uK

0

HKNS
NJL
nonlocal
DSS

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

z

zD
sK

HKNS

nonlocal
DSS

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

z

zD
uK

HKNS
NJL
nonlocal
DSS

NJL

FIG. 8 (color online). The fragmentation functions of zDK0

u (upper panel, right) and zD
�K0

u (upper panel, left), zDK�
u

(bottom panel, right), and zDKþ
s (bottom panel, left). The dashed lines denote the results of the NJL model. The solid lines represent

the results of the nonlocal chiral quark model. The dotted and dot-dashed lines are the HKNS curves and DSS curves, respectively.
HKNS and DSS are two empirical parametrizations of the fragmentation functions. The uncertainty band is according to HKNS
parametrizations.
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fragmentation functions, and polarized dihadron fragmen-
tation functions and apply our result to extract the trans-
verse parton distributions of the proton.
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[44] T. Schäfer and E.V. Shuryak, Rev. Mod. Phys. 70, 323

(1998).
[45] D. Diakonov, Prog. Part. Nucl. Phys. 51, 173 (2003).
[46] M. Botje, Comput. Phys. Commun. 182, 490 (2011).
[47] QCDNUM17, http://www.nikhef.nl/user/h24/qcdnum.
[48] S. i. Nam, Phys. Rev. D 86, 074005 (2012).

YANG et al. PHYSICAL REVIEW D 87, 094007 (2013)

094007-10

http://dx.doi.org/10.1016/0550-3213(93)90262-N
http://dx.doi.org/10.1016/0550-3213(95)00632-X
http://dx.doi.org/10.1016/0550-3213(95)00632-X
http://dx.doi.org/10.1103/PhysRevD.57.5780
http://dx.doi.org/10.1016/0370-2693(95)01168-P
http://dx.doi.org/10.1016/0370-2693(95)01168-P
http://dx.doi.org/10.1016/j.nuclphysbps.2009.03.117
http://dx.doi.org/10.1016/j.nuclphysbps.2009.03.117
http://dx.doi.org/10.1140/epjc/s10052-007-0338-z
http://dx.doi.org/10.1103/PhysRevD.75.054032
http://dx.doi.org/10.1103/PhysRevD.75.054032
http://dx.doi.org/10.1088/1126-6708/2007/02/093
http://dx.doi.org/10.1103/PhysRevD.73.094025
http://dx.doi.org/10.1103/PhysRevD.73.094025
http://dx.doi.org/10.1103/PhysRevD.73.014021
http://dx.doi.org/10.1103/PhysRevD.71.034005
http://dx.doi.org/10.1103/PhysRevD.71.034005
http://dx.doi.org/10.1103/PhysRevD.65.094021
http://dx.doi.org/10.1103/PhysRevD.65.094021
http://dx.doi.org/10.1103/PhysRevD.71.114018
http://dx.doi.org/10.1103/PhysRevD.71.114018
http://dx.doi.org/10.1103/PhysRevD.62.054001
http://dx.doi.org/10.1103/PhysRevD.75.094009
http://dx.doi.org/10.1103/PhysRevD.75.094009
http://dx.doi.org/10.1016/S0550-3213(00)00303-5
http://dx.doi.org/10.1016/S0550-3213(00)00303-5
http://dx.doi.org/10.1103/PhysRevD.39.92
http://dx.doi.org/10.1103/PhysRevD.75.114010
http://dx.doi.org/10.1103/PhysRevD.75.114010
http://dx.doi.org/10.1103/PhysRevD.45.2349
http://dx.doi.org/10.1103/PhysRevD.80.074008
http://dx.doi.org/10.1103/PhysRevD.51.32
http://dx.doi.org/10.1103/PhysRevD.56.7381
http://dx.doi.org/10.1103/PhysRevD.56.7381
http://dx.doi.org/10.1016/j.physletb.2007.09.076
http://dx.doi.org/10.1103/PhysRevD.74.114007
http://dx.doi.org/10.1103/PhysRevD.74.114007
http://dx.doi.org/10.1103/PhysRevD.85.034023
http://dx.doi.org/10.1103/PhysRevD.85.094023
http://dx.doi.org/10.1007/BF02731088
http://dx.doi.org/10.1103/PhysRevD.66.054002
http://dx.doi.org/10.1103/PhysRevD.66.054002
http://dx.doi.org/10.1103/PhysRevD.74.076005
http://dx.doi.org/10.1103/PhysRevD.74.076005
http://dx.doi.org/10.1103/PhysRevD.74.014019
http://dx.doi.org/10.1007/s100529900017
http://dx.doi.org/10.1016/S0375-9474(01)01516-0
http://dx.doi.org/10.1103/PhysRevD.77.094014
http://dx.doi.org/10.1103/PhysRevD.77.094014
http://dx.doi.org/10.1016/j.physletb.2011.04.070
http://dx.doi.org/10.1103/PhysRevD.62.014016
http://dx.doi.org/10.1103/PhysRevD.62.014016
http://dx.doi.org/10.1134/1.1564221
http://dx.doi.org/10.1103/PhysRevD.83.074003
http://dx.doi.org/10.1103/PhysRevD.83.074003
http://dx.doi.org/10.1103/PhysRevD.83.114010
http://dx.doi.org/10.1103/PhysRevD.83.114010
http://dx.doi.org/10.1103/PhysRevD.85.014021
http://dx.doi.org/10.1016/0550-3213(82)90478-3
http://dx.doi.org/10.1016/0550-3213(86)90011-8
http://dx.doi.org/10.1016/0550-3213(86)90011-8
http://dx.doi.org/10.1016/0550-3213(84)90432-2
http://dx.doi.org/10.1016/0550-3213(84)90432-2
http://dx.doi.org/10.1103/RevModPhys.70.323
http://dx.doi.org/10.1103/RevModPhys.70.323
http://dx.doi.org/10.1016/S0146-6410(03)90014-7
http://dx.doi.org/10.1016/j.cpc.2010.10.020
http://www.nikhef.nl/user/h24/qcdnum
http://dx.doi.org/10.1103/PhysRevD.86.074005

