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We study the influence of the isospin asymmetry on the phase structure of strongly interacting quark

matter near the critical point (CP) using a Ginzburg-Landau approach. The effect is found to be drastic,

not only bringing about the shift of the location of the CP, but resulting in a rich phase structure in the

vicinity of the CP. In particular, new tricritical and triple points emerge as soon as the isospin density

becomes finite. Moreover, we find the CP being washed out from the phase diagram due to the

stabilization of a homogeneous charged pion condensate when the isospin chemical potential exceeds a

critical value. We derive a model-independent universal relation between the critical isospin chemical

potential and the chiral condensate at the CP. We also study the effect of the Uð1ÞA anomaly on the phase

transition to the pion condensate in the vicinity of chiral crossover.
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I. INTRODUCTION

The phase diagram of QCD at finite temperature and/or
finite density is the subject of extensive theoretical and
experimental studies. In particular, several approaches to
QCD with two light flavors suggest the existence of a
critical point (CP) at which the first-order chiral phase
transition turns into a crossover [1]. Despite many efforts
based on the first principle calculations [2], not only the
precise location of the CP, but its existence itself remains
controversial.

In the chiral limit with vanishing quark mass, the CP
becomes a tricritical point (TCP). The effect of a finite
quark mass is, thus, rather simple: just to smear the second-
order chiral phase transition to a crossover and, accord-
ingly, turn the TCP into the CP. Our focus here is the other
important ingredient in realistic systems, the effect of an
isospin asymmetry. Such a flavor symmetry breaking is
caused by a neutrality constraint that should be imposed in
any bulk systems to prevent the diverging energy density.

The isospin imbalance is known to bring a rich variety of
color superconducting phases at high density [3]. On the
other hand, QCD at large isospin density was first studied
in Ref. [4], and it was shown that the QCD vacuum devel-
ops a pion condensate (PIC) as soon as j�Ij>m�, where
m� and �I are the vacuum pion mass and the isospin
chemical potential, respectively. The PIC can be viewed
as a relativistic superfluid that exhibits a crossover from a
Bose-Einstein condensate of pions to a superfluidity of the
Bardeen-Cooper-Schrieffer type [5]. So far, several model
analyses have been made for the PIC at finite temperature
and/or quark density [5–13]. However, to our knowledge,
there is, at present, no systematic analysis based on the
Ginzburg-Landau (GL) approach focusing on the isospin
effects on the CP. This is what we present here for the
first time.

Our GL framework is advantageous to other approaches
in the sense that it can give model-independent predictions
near the CP. Since we are interested in the response of the
CP and phases in its neighborhood against nonzero �I, our
strategy is to take �I as a perturbative field and expand the
GL functional with respect to it. We use a quark loop
approximation to reduce the number of GL couplings.
This approximation should be valid, in particular, if it is
located at a large fugacity region.
In this paper, we restrict the analysis to homogeneous

phases only, leaving more detailed analysis to future work
[14]. This is, to some extent, an extension of our previous
work [15] to the situation off the chiral limit introducing a
finite quark mass. This paper is organized as follows. In
Sec. II, we derive a general GL potential up to the fourth
order in fields and discuss the effects of �I and Uð1ÞA
breaking at the vicinity of chiral crossover. In Sec. III, we
extend the GL potential up to the sixth order to discuss the
isospin effect on the CP. Based on this, we clarify how the
CP and its neighborhood are affected by the inclusion of
isospin asymmetry. In Sec. IV, we summarize.

II. GINZBURG-LANDAU APPROACH
AT FOURTH ORDER

Let us start with writing the most general GL potential
for the two chiral four-vectors � ¼ ð�;�Þ and its parity
partner ’ ¼ ð�0;aÞ with �� h �qqi, � � h �qi�5�qi, �0 �
h �qi�5qi, and a� h �q�qi. At the fourth order in� and’, the
chiral [SUð2ÞL � SUð2ÞR � Oð4Þ] symmetric part of the
GL potential should take the form

�0½�;’� ¼ 1

2
�2�

2 þ 1

2
�0
2’

2 þ 1

4
�4ðð�2 þ ’2Þ2

þ 4ð�2’2 � ð�;’Þ2ÞÞ;
where ð�;’Þ � ��0 þ a � � is the inner product. If �2 ¼
�0
2, the potential possesses the additional Uð1ÞA symmetry,
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so, typically, �2 � �0
2. The current quark mass and the

isospin chemical potential add Oð4Þ noninvariant terms to
the potential. At the second order in fields,

��SB ¼ �h�þ 	1ð�a3 þ �0�3Þ þ 	2�
2
?; (1)

where �? ¼ ð�1; �2Þ is the charged pion doublet. The first
term is due to the current quark mass, and it explicitly
breaks Oð4Þ down to SUð2ÞV � Oð3Þ. The second and third
terms are due to the finite isospin density, which violate the
isospinOð3Þ intoUI3ð1Þ � Oð2Þ, the rotation about the third
axis of isospin space. The GL coupling h is proportional
to the quark mass m for light flavors. On the other hand,
since the operator in the second (third) term is even (odd)
under the isospin flip u $ d, we have 	1 / �I and 	2 /
�2

I at the leading order in expansion in �I. When �I � 0,
and h � 0, we may anticipate the realization of following
two phases:

(i) The chiral symmetry broken phase (
SB): the phase
with � � 0, which might be accompanied by a non-
vanishing a3. The residual symmetry is the isospin,
Oð3Þ.

(ii) The phase with a pion condensate (PIC): the phase
with the charged pion condensate; j�?j � 0.
The Oð3Þ symmetry is spontaneously broken down
to Oð2Þ.

We now have six GL couplings f�2; �
0
2; �4; h; 	1; 	2g,

and they are functions of thermodynamic variables
f�;�I; Tg. We can, in principle, investigate the phase
structure in this six-dimensional space in full generality.
However, even if we do that, it would become difficult to
relate it with the phase structure in the physical parameter
space. Instead of doing that, here we take the advantage of
quark loop approximation for which we only take into
account quark loop effects in the effective potential. This
would give a reasonable approximation to the real potential
in the high fugacity region. The feedback of quark loops to
the potential is

�� ¼ �TNc

V

X
n¼2;4;...

1

n
TrðS0�Þn;

where V denotes the spatial volume and Tr should be taken
over the Dirac, flavor, and functional indices. S0 ¼
diagðSu; SdÞ is the bare quark propagator, and � ¼ �1þ
a3�3 þ i�5��1 is the self-energy for which we set �2 ¼ 0
without any loss of generality. From this, we can extract the
following explicit expression for �4 in the leading order of
expansion in �I [16]:

�4 ¼ �ð0Þ
4 ð�; TÞ þOð�2

I Þ; (2)

where we have defined the quantity �ð0Þ
2n for n � 1 as

�ð0Þ
2n ð�; TÞ � 8TNc

X
n;p

1

ðði!n þ�Þ2 � p2Þn ; (3)

with !n being the fermionic Matsubara frequency.
Performing the series expansion in �I and discarding parts
of integrand containing a total derivative in p [16], we can

relate 	2 and 	1 with �ð0Þ
n ,

	1 ¼ 1

2
�I

@�ð0Þ
2 ð�;TÞ
@�

þOð�3
I Þ;

	2 ¼ � 1

4
�2

I�
ð0Þ
4 ð�; TÞ þOð�4

I Þ:
(4)

We introduce the GL parameter � by ð	1=�IÞj�I¼0 ¼
��ð0Þ

4 ; then, we have

� ¼ 1

2�ð0Þ
4

@�ð0Þ
2 ð�; TÞ
@�

; (5)

which we use instead of ð	1=�IÞj�I¼0 in the following. In

order to find explicit expressions for �2 and �
0
2, we need to

specify the model. Let us consider here for a while the
model with four-fermion interaction of the type

Lint¼G

2
ðð �qqÞ2þð �qi�5�qÞ2þð �qi�5qÞ2þð �q�qÞ2Þ

þK

2
ðð �qqÞ2þð �qi�5�qÞ2�ð �qi�5qÞ2�ð �q�qÞ2Þ: (6)

The interaction in the second line comes from so-called
Kobayashi-Maskawa—’t Hooft determinant, which vio-
lates the axial Uð1ÞA symmetry explicitly. In this model,
we have � ¼ �ðGþ KÞh �qqi, a3 ¼ �ðG� KÞh �q�3qi, and

�2 ¼ 1

Gþ K
þ �ð0Þ

2 ð�; TÞ þOð�6
I Þ;

�0
2 ¼

1

G� K
þ �ð0Þ

2 ð�; TÞ þOð�6
I Þ:

(7)

We consider the following two cases here:

Case (I) Strong Uð1ÞA breaking with K ¼ G. This cor-
responds to the standard Nambu–Jona-Lasinio
(NJL) model with

L int ¼ Gðð �qqÞ2 þ ð �qi�5�qÞ2Þ: (8)

In this case,�0
2 diverges so that one of the chiral

four-vectors ’ becomes irrelevant. In particu-
lar, a3 ¼ 0 [9,17].

Case (II) Uð1ÞA symmetric case with K ¼ 0. In this case,
�2 ¼ �0

2 so that we see that the GL potential
also possesses the symmetry as it should.

For case I, we find up to the fourth order in fields and �I

� ¼ �2

2
�2 þ �ð0Þ

4

4
�4 � h�� �ð0Þ

4

4
�2

I�
2
?: (9)

Here, �2 should be regarded as one evaluated at �I ¼ 0,
i.e., it should be understood as the lowest order in expan-
sion in �I, Eq. (7). If we introduce the notation
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�u ¼ �þ a3
2

; �d ¼ �� a3
2

; (10)

then we are forced to have �u ¼ �d ¼ �=2.
For case II, we have at the same order

� ¼ �2

2
ð�2 þ ’2Þ þ �ð0Þ

4

4
ðð�2 þ ’2Þ2

þ 4ð�2’2 � ð�;’Þ2ÞÞ � h�þ �ð0Þ
4

4
�2

I�
2
?

þ �ð0Þ
4 ��Ið�a3 þ �0�3Þ: (11)

For stability, we can only investigate the region �4 > 0 at
this order, and we have typically � � 0 for � � 0. �u and
�d in this case are proportional to �uu and �dd condensates.
We notice that the � term in the potential contains
��4�Ið�2

u � �2
dÞ so that positive �I favors the situation

�d > �u. In the following analysis, we suppress the sub-
script (0) in couplings, so we have�I and four independent
parameters f�2; �4; h; �g, which do not depend on �I.

Let us first investigate case I. Introducing dimensionless
parameters ~�, ~�, ~�I, and ~�2 via

� ¼ ~�ðh=�4Þ1=3; � ¼ ~�ðh=�4Þ1=3;
�2 � ~�2h

2=3�1=3
4 ; �I � ~�Iðh=�4Þ1=3;

the potential is cast into � ¼ ��1=3
4 h4=3!, where ! does

not have any explicit dependence on h:

!ð~�; ~�; ~�2; ~�IÞ � ~�2

2
~�2 þ 1

4
~�4 � ~�� 1

4
~�2
I ~�

2
?;

with ~� � ð~�; ~�Þ. When h ¼ 0 and �I ¼ 0, the system has
a second-order phase transition at �2 ¼ 0. At finite h � 0,
the transition gets smoothed to a crossover. In Fig. 1, we
show the behavior of chiral condensate �, sigma and pion
masses ðM�;M�Þ as a function of �2. We find a crossover
from the 
SB to an approximately restored phase with
�� 0 when �2 is increased. We can define the pseudo-
critical point �2 ¼ �

pc
2 , for example, by the point where

M� takes the minimum. In this case, it can be numerically
read as

�pc
2 ¼ 1:191h2=3�1=3

4 : (12)

At this point, pion and sigma masses are

M
pc
� ¼ 1:54h1=3�1=6

4 ; M
pc
� ¼ 1:26h1=3�1=6

4 : (13)

The ratio M
pc
� =M

pc
� ¼ 1:22 at the pseudocritical point is

universal to this order of GL expansion. The chiral con-
densate � is also read as

� ¼ 0:630h1=3��1=3
4 ð� �pcÞ: (14)

For what follows, we concentrate on the effect of �I at the
pseudocritical point. In Fig. 2, we show �u, �d and
j�?j � � as a function of�I. We see a second-order phase
transition to the PIC phase at

j�Ij ¼ 1:782h1=3��1=3
4 ð� �c

I Þ: (15)

This can be written in terms of �pc or M
pc
� as

�c
I ¼ 2:83�pc ¼ ð1:41= ffiffiffiffiffiffi

�4

p ÞMpc
� : (16)

We notice that what is in the universal relation in the GL
framework at this order is the ratio of �I to the flavor
singlet quark condensate � rather than that to the pion
massM�. Once j�Ij � �c

I , the charged pion condensate �
develops.
A couple of questions are in order here: (i) First, one

might think that�c
I determined here by looking at the static

correlation function might be different from the true one,
which should be determined by the pole of the charged
pion propagator due to the kinetic seesaw mechanism
[18,19]. (ii) Second, one might wonder what is the differ-
ence of�þ and�� condensations. Let us first discuss point
i. Actually, this is not the case, and the critical point
determined by the static effective potential exactly coin-
cides with the one by the charged pion propagators. If we
worked out the time-derivative expansion in charged pion

 0

 2

 4

 6

-15 -10

M

-5  0  5  10  15

[h
1/

3 α 41/
6 ]

α2   [ h
2/3α4

1/3 ]

σα4
1/2

Mσ

π

FIG. 1 (color online). The chiral condensate � (solid), the
sigma mass M� (dashed, blue), and the pion mass M� (dotted,
red) as a function of �2, at �I ¼ 0.

 0

 0.5

 1

-4 -2  0  2  4

[σ
0]

µ I   [ h
1/3α4

-1/3 ]

σu=σd π(×0.2)π(×0.2)

FIG. 2 (color online). The behavior of condensates as a func-
tion of �I at the crossover point, Eq. (12). �u and �dð¼ �uÞ are
depicted by dashed lines (red and blue, respectively), while � is
shown by a solid line.
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fields within the Gaussian approximation, we would have
obtained the effective action density, which looks like
(with a suitable normalization of � fields)

Leff ¼ tr½ði@t�? þ ½�̂I;�?�Þyði@t�? þ ½�̂I;�?�Þ�
� 1

2
M2ð�2

1 þ �2
2Þ; (17)

where M is the mass parameter being a function of micro-
scopic/thermodynamic variables, �? � ð�1�1 þ �2�2Þ=2
and �̂I � �I�3=2, with f�1; �2; �3g being the Pauli matri-
ces. The charged pion propagator can be read as

D�1
�i�j

ð!Þ ¼ �!2 þM2 ��2
I �2i�I!

þ2i�I! �!2 þM2 ��2
I

 !
:

(18)

The static part of the propagator is related with the second
derivative of effective potential:

M2 ��2
I �

@2�

@�2
1

���������?¼0
¼ @2�

@�2
2

���������?¼0
: (19)

The determinant of the polarization matrix includes all the
pole masses:

detD�1
�i�j

¼ ð!2 �M2þÞð!2 �M2�Þ: (20)

Mþ � M��I corresponds to the �þ pole, while M� �
Mþ�I represents the �� pole. The critical condition is
given by the vanishing of either �þ or �� mass, and, in

both cases, M2 ��2
I ¼ MþM� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detD�1

�i�j
j!!0

q
¼ 0.

This is equivalent with the condition

@2�

@�2
1

���������?¼0
¼ @2�

@�2
2

���������?¼0
¼ 0: (21)

This means that even if the pion masses split due to the
kinetic seesaw mechanism, the critical chemical point can
be always obtained by looking at the behavior of static
susceptibility. Of course, we can only extract from � the
multiple of two poles MþM�, not separately Mþ and M�.
In other words, it is the geometric average of the pole
masses that can be read from the curvature mass of �.
Let us now come to point ii. Since the time dependence of
the charged condensate is determined by the chemical
potential as �þ ¼ �1 � i�2 � e�i�It�, i.e., ð�1; �2Þ �
ð� cos�It; � sin�ItÞ, the rotation is counterclockwise
when �I > 0 while it is clockwise for �I < 0. We shall
refer to the former as �þ condensation and the latter as ��
condensation.

Now, let us move on to case II. In this case, we have an
additional GL parameter � � 0 for � � 0. In the upper
panel of Fig. 3, we display the phase diagram in the two-
dimensional GL parameter space: the ð�I; �Þ plane. We
have basically two phases, the 
SB and the PIC with a �þ
or�� condensate. However, in this case, we have�u ¼ �d

only on two lines specified by �I ¼ 0 or � ¼ 0 and
�u � �d in the major part of the plane. This is, of course,

because of the � term in the GL potential,
�4��Ið�2

u � �2
dÞ. On the line � ¼ 0, we have completely

the same situation as displayed in Fig. 2 in which two
second-order phase transitions are found at �I ¼ ��c

I . On
the other hand, when � becomes large, the transitions
eventually change to the first-order ones. We show the

situation at � ¼ 1½h1=3��1=3
4 � in the lower panel of

Fig. 3. We see clearly finite abrupt gaps in the order
parameters associated with the first-order phase transition.
This is attributed to the competition between the � term
and the �2

I term in the potential; the former favors a larger
j�u � �dj, while the latter likes the situation � � 0 in
which a smaller j�u � �dj is favorable. Accordingly, there
are two tricritical points ð�I; �Þ ¼ ð��TCP

I ; �TCPÞ at which
the second-order phase transitions turn into first-order
ones. Numerically, we find

�TCP
I ¼ 2:02h1=3��1=3

4 ¼ 3:21�pc

�TCP ¼ 0:67h1=3��1=3
4 ¼ 1:06�pc:

(22)

The ratio �TCP=�TCP
I ¼ 0:33 does not depend on any of

GL parameters and, thus, is universal to this order. We note
that the effect of strong flavor mixing due to the Uð1ÞA

 0

 1

 2

 3

-4 -2  0  2  4

λ  
  [

 h
1/

3 α 4-1
/3

 ]

µI   [ h
1/3α4

-1/3 ]

χSB

σu<σdσu>σd

π+π−

 0

 0.5

 1

-4 -2  0  2  4

[σ
0]

µI   [ h
1/3α4

-1/3 ]

σdσu

π(×0.2)π(×0.2)

FIG. 3 (color online). (Upper panel): The GL phase diagram in
the ð�I; �Þ plane. The solid line represents the first-order phase
transition, while the dashed line represents the second-order one
separating the 
SB and PIC phases. The dashed line inside the
shaded region expresses the spinodal line where the state without
pion condensate becomes unstable. (Lower panel): The behavior
of �u (dashed, red), �d (dotted-dashed, blue), and � (solid) as a

function of �I at � ¼ 1h1=3��1=2
4 .
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anomaly makes the � term irrelevant via locking the con-
densates �u and �d with the same value [9,17] and, thus,
renders the transition a second-order one.

III. THE GINZBURG-LANDAU APPROACH
AT SIXTH ORDER

We now extend the GL analysis up to the sixth order so
as to explore the influence of �I near the CP of QCD.
Doing this in full generality introduces many new GL
parameters, which makes the analysis quite complicated.
Instead of doing this, we examine here only case I in the
previous section, in which one of the chiral four-vectors,’,
decouples. The general GL for homogeneous condensates
can be again written in terms of � [15]

� ¼ �h�þ �2

2
�2 � 	2�

2
? þ �4

4
�4 þ 	4

4
�4

?

þ 	4b

4
ð�2 � �2

?Þ�2
? þ �6

6
�6: (23)

GL coefficients �n ðn ¼ 2; 4; 6Þ are expanded in the series
of �I within the quark loop approximation (up to total
derivatives) as

�2

�4

�6

0
BB@

1
CCA ¼

1 a�2
I b�4

I

0 1 c�2
I

0 0 1

0
BB@

1
CCA

�2ð�I ¼ 0Þ
�4ð�I ¼ 0Þ
�6ð�I ¼ 0Þ

0
BB@

1
CCA: (24)

Via explicit computations, we find a ¼ b ¼ 0, and c ¼ 1.
Similarly, for 	2, 	4’s we find

	2

f	4; 	4bg

 !
¼ �2

I

d e�2
I

0 ff; fbg

 !
�4ð�I ¼ 0Þ
�6ð�I ¼ 0Þ

 !
; (25)

with d ¼ �1=4, e ¼ 0, and f ¼ fb ¼ �2. Putting them all
together, and assuming the condensate to have a charged
pion component, i.e., � ¼ ð�;�; 0; 0Þ, we arrive at

�¼�h�þ�2

2
�2þ�2��2

I�4=2

2
�2þ�4þ�2

I�6

4
�4

þ�4þ�2
I�6=2

2
�2�2þ�4

4
�4þ�6

6
ð�2þ�2Þ3: (26)

Here �2, �4, and �6 should be understood as those eval-
uated at �I ¼ 0 and, thus, are functions of � and T only.

��1=2
6 has a dimension of energy, sowe use this as the unit of

energy. In the following analysis, we, thus, set �6 ¼ 1, but
the proper dimension of any quantity can be recovered any

time by use of ��1=2
6 . Now, assuming h > 0, we get rid of h

via scaling

� ¼ ~�h1=5; � ¼ ~�h1=5; �I ¼ ~�Ih
1=5;

�2 ¼ ~�2h
4=5; �4 ¼ ~�4h

2=5:
(27)

Then, h is scaled out of the potential as � ¼ h6=5!.
Therefore, we now need to explore the GL phase diagram
in the three-dimensional GL parameter space ð�2; �4; �IÞ.

How does ð�2; �4Þ map onto the ð�; TÞ plane? Before
going into the discussion of GL phase diagrams, let us
briefly sketch how the GL parameters ð�2; �4Þ map onto
the ð�; TÞ plane taking the chiral limit (h ¼ 0) for sim-
plicity. Figure 4 illustrates how ð�2; �4Þ spans the local
coordinate in the NJL model specified by Eq. (8) and three-
momentum cutoff �. The upper panel shows the situation
for g ¼ G�2 ¼ 2:5, while the lower panel shows that for
g ¼ 2:0. In the figure, the solid line expresses the curve
determined by �2 ¼ 0, which separates the ð�; TÞ plane
into two regions, one for �2 > 0 and the other for �2 < 0.
Similarly, the dotted-dashed line shows the curve for
�4 ¼ 0. The point of intersection determines the location
of the TCP. The region �4 > 0 is shaded just for a guide.
The solid line inside this region determines the second-
order chiral phase transition, while that outside it only
specifies the spinodal line on which the Wigner phase
ceases to be even a local minimum. The axes of the local

 0

 0.1

 0.2

 0.3

 0.4

 0.5

T
/

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6

T
/

FIG. 4 (color online). The illustrative figure that shows how
ð�2; �4Þ spans the local coordinate in the vicinity of the TCP
within the NJL model defined by Eq. (8) and the three-
momentum cutoff �. This is depicted for two values of coupling
g � G�2 ¼ 2:0 (upper panel) and g ¼ 2:0 (lower panel). The
solid line (red online) shows the curve on which �2 ¼ 0, while
the dotted-dashed line (blue online) does that for �4 ¼ 0. The
point of intersection gives the location of the TCP. The region for
�4 > 0 is shaded. The solid line in the shaded area represents the
second-order chiral transition, while that in the unshaded area
only gives the spinodal line on which the Wigner phase with
� ¼ 0 ceases to be a local minimum.
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coordinate system ð�2; �4Þ are depicted by arrows starting
from the TCP; the �2 (�4) coordinate points to the direc-
tion for �2 > 0 (�4 > 0) side with being tangent to the line
of �4 ¼ 0 (�2 ¼ 0). The location of the TCP as well as
how ð�2; �4Þ maps onto the ð�; TÞ plane depends on the
detail of the model or regularization scheme, so, for what
follows, we only discuss the phase diagram in the ð�2; �4Þ
plane.

GL phase diagram for quark matter without an isospin
imbalance: Let us start with the case with �I ¼ h ¼ 0. In
the upper panel of Fig. 5, the phase diagram for this case is
displayed. In this case, h in the figure labels can be re-
garded as an arbitrary unit; changing it does not modify the
phase diagram. There are two phases: the 
SB phase with
� � 0 and the symmetric (Wigner) phase. For �4 > 0,
these phases are separated by a second-order phase tran-
sition located at �2 ¼ 0, which is depicted by the dashed
line. For �4 < 0, the transition is replaced by the first-order
one at �2 ¼ 3

16�
2
4 shown by a solid line [16]. Accordingly,

the TCP is located at the origin. The shaded area shows a
spinodal region in which one of the states exists as a local
minimum of the potential; at �2 ¼ 0 for �4 < 0, the
Wigner phase becomes unstable, while at the line �2 ¼
1
4�

2
4 for �4 < 0, a local minimum corresponding to the


SB state vanishes. In the lower panel of Fig. 5, we show
the phase diagram for h � 0. In this case, we have only the
situation � � 0. Nevertheless, the first-order phase transi-
tion survives and separates the 
SB phase and a nearly
symmetric phase with �� 0. The first-order phase transi-
tion ends at the CP. The exact location of the CP,
ð�CP

2 ; �CP
4 Þ, is derived analytically [20]

ð�CP
2 ; �CP

4 Þ ¼
�
5

4

34=5

22=5
h4=5;� 5

21=533=5
h2=5

�
: (28)

This is numerically evaluated as �ð2:28h4=5;�2:25h2=5Þ.
The chiral condensate at this point is found as

� ¼ 0:822h1=5ð� �0Þ: (29)

The dotted line starting from the CP expresses the pseu-
docritical line determined by the location of the minimum
in the sigma meson mass. The shaded area again represents
the spinodal region, in which there is another state com-
peting with the ground state.
GL phase diagram for quark matter with an isospin

imbalance: Now, we discuss the influence of �I on the
phase diagram. The phase diagrams for several finite
values of �I are shown in Fig. 6; the value of �I increases
from (a) to (d). We now suppress the spinodal region sur-
rounding the line of the first-order chiral phase transition.

Let us start with (a), where the value of�I is set to�
2
I ¼

0:2h2=5, that is, in terms of �0, �I ¼ 0:54�0. In this case,
we notice that the structure in the proximity of the CP is
unaffected even though the location of the CP is shifted
downward according to

ð�CP
2 ; �CP

4 Þ ! ð�CP
2 ; �CP

4 ��2
I Þ: (30)

This can be easily understood from the coefficient of the
�4 term in Eq. (26). Recalling the direction in which the
local coordinate �4 points in the ð�; TÞ plane (Fig. 4), we
expect that the CP shifts to the direction of lower tempera-
ture and higher chemical potential due to the isospin
asymmetry. This is consistent with the analysis done in
Ref. [21]. Moreover, a recent analysis within a specific
model shows at some critical value of�I the TCP (CP) can
even touch the � axis disappearing eventually from the
phase diagram [22]. Apart from this simple shift of chiral
phase transition, we notice that the continent of the PIC
dominates the region deep in the 
SB. The PIC and 
SB
phases are separated by a second-order phase transition in
all regions shown in the figure.
Figure 6(b) shows how the situation changes when �I is

increased to�2
I ¼ 0:5h2=5, that is,�I ffi 0:86�0. We notice

that the CP moves further downward according to Eq. (30),
and the continent of the PIC gets wider as expected.
Moreover, the transition from the 
SB to the PIC now
has a branch of the first-order phase transition, which is
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FIG. 5. The GL phase diagrams in the absence of �I. The
phase diagram in the chiral limit h ¼ 0 (upper panel) and the one
off the chiral limit (lower panel). The shaded area represents the
spinodal region. See the text for detail.
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drawn by a solid line. Accordingly, there appears a new
tricritical point denoted by TCP0 on the critical line. This is
actually the tricritical point at which three critical lines
meet up, once we introduce an external field for the
charged pion condensate. The line for the first-order phase
transition departing from the TCP0 encounters the line of
the first-order chiral phase transition at the point ‘‘TP,’’
which stands for the triple point. At the triple point, three
phases—the 
SB, a nearly restored phase, and the PIC—
coexist and compete each other.

Now, let us discuss Fig. 6(d) before Fig. 6(c). In Fig. 6(d),

�I is set to a large value �2
I ¼ 3:0h2=5, which corresponds

to�I ffi 2:1�0. In this case, the PIC dominates a major part
of the phase diagram, and the structure of the chiral phase
transition is now completely hidden. There remains a
dotted line outside the PIC, which is just the chiral cross-
over. The transition from the PIC to the 
SB phase be-
comes widely of first order, and, accordingly, the location
of the TCP0 is shifted upward.

Since the CP is completely hidden in Fig. 6(d), there
should be a critical value of �I at which the CP vanishes
from the phase diagram. In Fig. 6(c), we show this

situation. The critical chemical potential is �2
I ¼

1:477h2=5, which translates into �I ffi 1:48�0 � �c
I . As

shown in the figure, the CP comes across the line ex-
pressing the first-order phase transition between the PIC

and 
SB phases. This means when �I becomes large, the
chiral critical point could fade out from the QCD phase
diagram. The ratio of critical �I to �0, the chiral con-
densate at the CP, can be numerically evaluated as
�1:48, which is universal being independent of any GL
parameters to this order.

IV. CONCLUSION

We performed a systematic GL analysis on the effect of
isospin asymmetry on the chiral crossover, the CP and its
neighborhood. We first focused on how the crossover is
affected by the isospin density. To this aim, we derived a
general GL potential up to the quartic order in two chiral
four-vectors, � and its parity partner ’. Making use of the
quark loop approximation together with a perturbative
expansion in �I, we have studied not only the nature of
the phase transition to the PIC but also how it is affected
by the effect of the Uð1ÞA anomaly. We found the effect of
the isospin-flip odd � term in the potential makes the
phase transition to first order at large �. Since � vanishes
at � ¼ 0 and increases with �, this may explain why the
transition to the PIC is observed to be first order at finite �
in several model analyses [6,7]. The effect of flavor mix-
ing due to the Uð1ÞA anomaly was found to diminish the
effect of the � term by locking two condensates, �u and
�d. We have derived three model-independent universal
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FIG. 6. The GL phase diagrams for several values of �I; from (a) to (d), �I increases as (a) �2
I ¼ 0:2h2=5, (b) �2

I ¼ 0:5h2=5,
(c) �2

I � ð�c
I Þ2, and (d) �2

I ¼ 3:0h2=5. For �c
I , see the text.
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ratios—�c
I=�pc at � ¼ 0, �TCP=�pc and �TCP

I =�pc at the

TCP—, which are independent of any GL parameters to
the fourth order.

We then extended the analysis up to the sixth order of
GL expansion, so as to study the isospin effect on the CP.
Restricting the analysis to the case with strong Uð1ÞA
symmetry breaking, we studied how the CP and its neigh-
borhood are affected by the incorporation of isospin den-
sity. We found that it has remarkable effects; it not only
causes a shift of the location of the CP, but also brings
about the development of a sizable region for the homoge-
neous pion condensate. This leads to the appearance of new
tricritical and triple points. Moreover, we showed that the
CP disappears once the isospin chemical potential is in-
creased above a critical value. We derived the critical value
�c

I and a universal relation relating it with the size of chiral
condensate at the CP, �0.

There are several directions into which the current work
can be extended. First, we need to take into account the
possibility of inhomogeneous phases since they are known
to play an important role near the TCP/CP [16,23–28]. This

is actually now under investigation [14]. Second, the ex-
tension to three flavors would be interesting. This would
require the incorporation of a kaon condensate and a
diquark condensate of the color-flavor locked type. In
particular, it is known that the interplay between the chiral
and diquark condensates via the axial anomaly leads to a
rich variety of phases and an appearance of new multi-
critical points [29,30]. Third, the effect of vector interac-
tion should be taken into account [31,32]. This is especially
needed when we look at dynamical aspects of the critical
behavior. In fact, the dynamic universality class of the
chiral CP is known to be the same as the liquid-gas CP
[33,34]. Lastly, it is strongly desirable to seek the stiff
experimental signatures of critical points observed here,
such as those discussed for CP [35].
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