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We study the � exclusive decay into double charmonium, specifically, the S-wave charmonium J=c

plus the P-wave charmonium �c0;1;2 in the nonrelativistic QCD factorization framework. Three distinct

decay mechanisms, i.e., the strong, electromagnetic, and radiative decay channels, are included, and

their interference effects are investigated. The decay processes �ð1S; 2S; 3SÞ ! J=c þ �c1;0 are

predicted to have the branching fractions of order 10�6, which should be observed in the prospective

Super B factory.
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I. INTRODUCTION

Anyone who has ever browsed the meson summary
table in the biannual review of Particle Data Group
will be impressed by the extremely rich decay channels
of the B, D, and J=c mesons [1]. Unlike the heavy
flavored mesons, which can only decay via the weak
interaction, the unflavored heavy quarkonia decay
through the heavy quark-antiquark annihilation initiated
exclusively by the strong and electromagnetic inter-
actions. Although quite a few decay channels have been
established for the charmonia system over the past few
decades, the experimental information about the botto-
monia decay is still very sparse. Very recently, however,
the BELLE Collaboration observed a few exclusive decay
channels of �ð1S; 2SÞ into light hadrons for the first time,
e.g., into the vector-tensor states and the axial-vector-
pseudoscalar states [2].

Because of the much more copious phase space opened
at the bottomonium energy level, the typical branching
fraction for a given hadronic decay mode of a bottomo-
nium is greatly diluted with respect to that of a charmo-
nium. Thanks to the weaker strong coupling at the bottom
mass scale, the perturbative QCD is expected to work more
reliably for the hadronic bottomonium decay than for the
charmonium.

An interesting class of hadronic decay processes is that
of bottomonium into double charmonium, which may be
predicted with fewer uncertainties than those into the light
hadrons. In the recent years, some exclusive decay pro-
cesses of bottomonium into double charmonia have been

intensively studied in the perturbative QCD framework,
e.g., �b ! J=c J=c [3–6], �b0;1;2 ! J=c J=c [7–11],

and � ! J=c þ �c [12,13]. These studies are largely
inspired by the various double-charmonium production
processes in eþe� annihilation, which were first observed
at the B factories a decade ago [14–16]. Triggered by
the disquieting discrepancy between data and theory, a
great number of theoretical studies have since been con-
ducted for the processes eþe� ! J=c þ �c [17–29] and
eþe� ! J=c þ �c0;1;2 [30–32].

Besides the tremendous amount of data near the �ð4SÞ,
the BELLE experiment to date has also collected about 102
million �ð1SÞ samples and 158 million �ð2SÞ samples.
Therefore, it appears more promising to observe the
double-charmonium production from the � decay than
from the C-even bottomonia decay. In Ref. [13], the ex-
clusive decay of� to the vector-pseudoscalar charmonium
states was studied in the framework of nonrelativistic
QCD (NRQCD) factorization [33]. The corresponding
branching fraction was estimated to be of order 10�6 and
seems to have a good chance to be observed at the Super B
factory. In this work, we further investigate the � decay
into the J=c plus a spin-triplet P-wave charmonium �cJ

(J ¼ 0, 1, 2). This work should be considered as a sequel
to Ref. [13].1

Although neither of these exclusive decay modes has
been observed yet, several upper bounds for �ðnSÞ inclu-
sive decay into J=c or �cJ have already been placed
experimentally [1], including
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1The main results of this paper have already been reported in
Ref. [34]. Nevertheless, some significant improvements have
been made in the current work, i.e., some errors in calculating
the three-gluon channel in Ref. [34] have been corrected, and the
contribution from the two-gluon–one-photon channel is also
included.
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B½�ð1SÞ ! J=c þ X� ¼ ð6:5� 0:7Þ � 10�4;

B½�ð1SÞ ! �c0 þ X�< 5� 10�3;

B½�ð1SÞ ! �c1 þ X� ¼ ð2:3� 0:7Þ � 10�4;

B½�ð1SÞ ! �c2 þ X� ¼ ð3:4� 1:0Þ � 10�4

B½�ð2SÞ ! J=c þ X�< 6� 10�3;

B½�ð4SÞ ! J=c þ X�< 1:9� 10�4:

(1)

It will be interesting to examine to what extent these upper
bounds are saturated by the predicted branching fractions
for �ðnSÞ ! J=c þ �c0;1;2.

As is well known, the hadronic decay of � can be
categorized into three distinct classes—b �b annihilating
into three gluons (strong decay), a single photon (electro-
magnetic decay), or two-gluons and a photon (radiative
decay). On experimental grounds, the following inclusive
decay rates from these three decay channels have been
available for a long time [1]:

B½� ! ggg�:B½� ! �� ! X�:B½� ! gg��
¼ 82:7%:7:5%:2:2%; (2)

where these three branching ratios sum up to
1�P

B½� ! lþl�� ¼ 92:5%, as they should.2

For the exclusive hadronic decay � ! J=c þ �c0;1;2,

one may also be interested in ascertaining the relative
strength and the interference pattern among these different
decay channels. This sort of study has been conducted for
the process � ! J=c þ �c [13]. Note that there have
lasted constant experimental efforts to infer the relative
phase between the strong and electromagnetic amplitudes
in exclusive J=c and c 0 decays into two light mesons
[35–40]. As we will see later, as a consequence of
mb >mc � �QCD, the relative phases among three

distinct decay channels in our processes stem from the
short-distance loop contribution, which can actually be
calculated in perturbation theory.

The rest of the paper is organized as follows. In Sec. II,
we express the polarized and unpolarized decay rates in
terms of the helicity amplitudes and briefly state the helic-
ity selection rule. In Sec. III, we conduct the lowest order
(LO) calculation for each independent helicity amplitude
associated with the decays � ! J=c þ �c0;1;2, within the

NRQCD factorization approach. The contributions from
three distinct decay channels, i.e., electromagnetic, strong,
and radiative decay channels, are all included, and the
analytic expressions for each of the helicity amplitudes
are given. In Sec. IV, we present our predictions of
the interference pattern among three distinct decay
channels for � ! J=c þ �c0;1;2, and of the polarized

and unpolarized partial decay widths and the correspond-
ing branching fractions for �ð1S; 2S; 3SÞ decays into
J=c þ �c0;1;2. We find that it appears quite promising for

the prospective Super B experiment to observe these had-
ronic decay processes. Finally, we summarize in Sec. V.
In the Appendix, we list the explicit expressions of the 10
helicity projectors that are used in Sec. III.

II. POLARIZED DECAY RATES AND
HELICITY SELECTION RULE

It is of some advantage to utilize the helicity amplitude
formalism [41,42] to analyze the hard exclusive reactions,
in particular for the decay process studied in this work.
From the experimental perspective, the helicity amplitudes
can in principle be accessed by measuring the angular
distributions of the decay products of J=c and �cJ

(J ¼ 0, 1, 2), provided that the statistics are sufficient.
From the theoretical viewpoint, some essential dynamics
underlying perturbative QCD is clearly encoded in the
helicity amplitude analysis, which becomes rather ob-
scured if one only looks at the unpolarized reaction rates.
We will work in the � rest frame throughout this work.

Suppose the spin projection of the � along the ẑ axis to be
Sz (The ẑ axis, for example, may be chosen as the beam
direction of the e� and eþ collider, which resonantly

produces a�meson). Let �, ~� denote the helicities carried
by the outgoing J=c and �cJ, respectively, and � signify
the angle between the J=c momentum P and the ẑ axis.
The differential polarized decay rate can be expressed
as [41,42]

d�½�ðSzÞ ! J=c ð�Þ þ �cJð~�Þ�
d cos�

¼ jPj
16�M2

�

jd1
Sz;��~�

ð�Þj2jAJ
�;~�

j2; (3)

where AJ
�;~�

(J ¼ 0, 1, 2) characterizes the corresponding

helicity amplitude, which encompasses all the nontrivial
QCD dynamics. The angular distribution is fully dictated

by the quantum numbers Sz, �, and ~� through the Wigner

rotation matrix djm;m0 ð�Þ. Note that angular momentum

conservation constrains that j�� ~�j � 1. In (3), the mag-
nitude of the three-momentum carried by the J=c (or �cJ)
is determined by

jPj ¼ �1=2ðM2
�;M

2
J=c ;M

2
�cJ

Þ
2M�

; (4)

where �ðx; y; zÞ ¼ x2 þ y2 þ z2 � 2xy� 2yz� 2zx.
Integrating (3) over the polar angle, and averaging over

all three possible � polarizations, one finds the integrated
rate of � decay into J=c þ �cJ in the helicity configura-

tion ð�; ~�Þ to be

2We have not included the contribution from the radiative
transition � ! �b�, which has a completely negligible branch-
ing ratio.
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�½� ! J=c ð�Þ þ �cJð~�Þ�

¼ jPj
16�M2

�

jAJ
�;~�

j2
Z 1

�1
d cos �

1

3

X
Sz

jd1
Sz;��~�

ð�Þj2

¼ jPj
24�M2

�

jAJ
�;~�

j2: (5)

Since this decay process can be initiated by the strong or
electromagnetic interactions, one can resort to the parity

invariance to reduce the number of independent helicity
amplitudes,

AJ
�;~�

¼ ð�1ÞJAJ
��;�~�

: (6)

As a consequence, the helicity channel � ! J=c ð0Þ þ
�c1ð0Þ is strictly forbidden.
Starting from (5), one readily obtains the unpolarized

decay rate by summing the contributions from all the
allowed helicity channels,

�½� ! J=c þ �c0� ¼ jPj
24�M2

�

ðjA0
0;0j2 þ 2jA0

1;0j2Þ; (7a)

�½� ! J=c þ �c1� ¼ jPj
24�M2

�

ð2jA1
1;0j2 þ 2jA1

0;1j2 þ 2jA1
1;1j2Þ; (7b)

�½� ! J=c þ �c2� ¼ jPj
24�M2

�

ðjA2
0;0j2 þ 2jA2

1;0j2 þ 2jA2
0;1j2 þ 2jA2

1;1j2 þ 2jA2
1;2j2Þ: (7c)

There are two, three, and five independent helicity ampli-
tudes for � ! J=c þ �cJ (J ¼ 0, 1, 2), respectively, as
enforced by the angular momentum conservation. We have
also included a factor of 2 to account for the parity-doublet
contributions.

One important piece of physics underlying the hard
exclusive reactions is that each helicity amplitude pos-
sesses a definite power-law scaling in the inverse power
of large momentum transfer, controlled by the helicity
selection rule (HSR) [43]. At asymptotically large mb,
the polarized decay rate in our process scales as [17]

�½� ! J=c ð�Þ þ �cJð~�Þ�
�½� ! �þ��� / v8

�
m2

c

m2
b

�
2þj�þ ~�j

; (8)

where v denotes the characteristic velocity of the charm
quark inside a charmonium.

Equation (8) implies that the helicity state which pos-
sesses the slowest asymptotic decrease is the one that

conserves the hadron helicities j�þ ~�j ¼ 0. In line with
the angular momentum conservation, the only possible

configuration is ð�; ~�Þ ¼ ð0; 0Þ. For each unit of the
violation of the helicity conservation, there is a further
suppression factor of 1=m2

b. In the limit mb ! 1, perhaps

only the (0, 0) helicity state is phenomenologically rele-
vant. Note that in NRQCD factorization language, the
charm quark is also treated as heavy, and in fact its
mass acts as the agent of violating the hadron helicity
conservation.

We note that the power-law scaling specified in (8) is, in
general, subject to the mild modifications due to the
ln ðm2

b=m
2
cÞ from the loop contribution. This logarithmic

scaling violation will be examined in detail in Sec. III.

III. THE CALCULATION OF THE HELICITY
AMPLITUDES IN NRQCD FACTORIZATION

APPROACH

The hard exclusive decay process � ! J=c þ �cJ

(J ¼ 0, 1, 2) is characterized by two hard scales set by
the bottom and charm quark masses. This process can
proceed via three separate channels: the b �b pair first anni-
hilates into a single photon, or three gluons, or two gluons
plus a photon, subsequently the highly virtual photon/
gluons transition into two c �c pairs, which finally materi-
alize into two fast-moving charmonium states.
Two influential perturbative QCD approaches are

legitimate to describe such type of decay process, i.e.,
the light-cone approach [44,45] which is based on twist
expansion, and the NRQCD factorization approach [33]
that is based on the quark velocity expansion. As was seen
in Sec. II, most helicity channels associated with the
process � ! J=c þ �c0;1;2 are of helicity-suppressed

type. This feature impairs the practical usefulness of the
light-cone approach, since the higher-twist light-cone
distribution amplitudes of charmonia are rather poorly
understood at present.
On the other hand, the NRQCD factorization approach,

which is based upon a completely different expansion
strategy, does not confront any obstacle in dealing with
helicity-flipped channels. In the past two decades, this
framework has been widely applied to numerous quark-
onium decay and production processes [33]. In contrast
with the light-cone approach, the nonperturbative input
parameters in NRQCD factorization approach are numbers
(local NRQCD matrix elements, or wave functions at the
origin) rather than functions (light-cone distribution
amplitudes). In this regard, NRQCD approach seems to
be more economic and predictive than the light-cone
approach.
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In this work, we will investigate the process
� ! J=c þ �c0;1;2 in the framework of NRQCD factori-

zation, incorporating aforementioned three distinct decay
mechanisms.3 We will be content with the lowest order
accuracy in both the velocity expansion and the strong-
coupling constant expansion. We are aware that our results
may be subject to considerable uncertainty from various
sources, yet still hope the predicted decay rates may cap-
ture the correct order of magnitude.

At the LO in the bottom and charm velocity, one can
expedite the NRQCD approach calculation by invoking the
covariant projection method [17], i.e., first calculate
the on-shell T-matrix for b �bðQÞ ! c �cðPÞ þ c �cð ~PÞ, then
project each quark-antiquark pair onto the intended spin,
color, and orbital angular momentum states. In this case,
all the involved nonperturbative quarkonium-to-vacuum
NRQCD matrix elements can be well approximated by
three (the first derivative of) wave functions at the origin
for the quarkonia �, J=c , and �cJ: R�ð0Þ, RJ=c ð0Þ, and
R0
�cJ

ð0Þ. Each of them can be either obtained from the

quark potential models, or calculated from lattice simula-
tion, or directly extracted from the quarkonia decay data.

The product of these three nonperturbative wave
functions at the origin ubiquitously enters each helicity
amplitude. Thus it seems convenient to define a reduced
dimensionless helicity amplitude, of which these non-
perturbative factors are explicitly pulled out. First, let us
introduce a mass ratio variable,

r � m2
c

m2
b

: (9)

The reduced helicity amplitude, dubbed aJ
�;~�

, is related

to the standard helicity amplitude as follows:

AJ
�; ~�

�� ffiffiffiffiffiffiffi
8�

p
N

3
2
c

R�ð0ÞRJ=c ð0ÞR0
�c
ð0Þffiffiffiffiffiffiffi

mb
p

m4
c

r1þ1
2j�þ ~�jaJ

�;~�
; (10)

where Nc ¼ 3 denotes the number of colors. Note that the
scaling factor dictated by the HSR has been explicitly

factored out, the reduced amplitude aJ
�; ~�

is thereby

expected to scale with r as Oðr0Þ.
Inserting (10) back into (5), one can reexpress the inte-

grated polarized decay rate as

�½� ! J=c ð�Þ þ �cJð~�Þ�

¼ N3
cR

2
�ð0ÞR2

J=c ð0ÞR02
�cJ

ð0Þ jPj
3M2

�mbm
8
c

r2þj�þ~�j

�
�����aJ�;�;~� þ aJ

3g;�;~�
þ aJ

�gg;�;~�

�����2 (11)

for each helicity channel. The subscripts �, 3g, and �gg
emphasize the decay channel with which the reduce
amplitude is affiliated. Obviously, it is of interest to ascer-
tain the relative strength and phase among these different
types of amplitudes.
In the remainder of this section, we will present the

analytic expressions of the reduced helicity amplitudes
associated with each decay channel.

A. Single-photon channel

We start by considering the decay channel � ! �� !
J=c þ �cJ, with some typical LO diagrams shown in
Fig. 1. This process is very similar to the continuum
J=c þ �cJ production in eþe� annihilation [17].
After obtaining the decay amplitude AJ

� in NRQCD

factorization, one can employ the helicity projectors
enumerated in the Appendix to project out 10 correspond-
ing helicity amplitudes. It is straightforward to follow
Eq. (10) to read off the reduced helicity amplitude in the
single-photon channel,

aJ
�;�;~�

¼ N2
c � 1

N2
c

ebec��sc
J
�;~�

ðrÞ; (12)

where eb ¼ � 1
3 and ec ¼ 2

3 are the electric charges of the b

and c quarks, � and �s are the QED and QCD coupling
constants, respectively. The coefficient functions cJ

�;~�
ðrÞ

read

c00;0ðrÞ ¼ 1þ 10r� 12r2 þ 2ry c01;0ðrÞ ¼ 9� 14r� y

2

�
1

r
� 6

�
; (13a)

c10;1ðrÞ ¼ � ffiffiffi
6

p �
2� 7rþ 3

2
y

�
c11;0ðrÞ ¼ � ffiffiffi

6
p �

rþ y

2

�
1

r
� 1

��
c11;1ðrÞ ¼ �2

ffiffiffi
6

p �
1� 3rþ y

4

�
1

r
þ 2

��
; (13b)

c20;0ðrÞ ¼
ffiffiffi
2

p ½1� 2r� 12r2 þ 2ry� c20;1ðrÞ ¼
ffiffiffi
6

p �
1� 5rþ y

2

�
c21;0ðrÞ ¼

ffiffiffi
2

p �
3� 11r� y

2

�
1

r
� 3

��

c21;1ðrÞ ¼ 2
ffiffiffi
6

p �
1� 3r� y

4

�
1

r
� 2

��
c21;2ðrÞ ¼

ffiffiffi
3

p �
2� y

r

�
; (13c)

where y � ��=�s. The y-dependent terms characterize the photon fragmentation contributions, as depicted in Fig. 1(b),
which are often accompanied by an enhancement factor 1=r for the transversely polarized J=c .

3Unlike the exclusive double-charmonium production in eþe� annihilation, where a factorization theorem in NRQCD has been
proved to all orders in �s [46], there has not yet existed any rigorous proof for the validity of NRQCD approach to� ! J=c þ �c0;1;2.
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Barring the pure QED fragmentation contributions,
these 10 coefficient functions agree, up to an immaterial
phase, with those associated with the process eþe� !
J=c þ �c0;1;2 [32]. It is interesting to mention that, for

some accidental reason, the QCD part of the single-photon
J=c ð�1Þ þ �c1ð0Þ amplitude receives an extra suppres-
sion factor than implied from HSR.

B. Three-gluon channel

Next we turn to the strong decay channel � ! 3g !
J=c þ �cJ, which supposedly makes the most significant
contribution. Some of the representative LO diagrams have
been illustrated in Fig. 2. In contrast with the single-photon
channel, this channel first starts at the one-loop level. The
charge conjugation invariance guarantees that one needs
only retain those diagrams with ‘‘Abelian’’ gluon topology
as shown in Fig. 2.

After obtaining the decay amplitude AJ
3g using the

covariant projection technique, and prior to performing
the loop integration, we apply those helicity projection
operators given in the Appendix to project out 10 corre-
sponding helicity amplitudes. This operation brings forth
great simplification, because all the polarization vectors
(tensors) of �, J=c , and �cJ have been eliminated from
the integrand, and the numerators in loop integrals now
become Lorentz scalars comprised entirely of the external
and loop momenta.

It is then straightforward to utilize the partial fraction-
ing technique to reduce all the higher-point one-loop

integrals into a set of 2-point and 3-point scalar integrals.
Most of the encountered scalar integrals can be found
in the Appendix of Ref. [13], whose accuracy has
been numerically checked by the MATHEMATICA package
LOOPTOOLS [47]. There also arise some nonstandard

2- and 3-point scalar integrals, which contain propagators
with quadratic power due to the projection of the P-wave
state. All of their analytic expressions can be readily
worked out.
As a cross-check, we also employ the MATHEMATICA

package FIRE [48] and the code APART [49] to perform an
independent calculation. Thanks to the integration-by-part
algorithm built in FIRE, it turns out that all the required
master integrals (MIs) become just the conventional
2-point and 3-point scalar integrals as given in Ref. [13].
The final results generated by this more automatic
approach exactly coincides with those obtained from the
partial-fractioning method.
As a third consistency check, the calculation is redone

by exchanging the order between helicity projection and
loop integration. That is, we first utilize the programs
APART and FIRE at the amplitude level, which are more

cumbersome and time-consuming, yet still technically fea-
sible. Once the IR-finite T-matrices are obtained, we then
project out each intended helicity amplitudes at the very
end. We again find the exact agreement with the previous
two methods. This calculation can be viewed as a strong
support for the validity of the four-dimensional helicity
projectors given in the Appendix.
Each individual diagram in Fig. 2, being ultraviolet

convergent, albeit contains logarithmic infrared diver-
gence. Dimensional regularization is adopted to regularize
those IR singularities. Upon summing all the diagrams,
the ultimate expression for each helicity amplitude
becomes IR finite, which endorses the validity of
NRQCD factorization approach for these exclusive �
decay processes.
Following (10), we express the reduced helicity ampli-

tude in the three-gluon channel as

aJ
3g;�;~�

¼ ðN2
c � 1ÞðN2

c � 4Þ
N4

c

�3
s

8�

m2
b

m2
b � 4m2

c

fJ
�;~�

ðrÞ: (14)

FIG. 2. Some representative lowest-order diagrams that contribute to � ! 3g ! J=c þ �cJ .

(a) (b)

FIG. 1. Two representative lowest-order diagrams that contrib-
ute to� ! �� ! J=c þ �cJ. There are in total four diagrams in
class (a) and two in class (b).
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The color factor reflects the fact that the three ‘‘Abelian’’
gluons in Fig. 2 must bear an odd C-parity, thus
proportional to dabcdabc ¼ ðN2

c � 1ÞðN2
c � 4Þ=Nc, where

dabc denotes the totally symmetric structure constants of
SUðNcÞ group.

All the loop effects are encapsulated in the complex-
valued dimensionless functions fJ

�;~�
ðrÞ. Their full expres-

sions are somewhat lengthy, sowill not be reproduced here.4

On the other hand, the profiles of these functions over awide
range of r are explicitly shown in Figs. 3–5.
Theoretically, it is interesting to ascertain the asymptotic

behaviors of these reduced helicity amplitudes in the limit
mb � mc. As mentioned before, we anticipate to see the
logarithm scaling violation to the naive power-law scaling
given in (8). The asymptotic expressions of the fJ

�; ~�
func-

tions read (J ¼ 0, 1, 2)

f00;0ðrÞ ¼ �4þ 2�

3
ffiffiffi
3

p þ 2�2

9
þ 2�i

3
þOðrln 2rÞ; (15a)

f01;0ðrÞ ¼ �ln 2r� 7 ln r� �2

9
þ 25�ffiffiffi

3
p � 73

6
� 2�iðln rþ 3Þ þOðrln 2rÞ; (15b)

f10;1ðrÞ ¼
ffiffiffi
6

p �
2

3
ln rþ �2

3
� 17�

2
ffiffiffi
3

p þ 73

9
þ 3�i

�
þOðr ln rÞ; (15c)

f11;0ðrÞ ¼
ffiffiffi
6

p �
�ln 2r� 3 ln rþ �2

9
� 8�ffiffiffi

3
p þ 23

6
� 2�i

�
ln rþ 1

3

��
þOðrln 2rÞ; (15d)

f11;1ðrÞ ¼
ffiffiffi
6

p �
�ln 2r� 7

2
ln r� 8�2

9
� 7�

3
ffiffiffi
3

p � 25

12
� 2�i

�
ln r� 7

6

��
þOðrln 2rÞ; (15e)

f20;0ðrÞ ¼
ffiffiffi
2

p �
2�2

9
þ 2�

3
ffiffiffi
3

p � 4þ 2�i

3

�
þOðrln 2rÞ; (15f)

f20;1ðrÞ ¼
ffiffiffi
6

p �
� 2

3
ln rþ 5�2

9
� 7�

2
ffiffiffi
3

p � 13

9
� �i

3

�
þOðrln 2rÞ; (15g)

f21;0ðrÞ ¼
ffiffiffi
2

p �
�ln 2r� 7 ln rþ 11�2

9
� 11�ffiffiffi

3
p þ 23

6
� 2�iðln rþ 1Þ

�
þOðrln 2rÞ; (15h)

f21;1ðrÞ ¼
ffiffiffi
6

p �
�ln 2r� 15

2
ln r� 8�2

9
þ 25�

3
ffiffiffi
3

p � 145

12
� 2�i

�
ln rþ 3

2

��
þOðrln 2rÞ; (15i)

f21;2ðrÞ ¼
ffiffiffi
3

p �
�2ln 2r� 10 ln rþ 10�2

9
� 20�ffiffiffi

3
p þ 89

3
� 4�i

�
ln rþ 1

3

��
þOðrln 2rÞ: (15j)

For the reader’s convenience, all the asymptotic results
of fJ

�;~�
ðrÞ are also shown in Figs. 3–5 juxtaposed with the

corresponding exact results. We observe that for most
helicity configurations, the asymptotic results do not

coincide well with the exact ones at the phenomenologi-
cally relevant point r ¼ m2

c=m
2
b 	 0:10.

From (15), one confirms that the scaling violation is
indeed of the logarithmic form. More interestingly, we
see that the occurrence of the double-logarithm ln 2r is

always affiliated with the helicity-suppressed (j�þ ~�j>0)
decay channels. This is similar to the empirical patterns
observed for double charmonium production in eþe�
annihilation in Refs. [32,50]. Moreover, such double
logarithms have previously also been observed in the
helicity-suppressed bottomonium exclusive decay pro-
cesses, e.g., � ! J=c þ �c [13], �b ! J=c J=c [4].
The light-cone approach is presumably the proper tool to
handle these process-dependent double logarithms, since it
provides a natural means to disentangle the contributions
from the two disparate scales mb and mc. Unfortunately,
this approach is known to have some notorious difficulty in
dealing with the helicity-suppressed hard exclusive reac-
tions such as the ��	� form factor [45], because the

4In our previous calculation as reported in Ref. [34], prior to
performing the loop integration, we erroneously carried out the
Dirac trace in four spacetime dimensions. This is an unfortunate
mistake, which contradicts the spirit of Dimensional regulariza-
tion. In the current work, we take all the Lorentz vectors (both
loop and external momenta) as the D ¼ 4� 2
 dimensional
objects when calculating the Dirac trace. However, we would
like to stress that the helicity projectors listed in the Appendix,
which are derived by simply assumingD ¼ 4, are still applicable
in this situation. That is because the ultimate amplitudes are UV,
IR finite, so it does not matter whether the external momenta are
taken as 4� 2
- or four-dimensional in the intermediate steps.
Finally, we note that the analytic expressions of the various
reduced helicity amplitudes in the three-gluon channel for � !
J=c þ �c0;1;2 markedly differ from those given in Ref. [34].
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endpoint singularity in the convolution integral encoun-
tered in such processes hindered one’s capability of
performing the consistent higher order calculation.
Consequently, at present one seems unable to have a sys-
tematic control over these double logarithms appearing in
the one-loop NRQCD short-distance coefficients in the
exclusive double charmonium production from eþe�

annihilation [50]. For the exclusive double charmonium
production processes from � decay, the double logarithms
of form ln 2m2

b=m
2
c already arise at the lowest order in �s of

the strong decay channel (though appear at the one-loop
level). The origin of these double logarithms is likely quite
different from that associated with the double charmonium
production from eþe� annihilation. It may be instructive to
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FIG. 3 (color online). Real and imaginary parts of f0
�;~�

ðrÞ. The solid curves correspond to the exact results, and the dashed curves
represent the asymptotic ones taken from (15a) and (15b). The vertical mark is placed at the phenomenologically relevant point
r ¼ 0:10.
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represent the asymptotic ones taken from (15c) to (15e).
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represent the asymptotic ones taken from (15f) to (15j).
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carry out a light-cone calculation for the processes studied
in this work, to see whether one can reproduce these large
double logarithms or not.

Finally we mention one peculiarity associated with

the helicity channel � ! J=c ð� ¼ �1Þ þ �c1ð~� ¼ 0Þ.
Recall that at LO in �s, this helicity amplitude from the
single-photon channel is suppressed by an extra factor of r
with respect to the HSR, as can be seen in (13b).
Nevertheless, from (15d) we find that this helicity ampli-
tude in the 3g channel just possesses the correct power-law
scaling as dictated by the HSR. This implies that the power
suppression of the LO single-photon amplitude is purely
accidental.

C. One-photon–two-gluon channel

From the ratios of the measured inclusive � decay rates
in three different channels, as listed in (2), an educated
guess is that the exclusive decay channel � ! �gg !
J=c þ �cJ yields the least important contribution.
Nevertheless, for the sake of completeness, let us finally
assess the contribution from this radiative decay channel.

Similar to the strong decay channel, this radiative decay
channel also starts at the one-loop order. Some typical LO
diagrams have been illustrated in Fig. 6. For simplicity,
and to be commensurate with the approximation adopted
for the single-photon channel in Sec. III A, we only
retain those photon-fragmentation diagrams, whereas the
neglected diagrams are identical to those in Fig. 2 except
with the gluon outside the loop replaced by the photon.
We wish that these fragmentation-type diagrams constitute
the dominant contributions, which is certainly the case for
the transversely polarized J=c .

Following the steps outlined in Sec. III B, one then
projects out the 10 required helicity amplitudes, with all

the polarization vectors (tensors) of �, J=c and �cJ

eliminated from the loop integral. Nevertheless, it appears
to be less straightforward than in the three-gluon channel to
employ the partial fraction to simplify the encountered
one-loop integrals.
Fortunately, the powerful MATHEMATICA packages FIRE

[48] and APART [49] can still be successfully applied to
reduce the general higher-point tensor one-loop integrals
into a set of MIs. With the aid of the integration-by-part
algorithm built in FIRE, all the involved MIs become just
the standard 2-point and 3-point scalar integrals. The ana-
lytic expressions of these scalar integrals can be found in
Refs. [13,51], whose correctness have been numerically
verified by using LOOPTOOLS [47].
Analogous to the three-gluon decay channel, each indi-

vidual diagram in Fig. 6 is UV finite but IR divergent. After
summing all the diagrams, the ultimate expression for each
helicity amplitude turns out to be completely IR finite.
In accordance with (10), the reduced helicity amplitude

in the radiative decay channel can be expressed as

aJ
�gg;�;~�

¼N2
c�1

N2
c

ebec��
2
s

4�

m2
b

m2
b�4m2

c

r�j�jgJ
�;~�

ðrÞ: (16)

The inclusion of an extra factor r�j�j is reminiscent of the
photon fragmentation mechanism: when the J=c becomes
transversely polarized (� ¼ �1), the corresponding
helicity amplitude would receive a 1=r enhancement with
respect to the nominal HSR.
All the loop effects are encoded in the complex-valued,

dimensionless functions gJ
�;~�

ðrÞ. Their full expressions are
somewhat lengthy and will not be reproduced here. On the
other hand, the profiles of these functions over a wide range
of r are shown in Figs. 7–9.

FIG. 6. Some representative lowest-order diagrams that contribute to � ! �gg ! J=c þ �cJ.

10 4 10 3 10 2 10 1 0.25
30

20

10

0

10

20

r

g
0,

0
0

0,0

Re

Im

10 4 10 3 10 2 10 1 0.25
30

20

10

0

10

20

r

g
1,

0
0

1,0

Re

Im

FIG. 7 (color online). Real and imaginary parts of g0
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ðrÞ. The solid curves correspond to the exact results, and the dashed curves
represent the asymptotic ones taken from (17a) and (17b). The vertical mark is placed at the phenomenologically relevant point r ¼ 0:10.
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We are curious to know the asymptotic behavior of the reduced helicity amplitudes in this decay channel. After some
manipulations, we find the asymptotic expressions of the functions gJ

�;~�
(J ¼ 0, 1, 2) to read

g00;0ðrÞ ¼ 4 ln 2 ln r� �2

3
� 4 ln 2þ 53

9
þ 4�iþOðrln 2rÞ; (17a)

g01;0ðrÞ ¼ 4 ln 2 ln rþ 5�2

12
� 8 ln 2þ 1þ 4�iþOðrln 2rÞ; (17b)

g10;1ðrÞ ¼ �4
ffiffiffi
6

p ðln 2þ 1Þ þOðr ln rÞ; (17c)

g11;0ðrÞ ¼
ffiffiffi
6

p �
2 ln 2� �2

2

�
þOðr ln rÞ; (17d)

g11;1ðrÞ ¼ � ffiffiffi
6

p �
1

2
ln 2rþ 4 ln 2 ln rþ �2

12
þ 8 ln 2� �iðln rþ 3Þ

�
þOðrln 2rÞ; (17e)

g20;0ðrÞ ¼
ffiffiffi
2

p �
4 ln 2 ln r� �2

3
þ 12 ln 2� 17

9
� 4�i

�
þOðrln 2rÞ; (17f)

g20;1ðrÞ ¼
ffiffiffi
6

p ð2� 4 ln 2Þ þOðr ln rÞ; (17g)

g21;0ðrÞ ¼
ffiffiffi
2

p �
4 ln 2 ln rþ 5�2

12
þ 8 ln 2� 3� 4�i

�
þOðr ln rÞ; (17h)

g21;1ðrÞ ¼
ffiffiffi
6

p �
� 1

2
ln 2r� 4 ln 2 ln rþ 4 ln rþ 5�2

12
� 20

3
ln 2þ 23

3
þ �i

�
ln r� 5

3

��
þOðrln 2rÞ; (17i)

g21;2ðrÞ ¼
ffiffiffi
3

p �
�2ln 2r� 4 ln rþ 5�2

6
þ 16

3
ln 2� 16

3
þ 2�i

�
2 ln rþ 5

3

��
þOðr ln rÞ: (17j)

In Figs. 7–9 we also juxtapose these asymptotic results
of gJ

�;~�
ðrÞ with the exact results. For most helicity configu-

rations, the asymptotic results seem not to converge well
with the exact ones for the phenomenologically relevant
point r ¼ m2

c=m
2
b 	 0:10.

A quick survey on (17) reveals that that the scaling

violation is again of the logarithmic form. More interest-

ingly, the same pattern of double logarithms still holds: the

occurrence of the double-logarithm ln 2r is always affili-

ated with the helicity-suppressed decay channels.
We close this section by making a simple observation.

As can be seen from Fig. 8, the imaginary parts of the
functions g1

�;~�
are generally nonzero, though some of these

vanish asymptotically. At first sight, this may contradict
Landau-Yang theorem because �c1 ! gg should be
strictly forbidden. This implies that though the apparent

two-gluon cuts in Fig. 6 do not contribute, the other cuts
that simultaneously pass through the bottom and charm
quark lines must yield nonvanishing contributions to the
imaginary parts for � ! J=c þ �c1.

IV. PHENOMENOLOGY

We are now in a position to make concrete predic-
tions for the decay rates of � ! J=c þ �c0;1;2, by

plugging (12), (14), and (16) into (11).
In the numerical analysis, we take the following various

bottomonia and charmonia masses from the 2012 Particle
Data Group compilation [1]: M�ð1SÞ ¼ 9:460 GeV,
M�ð2SÞ ¼ 10:023 GeV, M�ð3SÞ ¼ 10:355 GeV, MJ=c ¼
3:097 GeV, M�c0

¼ 3:415 GeV, M�c1
¼ 3:511 GeV,

M�c2
¼ 3:556 GeV. These inputs are used to determine

jPj according to (4), which appears in the phase space
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FIG. 8 (color online). Real and imaginary parts of g1
�;~�

ðrÞ. The solid curves correspond to the exact results, and the dashed curves
represent the asymptotic ones taken from (17c) to (17e).

EXCLUSIVE DECAY OF � INTO J=c þ �c0;1;2 PHYSICAL REVIEW D 87, 094004 (2013)

094004-9



factor in (11). To calculate the squared matrix elements,
particularly the functions fJ

�;~�
ðrÞ and gJ

�;~�
ðrÞ, we instead

adopt the following values for the quark masses: mc ¼
1:5 GeV, mb ¼ 4:7 GeV, corresponding to r ¼ 0:102.
Later we also wish to predict the branching fractions for
the decays �ðnSÞ ! J=c þ �c0;1;2 (n ¼ 1, 2, 3). For this
purpose, we take the following total decay width of various
� states from [1]: �½�ð1SÞ� ¼ 54:02 keV, �½�ð2SÞ� ¼
31:98 keV, and �½�ð3SÞ� ¼ 20:32 keV, respectively.

For simplicity, we fix the electromagnetic fine structure
constant as � ¼ 1=137. For the strong coupling constant,
any value evaluated with the renormalization scale ranging
from 2mb to 2mc seems to be acceptable. This scale
ambiguity constitutes one of the most important sources
of theoretical uncertainty. Without much prejudice, we
simply choose a medium value �sðmbÞ ¼ 0:22.

As for the wave functions at the origin for various
quarkonia, we use the following values obtained
from the Buchmüller-Tye potential model [52]:
jR�ð1SÞð0Þj2 ¼ 6:477 GeV3, jR�ð2SÞð0Þj2 ¼ 3:234 GeV3,

jR�ð3SÞð0Þj2 ¼ 2:474 GeV3, jRJ=�ð0Þj2 ¼ 0:81 GeV3,

jR0
�c0;1;2

ð0Þj2 ¼ 0:075 GeV5.

In Table I, we tabulate the values of the reduced helicity
amplitudes a�, a3g, and a�gg associated with each helicity

channel for �ð1SÞ ! J=c þ �c0;1;2. One sees that the

relative phases among each amplitude vary channel by
channel, and particularly there seems no universal phase
pattern between the single-photon and three-gluon chan-
nel. Our finding contradicts the universal relative phase
conjecture made in Ref. [53].
One curious question is whether the relative strength

between three distinct decay mechanisms bears roughly the
same pattern as that in � inclusive decay, as given in (2).
A very crude guess is that each helicity amplitude for this

exclusive decay process might be proportional to
ffiffiffiffiffiffiffiffiffiffi
Bincl

p
, so

that one naively expects

ja�j:ja3gj:ja�ggj 	 1:3:3:0:5 (18)

for each helicity configuration.

TABLE I. The values of the reduced helicity amplitudes a�, a3g, and a�gg associated with each helicity channel for �ð1SÞ !
J=c þ �c0;1;2. For simplicity, a factor of 10�4 has been pulled out of each entry.

(0, 0) (1, 0) (0, 1) (1, 1) (1, 2)

J=c þ �c0 a� �5:99 �24:23 
 
 
 
 
 
 
 
 

a3g 18:33ei0:54

�
82:87e�i3:19� 
 
 
 
 
 
 
 
 


a�gg 1:58e�i66:32� 1:01e�i58:59� 
 
 
 
 
 
 
 
 

J=c þ �c1 a� 
 
 
 �0:35 9.61 9.27 
 
 


a3g 
 
 
 78:04ei109:57
�

54:94ei112:26
�

135:67ei108:61
� 
 
 


a�gg 
 
 
 5:23ei7:29
�

1:30ei7:48
�

6:20ei20:52
� 
 
 


J=c þ �c2 a� �2:98 �8:94 �3:68 �11:80 �12:78
a3g 1:15ei157:72

�
30:89ei51:71

�
10:94e�i110:67� 57:18ei49:00

�
120:16ei58:27

�

a�gg 0:33ei101:36
�

6:89ei102:07
�

0:41e�i68:19� 14:35ei101:39
�

24:70ei103:90
�
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FIG. 9 (color online). Real and imaginary parts of g2
�;~�

ðrÞ. The solid curves correspond to the exact results, and the dashed curves
represent the asymptotic ones taken from (17f) to (17j).
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Inspecting Table I, we find that for many helicity con-
figurations, the three distinct helicity amplitudes do exhibit
a similar hierarchy as that given in (18), i.e., ja3gj> ja�j>
ja�ggj, though the radiative decay amplitude are oftenmuch

more suppressed. However, there are also a few notable
exceptions, e.g., for the polarized decays � ! J=c ð�1Þ
þ�c1ð0Þ,5 � ! J=c ð�1Þ þ �c2ð�1Þ, � ! J=c ð�1Þ
þ�c2ð�2Þ, themagnitude of the radiative decay amplitudes
is comparable, or even greater, than that of the single-
photon amplitudes; for the decay � ! J=c ð0Þ þ �c2ð0Þ,
the single-photon amplitude is even greater in magnitude
than the respective three-gluon amplitude.

In Table II, we also list the polarized decay widths for

�ð1SÞ ! J=c ð�Þ þ �c0;1;2ð~�Þ for each independent helic-

ity configurations ð�; ~�Þ, together with the polarization-
summed results. To readily visualize the interference effect
among three distinct decay mechanisms, we also tabulate
the individual decay rates from the single-photon, three-
gluon, and one-photon-two-gluon channels, respectively,
as well as the full decay rate given by (11). Table II reveals
that a� and a3g in �ð1SÞ ! J=c þ �c0;2 are subject to

destructive interference.
The hierarchy among the polarized decay widths

in different helicity configurations, from either an individ-
ual decay mechanism or the complete contributions,
seems hardly to obey the HSR as indicated in (8). The
pattern is abnormal for � ! J=c þ �c0, where the

helicity-suppressed ð�1; 0Þ channel even possesses a big-
ger decay rate than the helicity-favored (0, 0) channel; for
� ! J=c þ �c2, the largest polarized decay rates are
associated with the helicity-suppressed configurations
ð�1; 0Þ and ð�1;�1Þ, whereas the smallest polarized
decay rate is associated with the HSR-favored (0, 0) state.6

These symptoms can presumably be attributed to the fact
that the mass ratio mc=mb 	 1=3 might not be small
enough to warrant the asymptotic counting rule.
Finally in Table III, we tabulate our predictions of the

partial decay widths, which are calculated according to (7),
together with the corresponding branching fractions, for
the various processes �ðnSÞ!J=cþ�c0;1;2 (n ¼ 1, 2, 3).
All the three decay mechanisms are incorporated. We
observe that the decay branching fractions satisfy the

ordering7 B½1� >B½0� � B½2�, with the first two reaching
the order of 10�6. We note that all these predicted branch-
ing ratios are compatible with the various experimental
bounds on J=c or �cJ inclusive production rates in
�ð1S; 2SÞ decays, as given in (1).
As a simple consequence of the LO NRQCD prediction,

there should exist a 77% rule in the hadronic decay of the�

TABLE II. The polarized and the polarization-summed partial widths and the corresponding branching fractions. �½J�
� , �½J�

3g , and �
½J�
�gg

represent the individual decay rates from the single-photon, three-gluon, and one-photon–two-gluon channels affiliated with the

process �ð1SÞ ! J=c þ �cJ (J ¼ 0, 1, 2), respectively, while �½J�
tot denotes the decay rate which incorporates all three decay

mechanisms according to (11). The two rightmost columns also give the unpolarized decay rates and branching fractions by summing
over all possible helicity configurations. All the partial decay widths are in units of eV.

(0, 0) (1, 0) (0, 1) (1, 1) (1, 2) Unpol B

�½0�
� 4:2� 10�3 7:0� 10�3 
 
 
 
 
 
 
 
 
 1:8� 10�2 3:3� 10�7

�½0�
3g 3:9� 10�2 8:2� 10�2 
 
 
 
 
 
 
 
 
 2:0� 10�1 3:7� 10�6

�½0�
�gg 2:9� 10�4 1:2� 10�3 
 
 
 
 
 
 
 
 
 2:6� 10�3 4:8� 10�8

�½0�
tot 1:4� 10�2 2:8� 10�2 
 
 
 
 
 
 
 
 
 7:0� 10�2 1:3� 10�6

�½1�
� 
 
 
 1:4� 10�6 1:1� 10�3 1:0� 10�4 
 
 
 2:4� 10�3 4:4� 10�8

�½1�
3g 
 
 
 7:1� 10�2 3:5� 10�2 2:2� 10�2 
 
 
 2:6� 10�1 4:8� 10�6

�½1�
�gg 
 
 
 3:2� 10�4 2:0� 10�5 4:6� 10�5 
 
 
 7:7� 10�4 1:4� 10�8

�½1�
tot 
 
 
 6:2� 10�2 4:7� 10�2 2:3� 10�2 
 
 
 2:6� 10�1 4:9� 10�6

�½2�
� 1:0� 10�3 9:3� 10�4 1:6� 10�4 1:7� 10�4 2:0� 10�5 3:6� 10�3 6:7� 10�8

�½2�
3g 1:5� 10�4 1:1� 10�2 1:4� 10�3 3:9� 10�3 1:7� 10�3 3:6� 10�2 6:7� 10�7

�½2�
�gg 1:2� 10�5 5:5� 10�4 2:0� 10�6 2:4� 10�4 7:4� 10�5 1:8� 10�3 3:3� 10�8

�½2�
tot 5:3� 10�4 2:6� 10�3 5:5� 10�4 1:1� 10�3 8:3� 10�4 1:1� 10�2 2:0� 10�7

5The unnaturally small single-photon amplitude in this chan-
nel is due to the accidental suppression factor received by c11;0, as
can be seen in (13b).

6Note this situation is quite different from the continuum
production process eþe�!J=c ð�Þþ�c2ð~�Þ, where the (0, 0)
and ð�1; 0Þ channels make the dominant contributions to
the unpolarized production cross section [32].

7It is interesting to compare the relative importance of the
various exclusive production channels J=c þ �cJ (J ¼ 0, 1, 2)
in � decay and continuum production. For eþe� !
J=c þ �c0;1;2, one finds that the production rate for J=c þ
�c0 is about one order of magnitude greater than those for
J=c þ �c1;2 [31,32].
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system, in analogy with the famous 12% rule in the c
system,

B½�ð2SÞ ! hadrons�
B½�ð1SÞ ! hadrons� ¼ B½�ð2SÞ ! eþe��

B½�ð1SÞ ! eþe��
¼ 0:77� 0:07: (19)

Not surprisingly, the ratios of B½�ð2SÞ ! J=c þ �cJ� to
B½�ð1SÞ ! J=c þ �cJ� in Table III are indeed compat-
ible with this rule.

Thus far, the BELLE experiment has collected about 102
million �ð1SÞ samples and 158 million �ð2SÞ samples.
According to Table III, the BELLE experiment is expected
to have produced about 130 and 170 �ð1S; 2SÞ ! J=c þ
�c0 events, 500 and 650 �ð1S; 2SÞ ! J=c þ �c1 events,
20 and 30 �ð1S; 2SÞ ! J=c þ �c2 events, respectively.

Experimentally, there are two possible methods to detect
the J=c þ �c0;1;2 signals. The first is to reconstruct both

the J=c and �c0;1;2 events. The clean and copious decay

modes of �c1;2 are the E1 radiative transitions �c1;2 !
J=c þ �, with the branching fractions of 34.4% and
19.5%, respectively [1]. The J=c meson can be most
cleanly tagged through the leptonic decays into eþe�
and �þ��, with combined branching ratios about 12%
[1]. Although this method has the advantage of bearing
very low background level, taking into account the recon-
struction efficiencies for two J=c and one photon, one
may end up with too few signal events to be practically
useful.

The second method is to only reconstruct one J=c !
lþl� event, then fit the recoil mass spectrum against
the J=c to estimate the number of �c0;1;2 peak events.

This method will not depend on the concrete decay
modes of �c0;1;2. For low statistics of signal events like

in our case, this method is much more superior to the
preceding one. As a matter of fact, this method has already
been used by the BELLE collaboration to impose the upper
bound for the exclusive bottomonium decays �b0;1;2 !
J=c J=c ; J=c c 0 [54].

In fitting the recoil mass spectrum of J=c , the net
detection efficiency for �ð1S; 2SÞ ! J=c þ �c0;1;2 is esti-

mated to be around 4% (similar for all �c0;1;2), with the

reconstruction efficiency for J=c ! lþl� included [55].
Therefore, the numbers of the observed �ð1S; 2SÞ !
J=c þ �c1 events are expected to be 500� 4% ¼ 20,

and 650� 4% ¼ 26, respectively. Since only one J=c is
reconstructed, the background level in real data may not be
very low. With only 20 reconstructed signal events, it
seems quite challenging for the signal significance to
reach the 5� level, and a larger data pool is needed in
order to draw a definite conclusion. In the prospective
Super B factory, with a luminosity 50 times greater than
the current B factory, it seems very promising that the
decays �ð1S; 2S; 3SÞ ! J=c þ �c0;1 will be eventually

observed.8

V. SUMMARY

In this paper, we carry out a comprehensive investigation
on the exclusive J=c þ �c0;1;2 production in � decay in

the NRQCD factorization framework. We have explicitly
considered three distinct decay mechanisms, i.e., the
strong, electromagnetic and radiative decay channels.
Although there has not yet appeared a rigorous proof on
the validity of NRQCD factorization approach to these
types of double-charmonium production processes, the
explicit verification for the cancelation of IR divergences
in our calculation is rather supportive of the positive
answer. Moreover, our explicit calculation further
supports the previous claim that the double logarithms
appearing in the one-loop NRQCD short-distance coeffi-
cients are always affiliated with the helicity-suppressed
channels [32,50].
The branching fractions for the various polarized

and unpolarized decay channels �ðnSÞ ! J=c þ �c0;1;2

(n ¼ 1, 2, 3) are predicted by incorporating all three dis-
tinct decay channels at the lowest order. In our case, the
relative phase among these decay channels arise from
the short-distance loop effect, which can actually be calcu-
lated in perturbation theory. There appears no universal
interference pattern, but the three-gluon and the single-
photon amplitudes often tend to be destructive. We find

TABLE III. The unpolarized partial decay widths and the corresponding branching fractions
that incorporate all three distinct decay mechanisms. The superscript ½J� characterizes the
corresponding decay process �ð1S; 2S; 3SÞ ! J=c þ �cJ (J ¼ 0, 1, 2).

�½0� (eV) B½0� �½1� (eV) B½1� �½2� (eV) B½2�

�ð1SÞ 0.070 1:3� 10�6 0.26 4:9� 10�6 0.011 2:0� 10�7

�ð2SÞ 0.035 1:1� 10�6 0.13 4:1� 10�6 0.0054 1:7� 10�7

�ð3SÞ 0.026 8:6� 10�7 0.099 3:3� 10�6 0.0041 1:3� 10�7

8The partial widths of the similar decay processes
�ð1S; 2S; 3SÞ ! J=c þ �0

cJ, c
0 þ �cJ , c

0 þ �0
cJ (J ¼ 0, 1, 2)

can also be readily obtained, provided that we substitute the
appropriate kinematical factor and the corresponding (first de-
rivative of) wave functions at the origin for c 0 and �0

cJ in (11).
Interestingly, the NRQCD formalism seems to imply that � !
J=c þ �0

cJ may even have the greater decay rates than � !
J=c þ �cJ , since jR0

�0
cJ
ð0Þj> jR0

�cJ
ð0Þj according to Ref. [52].
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that�ðnSÞ decays into J=c þ �c1 have the largest branch-
ing fraction, about a few times 10�6; and the decays
�ðnSÞ ! J=c þ �c2 have the smallest decay branching
ratio, only of order 10�7. The current statistics at BELLE is
on the margin of observing these decay channels. If the
prospective high-luminosity eþe� facilities such as the
Super B experiment can dedicate more machine time on
the first three � resonances, it should be an ideal place to
discover their exclusive decay modes into J=c þ �c0;1.
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APPENDIX: VARIOUS HELICITY PROJECTORS
FOR � ! J=c þ �c0;1;2

During this work, we have utilized the various helicity
projectors to expedite projecting out the corresponding
helicity amplitudes associated with � ! J=c þ �c0;1;2.

This helicity projection technique, which has already
been utilized in our previous work on theOð�sÞ correction
to the process �� ! J=c þ �c0;1;2 [32], can significantly

reduce the amount of labors required for the loop
diagram calculations. In this Appendix, we collect the
explicit formulas for the 10 helicity projectors used in
this work.

First, it is convenient to introduce the transverse metric
tensor

g?�� � g�� þ
P�P�

jPj2 � Q 
 P
M2

�jPj2
ðP�Q� þQ�P�Þ

þM2
J=c

M2
�

Q�Q�

jPj2

¼ g�� þ
~P�

~P�

jPj2 � Q 
 ~P
M2

�jPj2
ð ~P�Q� þQ�

~P�Þ

þM2
�cJ

M2
�

Q�Q�

jPj2 ; (A1)

where Q, P, and ~P stand for the four-momenta of �, J=c ,
and �cJ, respectively. This symmetric tensor satisfies the
transversity condition g?��P

� ¼ g?��
~P� ¼ 0. It further

has the properties g�?� ¼ 2, g?��g
��
? ¼ g?��g

�� ¼ g�?�.

The decay amplitude A0 for the process � ! J=c þ
�c0 can be parametrized as A0 ¼ A0

��

�
�


��
J=c ð�Þ, where


� and 
J=c denote the polarization vectors of� and J=c ,

respectively. The helicities of J=c and �c0 are labeled by �

and ~� (trivially ~� ¼ 0). There are only two independent
helicity amplitudes for this process, which can be deduced
by having the corresponding helicity projectors act on
the amputated amplitude, A0

�;~�
¼ P��

�;~�
A0

��, up to an

immaterial phase. The two helicity projection tensors for
� ! J=c þ �c0 are

P��
0;0 ¼ 1

jPj2
�
P� �Q 
 P

M2
�

Q�

��
Q 
 P

MJ=cM�

P� �
MJ=c

M�

Q�

�
;

(A2a)

P��
1;0 ¼ � 1

2
g?��; (A2b)

where g?�� is defined in (A1). These two projectors are

normalized as P0;0;��P
��
0;0 ¼ 1, P1;0;��P

��
1;0 ¼ 1

2 and

orthogonal to each other, P0;0;��P
��
1;0 ¼ 0.

The decay amplitude A1 for the decay process
� ! J=c þ �c1 can be expressed as A1 ¼ A1

���

�
�


��J=c ð�Þ
���c1
ð~�Þ, where ~� and 
�c1

denote the helicity of

the �c1 state and the corresponding polarization vector.
There are three independent helicity amplitudes for this
process, which can be deduced by having the correspond-
ing helicity projectors act on the amputated amplitude,
A1

�;~�
¼ P���

�;~�
A1

���. The three helicity projection tensors

for � ! J=c þ �c1 read

P���
1;0 ¼ i

2M�jPj2

��	�Q

	 ~P�

�
Q 
 ~P

M�c1
M�

~P��
M�c1

M�

Q�

�
;

(A3a)

P���
0;1 ¼� i

2M�jPj2

��	�Q

	P�

�
Q 
P

MJ=cM�

P��
MJ=c

M�

Q�

�
;

(A3b)

P���
1;1 ¼ i

2M�jPj2

��	�Q

	P�

�
P��Q 
P

M2
�

Q�

�
; (A3c)

which are subject to the normalization conditions
Pi;���P

���
j ¼ 1

2
ij, with i, j signifying one of the three

helicity configurations.
Similarly, for the decay process � ! J=c þ �c2, we

can identify the amputated amplitude through A2 ¼
A2

����

�
�


��
J=c ð�Þe����c2

ð~�Þ, where ~� and e�c2
represent

the helicity of the �c2 state and the corresponding polar-
ization tensor. There are in total five independent helicity
amplitudes, which can be obtained by having the corre-
sponding helicity projectors act upon the amputated

amplitude, A2
�;~�

¼ P����

�;~�
A2

����. We construct the five

helicity projection tensors for � ! J=c þ �c2 as
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P����
0;0 ¼ 1ffiffiffi

6
p jPj2

�
Q 
 P

MJ=cM�

P� �
MJ=c

M�

Q�

��
P� �Q 
 P

M2
�

Q�

�

�
�
g?�� þ 2

jPj2
�

Q 
 ~P
M�c2

M�

~P� �M�c2

M�

Q�

��
Q 
 ~P

M�c2
M�

~P� �M�c2

M�

Q�

��
; (A4a)

P����
1;0 ¼ � 1

2
ffiffiffi
6

p g?��

�
g?�� þ 2

jPj2
�

Q 
 ~P
M�c2

M�

~P� �M�c2

M�

Q�

��
Q 
 ~P

M�c2
M�

~P� �M�c2

M�

Q�

��
; (A4b)

P����
0;1 ¼ 1

2
ffiffiffi
2

p jPj2
�

Q 
 P
MJ=cM�

P� �
MJ=c

M�

Q�

��
g?��

�
Q 
 ~P

M�c2
M�

~P� �M�c2

M�

Q�

�
þ ð� $ �Þ

�
; (A4c)

P����
1;1 ¼ � 1

2
ffiffiffi
2

p jPj2
�
P� �Q 
 P

M2
�

Q�

��
g?��

�
Q 
 ~P

M�c2
M�

~P� �M�c2

M�

Q�

�
þ ð� $ �Þ

�
; (A4d)

P����
1;2 ¼ 1

4
ðg?��g?�� � g?��g?�� � g?��g?��Þ: (A4e)

These five projection operators satisfy the normalization conditionsPi;����P
����
j; ¼ 1

2
ij (i, j corresponding to one of the
five helicity configurations), except that P0;0;����P

����
0;0 ¼ 1.

All the helicity projectors are derived by obeying the exact decay kinematics. Nevertheless, in this work we only target at
the LO accuracy in v expansion. Therefore, upon applying these projectors to infer the intended helicity amplitudes,
it is eligible to make the following substitutions for the various quarkonium masses: M�ðnSÞ 	 2mb (n ¼ 1, 2, 3), and
MJ=c 	 M�c0;1;2

	 2mc. Implementing these approximations considerably simplifies the corresponding loop calculation.
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