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In this paper we perform a comprehensive study of the four B — K7) decays in the perturbative QCD
(pQCD) factorization approach. We calculate the CP-averaged branching ratios and CP-violating
asymmetries of B — K75 decays in the ordinary 7-7’, the n-7'-G, and the 5-1/-G-7,. mixing schemes.
Besides the full leading order (LO) contributions, all currently known next-to-leading-order (NLO)
contributions to B — K7 decays in the pQCD approach are taken into account. From our calculations
and phenomenological analysis, we find the following. (a) The NLO contributions in general can provide
significant enhancements to the LO pQCD predictions for the decay rates of the two B — Kn' decays,
around 70%-89% in magnitude, but result in relatively small changes to Br(B — K 7). (b) Although the
NLO pQCD predictions in all three considered mixing schemes agree well with the data within one
standard deviation, those pQCD predictions in the -7'-G mixing scheme provide the best interpretation
for the measured pattern of Br(B — Kn"): Br(B® — K%%) = 1.13 X 1076, Br(B° — K%%') = 66.5 X
1076, Br(B* — K*n) = 2.36 X 107°, and Br(B* — K= 7') = 67.3 X 107, which agree perfectly with
the measured values. (c) The NLO pQCD predictions for the CP-violating asymmetries for the four
considered decays are also in good agreement with the data. (d) The newly known NLO contribution to the
relevant form factors Mg can produce about a 20% enhancement to the branching ratios Br(B — K7’),
which plays an important role in closing the gap between the pQCD predictions and the relevant data.
(e) The general expectations about the relative strength of the LO and NLO contributions from different

sources are examined and confirmed by explicit numerical calculations.
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I. INTRODUCTION

Since the first observation of unexpectedly large
branching ratios for B — K7’ decays reported by CLEO
in 1997 [1], the four B — K1) decays have been a “hot”
topic for a long time. Although many physicists have
made great efforts to explain the pattern of very large
branching ratios Br(B — Kn') and very small branching
ratios Br(B — K7) [2-9], it is still difficult to understand
such a pattern in the framework of the standard
model.

On the experimental side, the branching ratios of the
four B— K1 decays have been measured with high
precision [10,11],

Br(B® — K%%) = (1.23%927) X 1076,
Br(B" — K%7') = (66.1 = 3.1) X 107°,
Br(B* — K*n) = (2.3679%2) X 107,

Br(B* — K*7/) = (71.1 £ 2.6) X 107°.

)

For the relevant CP-violating asymmetries, the currently
known experimental measurements are [10,11]
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Ad(B— KO7') = (1 = 9)%,

ANX(B — KO%') = (64 = 11)%, @)
A (B* — K*n) = (=37 = 8)%,
A% (B — K* ') = (1.3519)%.

On the theory side, these decays were calculated recently
in Ref. [12] by employing the perturbative QCD (pQCD)
factorization approach [9] and using the ordinary
Feldmann-Kroll-Stech (FKS) 7-7' mixing scheme [13],
with the inclusion of the partial next-to-leading-oder
(NLO) contributions, i.e., the QCD vertex corrections, the
quark-loops, and the chromomagnetic penguins Og,. In
Ref. [12] the authors found that the NLO contributions
can provide a 70% enhancement to the leading-order
(LO) pQCD predictions for Br(B — K7'), but also produce
a 30% reduction to the LO pQCD predictions for Br(B —
K7) [12]; numerically, Br(B° — K%n) = 2.1 X 1079,
Br(B® — K%%') = 50.3 X 107%, Br(B* — K" ) = 3.2 X
107, and Br(B* — K* /) = 51.0 X 107°. Although the
differences between the pQCD predictions and the data
were effectively decreased by the inclusion of the partial
NLO contributions, the central values of the pQCD predic-
tions for Br(B — K7') are still lower than the data by about
30%. As for the CP-violating asymmetries, the pQCD
predictions in Ref. [12] already agree well with the data.

© 2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.87.094003

FAN et al.

Very recently, three new advances in the studies of the
two-body charmless hadronic B — M, M decays (here M;
stands for the light mesons, such as 7, K, 77(’), etc.) in the
pQCD factorization approach have been made.

(i) In Ref. [14], Li et al. calculated the NLO contribu-
tions to the form factors of B —  transitions in the
pQCD approach and found that the NLO part can
provide a roughly 20% enhancement to the LO one.
The enhanced form factors may then lead to a larger
branching ratio for B — K7’ decays. The still miss-
ing NLO parts in the pQCD approach are the O(a?)
contributions from nonfactorizable spectator dia-
grams and the annihilation diagrams, which are
most likely small according to general arguments.

(i) In Ref. [15], the authors studied and provided a

successful pQCD interpretation for the Belle

measurements of B,/B, — J/¥n", ie., R;® =
Br(B, — J/V7')/Br(B, — J/¥n) <1 with g =
(d, s), by using the 5-1'-G mixing formalism [16],
where G represents the pseudoscalar glueball. This
result encourages us to check the possible effects of
the pseudoscalar G on B — K7 decays, although
such contributions may be small as generally
expected [17].

(iii) In Ref. [18], the authors studied the 7-7'-G-7,
mixing scheme, obtained constraints on the mixing
angle ¢, (o ~ 11°) between G and 7, by fitting
to the observed 7. decay widths and other relevant
data, and found that the 7, mixing can enhance the
pQCD predictions for Br(B — K7') by 18%, but
that is does not alter those for Br(B — Kn).
In Ref. [18], the authors superposed the contribu-
tions from B — K1, due to the 7, mixing onto the
partial NLO pQCD predictions as given in Ref. [12]
directly. They did not consider the effects of the
newly known NLO contributions to the correspond-

ing form factors F5~X(0) and F; g_"’w (0).

Motivated by the above new advances [14,15,18], we

think that it is time for us to make a comprehensive study of
the four B— K7 decays in the pQCD factorization
approach. We will focus on the following points.

(i) Besides those NLO contributions already considered
in Ref. [12], we here will firstly extend the calcula-
tion of the NLO part of the form factors for the B —
7r transition [14] to the cases for the similar B — K
and B — (n,, n,) transitions, and then take these
newly known form factors at the NLO level into
the calculations for the branching ratios and
CP-violating asymmetries of B — K7) decays to
check its effects on the corresponding pQCD
predictions.

(ii) Besides the ordinary Feldmann-Kroll-Stech -7’

mixing scheme [13], we will also calculate these
four decays in the n-1'-G [16] mixing scheme and
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FIG. 1 (color online). Feynman diagrams that may contribute
to the B — K7 decays in the pQCD approach at leading order.

n(K)

the n-7'-G-7, mixing scheme [18], respectively.
We want to check the effects of the possible
“pseudoscalar glueball” and 7. component of the
1) meson on the pQCD predictions.

(iii)) We will numerically calculate the individual
decay amplitudes M¢*? [the emission diagrams,
Figs. 1(a) and 1(b)], M¢*9 [the spectator diagrams,
Figs. 1(c) and 1(d)] and M2 [the annihilation
diagrams, Figs. 1(e)-1(h)], and compare the rela-
tive strength of the contributions from different sets
of the Feynman diagrams at the leading order, or
from the different sources at the next-to-leading
order, such as My [i.e., NLO vertex corrections,
Figs. 3(a)-3(d)], .’Mql [i.e., NLO quark-loops,
Figs. 3(e) and 3(f)], and Mmp [i.e., NLO chro-
momagnetic penguins, Figs. 3(g) and 3(h)].
We try to find the source of the dominant contribu-
tion in order to estimate the possible strength of
the two missing NLO contributions in the pQCD
approach.

The paper is organized as follows. In Sec. II, we give a
brief discussion of the pQCD factorization approach and
the three different kinds of mixing schemes: n-7’, 5-7'-G,
and 1-7'-G-7,. In Sec. III, we make the analytic calcu-
lations of the relevant Feynman diagrams and present the
various decay amplitudes for the studied decay modes in
leading order. In Sec. IV, all currently known NLO con-
tributions in the pQCD approach are investigated. In
Sec. V, we show the numerical results for the pQCD
predictions for the branching ratios and CP-violating
asymmetries of the considered decay modes, and calculate
and compare the relative strength of the LO and NLO
contributions from different sets of the Feynman diagrams
or from different sources. The summary and some discus-
sions are included in the final section.

II. THEORETICAL FRAMEWORK

As is well known, the pQCD factorization approach has
been widely used in studies for the two-body charmless
hadronic B/B,/B. — M,M; decays (here M; stands for
the light pseudoscalar meson P, the vector meson V, the
scalar meson S, etc.) [5,8,9,12,14,19-25]. Some pQCD

094003-2



ANATOMY OF B — K7” DECAYS ...

predictions—for example, the large CP-violating asymme-
tries AYL(B® — 7 7~) = (30 £ 10)% in Ref. [6] and
the large branching ratio Br(B; — 7+ 77) = 5 X 107% in
Refs. [20,26]—have been confirmed by experiments [25].
We here focus on the study of the four B — K7 decays.
For more details of the formalism of the pQCD factoriza-
tion approach itself, one can see, for example,
Refs. [9,12,21,27].

A. Outline of B — K71 decays in the pQCD approach

In the B rest frame, we assume that the light final-state
meson M, and M5 is moving along the direction of n =
(1,0,07) and v = (0, 1, 07), respectively. We use x; to
denote the momentum fraction of the antiquark in each
meson and k;; the corresponding transverse momentum.
Using the light-cone coordinates the B-meson momentum
Pp and the two final-state mesons’ momenta P, and P;
(for M, and M3, respectively) can be written as

M
Py = —‘29(1, 1,07),

7

M
P, = 429(1 — 12,73, 0p),

7

M
P, = —B(rg, 1 - r%, 0;),

V2

where r; = m;/M g with m; being the mass of meson M. If
we choose

3)

__mp

__ Mg 2 2
ki = —=(x1,0, k1), k xo(1 = r%), xo15, Korp),
1 2( 1 iT) 2 \/5( 2( 5), X215, Kor)

7

mpg
ky = —%

V2

The integration over the small components k; , k5 , and k3
will lead conceptually to the decay amplitudes,

(x373, x3(1 = r3), k3p). “4)

ﬂ(B - M2M3)
-~ [dxldxzdx3b1db1b2db2b3db3 : Tr[C(I)CI)B()Cl, bl)

X Dy (xg, by) Py, (x3, b3)H (x;, by, 1)S,(x;)e 50,
(5)

where b; is the conjugate space coordinate of k;7. In the
above equation, C(7) is the Wilson coefficient evaluated at
scale ¢, which includes the large logarithms (Inmyy /1)
coming from QCD radiative corrections to four-quark
operators. The functions ®g(x;, by), Py, (x,, by), and
®,,, (x3, b3) are the wave functions of the initial B meson
and the final-state mesons M, and M3, respectively. These
wave functions describe the hadronization of the quark and
antiquark in the meson B and M,;. The ‘“hard kernel”
H(ky, ko, k3, t) describes the four-quark operator and the
spectator quark connected by a hard gluon whose ¢? is in

the order of AMp, and includes the O(yAMj) hard
dynamics.
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The jet function S,(x;) in Eq. (5)—as given explicitly in
Eq. (B7) of Appendix B—is one of the two kinds of
Sudakov form factors relevant for the B decays considered,
which come from the threshold resummation over the
large double logarithms (In’x;) in the end-point region.
This jet function S,(x;) vanishes as x; — 0, 1, and smears
the end-point singularities on x; for meson distribution
amplitudes.

Similarly, the inclusion of kt regulates the end-point
singularities. The large double logarithms a In 2k should
also be organized to all orders, leading to a k1 resummation
[28]. The resultant Sudakov form factors Sg(z), S,(¢), and
S3(1) for the B meson and two final-state mesons M, ;—
whose explicit expressions can be found in Eq. (B9) of
Appendix B—keep the magnitude of k3 at roughly
O(Ampg) by suppressing the region with k% ~ O(A?).
The exponential function e 5@ in Eq. (5)—where s(r) =
Sp(0) + S,(2) + S3(2) or S(¢) = Sp(r) + S;(¢) withi =2 or
3 as shown in Eq. (B8) of Appendix B—is also called the
Sudakov form factor, which effectively suppresses the soft
dynamics at the end-point region [9]. Of course, more
studies are required to check the actual suppression effect
on possible nonperturbative contributions due to the intro-
duction of the Sudakov form factors. Some theoretical
errors may also be produced due to the uncertainties of
S,(x;) and =50,

For the studied B — K7 decays, the corresponding
weak effective Hamiltonian can be written as [29]

Ho = %{vuhvzq[q(moa'(m T Cow)04(w)])

- V,beq[i Cilw0y) |} + e, ©

where ¢ =d, s, Gp =1.16639 X 107> GeV 2 is the
Fermi constant. The O; (i = 1,..., 10) are the local four-
quark operators,

O = (abg)y-a(Gpta)y-a

05 = (ligby)v-a(Gpup)v—a; @

05 = (éaba)v—AZ(%fI'B)v—A:
q/
0, = (Q,Bboz)V*Az/(q/aqlﬁ)VfA’

! (®)
Os = (C?aba)v—AZ(%qlg)v+A:

q/
O = (@ﬁba)v—AZ(C_]fxq/g)vm,

q/
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3 -
0, = E(QQba)VfAzeq’(q'IBq:B)V%»A;
ql

2

3 ) (©))
0y = E(qaba)vazeq/(q/ﬁqlB)VfA:
ql

3 _
Og = —(qua)v—AZeq'(%qlg)wm
q/

3 _ _
Oy = E(Q,Bba)V*AZeq’(qilq'IB)V*A’
q/

where a and B are the color indices and ¢’ are the
active quarks at the scale my, ie., ¢ = (u,d, s, c, b).
The left-handed current is defined as (7,qp)v-a =
Ga¥s(1 = ¥s)qs and the right-handed current as
(@adplv+a = Gav,(1 + ¥5)qp.

In this paper, we will calculate B — K7’ decays in the
pQCD approach with the inclusion of all known NLO
contributions and focus on the effects of the newly known
NLO contributions to the form factors F5~X(0) and

FE1"(0) [14].

B. Different mixing schemes

Both 7 and 1’ mesons—according to currently available
studies [13,16,18,30]—may contain a small gluonic com-
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Firstly, in the FKS 7-%’ mixing scheme in the quark-
flavor basis, the physical n and n’ can be written as

cos — sin

Y= v )= (0 TN (™), a0

n' 7 singg cos ¢ J\ 7,
where ¢ is the mixing angle. The relation between the
decay constants (f7, 3, f’f?,, fj],) and (f,, f;) can be found
in Refs. [12,13]. The chiral enhancements m¢ and m have
been defined in Ref. [21] by assuming the exact isospin
symmetry m, = m, = my. The three input parameters f,,

fs» and ¢ in the FKS mixing scheme have been extracted
from the data of the relevant exclusive processes [13],

f,=0.07£0.02)f,  f,=(1.34%0.06)f,

(1D
¢ =39.3° *1.0°.
With f,. = 0.13 GeV, the chiral enhancements m{ and m}
consequently take the values of m{ = 1.07 GeV and m}, =
1.92 GeV [21].

In Ref. [16], the authors extended the conventional FKS
mixing scheme to include the possible pseudoscalar
glueball G, i.e., a small gluonic component in both 7
and 1’ mesons [30]. In their n-%'-G mixing scheme,
the physical states (7, /, G) are related to (ng, 71, )

ponent (an 7, or even a 77° component) through mixing. and (7, 71, g) through the rotation U(¢, dg) =
In order to check the mixing-scheme dependence of the Us(0)U,(d5)Us(8;) [16],
pQCD predictions for the physical observables of the
considered decays we will calculate the B — K7 decays Im) Ins)
in the following three typical mixing schemes (MS): 7") | = Us(0)U,(ds)| Im1)
(i) MS-1: The FKS scheme [13] of 5-n’ mixing in
g g IG) lg)
the quark-flavor basis’: 7, = (uit + dd)/\2 and
7, = S5. I7,)
(i) MS-2: The n-7'-G mixing scheme as defined in = Us(0)U,(¢c)U5(0)] Imy) | (12)
Ref. [16]. )
(iii) MS-3: The 5-1'-G-7n. mixing scheme as defined in
Ref. [18]. with the rotation matrices [16]
cosf —sinf O 1 0 0
Us;(0) = | sin@ cosf® 0|, Ul(dg) =10 cosdg singg |,
0 0 1 0 —singg cosdg (13)
cos@ +sinfsinf;A; —sing +sinfcos;A; —sinfsin ¢g
U(o, pg) = | sinp —cosfsinf;A; cosd —cosfcosh;A; cosOsingds |,
—sin 6; sin ¢ —cos 0, sin ¢ cos ¢

where 6; = 54.7° is the ideal mixing angle with cos §; =
1/3/3 and sin@; = +/2/3, the angle ¢ =6 + 6, and
the abbreviation AG = 1 — cos ¢g. One can see that the

"In the octet-singlet basis, one assumes 7, = (iiu + dd +
55)/+/3 and ng = (au + dd — 25s)/+/6.

matrix U(¢, ¢;) will approach the FKS mixing matrix
[13] in the limit ¢p; — 0, which means that the angle ¢ in
Eq. (13) plays the same role as the mixing angle in the FKS
mixing scheme [16].

The chiral masses m{ and m} in the 7-n'-G mixing
scheme can be written as [16]
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2
1 2
R et (AT Y, vs) a4

0
2m,  2m, Sq

_ Mg fq

2 1
my = —(Up - U )
0= 2, 2ms< 2" 5 fs 21

with the rotation matrix elements U;; having the form [16]

(15)

Uyy = (cos ¢ +sinfsin6;A)*m?

+ (sin¢p — cosfsin Hl-AG)zm%], + (sin 6, sin ¢ )>m2,
Up=Uy

= (cos¢ +sinfsinh;A;)

“(—sin¢ +sinfcos0;Ag)m3,

+ (sin ¢ — cos#sinH;A)

- (cos ¢ — cosfcos 0,-AG)mf7,

+ sin6;sin ¢ - cos O;sin pgm?,
Uy, = (—sin¢ +sinfcosf;Ag)*m3,

+ (cos ¢ — cos @ cos HiAG)zm%]/

+ (cos 6; sin ¢ ;)*m>. (16)
The decay constants associated with the physical (7, 1/, G)

states are related to those associated with (7, 7, g) states
via the same mixing matrix [16]
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range depending on the parametrization of the mixing
matrix, experimental inputs, and the fitting procedure.
Since current data and known theoretical estimations [17]
suggest a rather small gluonic component in 7, the angle
¢ should be small as well. Following Ref. [16], we also
take ¢p; = 12°.

For the mass of the pseudoscalar glueball, the
theoretical prediction for m; depends on the choice of
input parameters, such as (m,], My, fo fo etc). The theo-
retical estimations in Refs. [16,18] prefer a value of mg =
1.3-1.5 GeV. If we take f, = f, and f; = 1.3f in the
numerical estimations, we find that mg = 1.376 GeV
(see Table I of Ref. [18]) from the approximate correlation
relation between mg; and the other input parameters,
as given in Eq. (35) of Ref. [18]. For other input parameters
we also follow the choice of Refs. [16,18], and finally
we take

fqu’ﬂ’ fs=1~3f77, ¢:437°
b = 12°, mg = 1.376 GeV

(18)

in the numerical calculations when the 1-7’-G scheme is
adopted.

In the third n-1'-G-7, mixing scheme [18], finally, the
flavor states are transformed into the physical states
through the mixing matrix U(6, ¢¢, ¢),

5 s | In,)
Ty g fo Ja 1n') Inq>
v Iy l=u@ e 1 £ | an =U@b, d6 )| |, | | (19)
o P 6) 13
¢ Jo £ I7.) 1m0)
The mixing angle ¢ describes the mixing between the
flavor singlet ; and unmixed glueball g and can varyina  with the 4 X 4 mixing matrix [18]
J
clch; — sOcgsh; —cOs0; — sOchgcld; —sOspgehy —sO0sdgspy
s0cl; + cOchsst; —s0s0; + cOcpgcld; cOspged cOspgsd
U, b6, o) = ¢ “ | (20)
—s¢gs; —spgch, C¢GC¢Q C¢GS¢Q
0 0 _S¢Q C¢Q
f
where 6; = 54.7° is the ideal mixing angle, 8 = ¢ — 6, ) 5 “ fo 5 f
(here ¢ is the previous mixing angle in the FKS mixing 1 g ¢ g .
scheme), and c6 (s6) is the abbreviation for cos @ (sin 6) g ' LA U, og, ¢ Q) s § U
and similarly for others. With the definition of ¢ = 6 + 6, PR P i fi i fe
the rot[agon matr‘lx U, ¢g, de) in Eq. (20) approaches ? 1 f&fsf.
the mixing matrix U(¢, ¢) in Eq. (13) in the ¢ — 0 2

limit, or the FKS mixing matrix U(¢) [13] in the limits of
¢Q—>Oand¢c—>0.

The decay constants associated with the 1, 1/, G, and 7,
physical states are related to those associated with the 7,
75, & 7o states through the mixing matrix U(6, ¢¢, ¢o),

Furthermore, we find that the chiral masses m¢ and m}

in this mixing scheme are identical to those given in
Egs. (14) and (15). In the n-1'-G-7, mixing scheme, we
also take ¢, = 11° as per Ref. [18], while we choose
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the other input parameters to be the same as those given
in Eq. (18), i.e.,

0=—11°,

mg = 1.376 GeV.

Jo=1Fm
g = 12°,

fs=13f,

bo=11° (22)
Q_ )

C. Wave functions

The B meson is treated as a very good heavy-light
system. Its wave function can be written as

Oy = ﬁ(?z& + mp)ysdp(ky). (23)

Here we have adopted the B-meson distribution amplitude
¢p(x, b), widely used in the studies of B-meson hadronic
decays based on the pQCD factorization approach since
2001 [4-6,9,31,32],

M
2wb

byl b) = Nya(1 - x)zexp[ - S bb)z] (24)

where the b dependence was included through the
second term in the exponential function, the shape
parameter w;, = 0.40 = 0.04 has been fixed [9] from
the fit to the B — 7 form factors derived from lattice
QCD [33] and from the light-cone sum rule [34], and
finally the normalization factor Ny depends on the values
of w, and fp and defined through the normalization
relation

W

e (25)

fdxd)B(xb 0) =

The wave functions of the final-state mesons M =
(K, n4, m,) are defined as

Dy, (P, x;) = ﬁ?’s[?@&,(%) + mo; iy (x;)
+ mo; (i — 1y (x)] (26)

where my), is the corresponding meson chiral mass, and P;
and x; are the momentum and the momentum fraction of
M;, respectively. The explicit expressions of the distribu-
tion amplitudes ¢ MP T(x;) for M = (K, M4 M) are given in
Appendix A.

In the third 5-n’-G-7, mixing scheme, the 5, part of the
1" meson will contribute to the B — K7 decays through
the decay chain B — K7, — K7"). The wave function of
the 7, can be written as [35]

PHYSICAL REVIEW D 87, 094003 (2013)

@, (o 32) = eyl o (12) + g 85, ()} 20)

The distribution amplitudes ¢Z’f are of the form [35]

_ S, B x(1 —x) 0.7
7.0 = 9582¢;T x)[l—Z.Sx(l—x)] ’

oy (x) = 1.97

x(l — x) ]0.7 (28)

I, [
22N, L1 — 2.8x(1 — x)

III. B — Kn” AND B — K7, DECAYS
AT LEADING ORDER

In this section we will present the total decay amplitudes
for B— Kn” and B— Km, decays in the pQCD
approach at leading order.

A. B — K" decays at leading order

The B — Kn) decays have been studied by using
the ordinary n-n' mixing scheme and by employing the
pQCD factorization approach at the LO and partial NLO
level in Ref. [12]. We recalculated and confirmed the
relevant analytical formulas as given in Ref. [12]. For the
sake of the reader, we here present directly the decay
amplitudes obtained by evaluating the Feynman diagrams,
Figs. 1(a)-1(h).

For the factorizable emission diagrams, Figs. 1(a) and 1(b),
the decay amplitudes for the cases of a B — K transition
are of the form

V-A _ _V+A
FeK - FeK

1 0
= _87TCFM§'/(') dxldx3ﬁ bldb1b3db3¢3(xl,bl)

X AL + x3) @ (x3) + r3(1 = 2x3) (% (x3)
+ R ())IE(1)h,(x), x3, by, b3)
+ 2r3 R (3)E(th)h,(x3, x1, b3, by)}, (29)

1 0
F§£:_167T}’2CFM4B[ dXIdX3f bldb1b3db3</>3(x1,b1)
0 0

X{[ph(x3) + r3(2+x3) PR (x3) — r3x3h & (x3)]
X E (ty)h(x1,x3,b1,b3) +2r38 (x3)E, (1))
X he(x3»xl’b3)bl)}’ (30)

where Cp=4/3, ry=r, =ml"/Mp, and ry =rg =
mK /M. The hard functions, E,(¢) and h,, and the hard
scales ¢ are given in Appendix B.

The contributions from the nonfactorizable emission
diagrams, Figs. 1(c) and 1(d), are
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4 o0
MYh = - 32”56”43 [ axianadss [ bidbibadbry(, b) B30 =069~ s rs) = B

X EL(tp)h, (x1, %2, %3, by, by) + [ — (6 + x3) g (x3) + r3x3(dR (x3) + d & (x3)1EL (2, (x1, X2, X3, b1, ba)}, 31

4 o0
MY = —”ngMB’z fo ' dx drydey fo bydbybydby gy, b — x2) () (B2 062) + ST (1)) + raxs(bL(x2)

- Q”Z,(Xz))(‘f’?()%) + @k (x3)) + (1 = x2)r3(p% (x2) + P53 (x2)) (L (x3) — P (x3)IEL(2,) R, (x1, %o, x3, by, b))
— [0 0% (x3)(D7 (x2) — P1(x2)) + r3x2(PT (x2) — BT (NP (x3) = Pk (x3)) + r3x3(P7 (x2) + D7 (02)) (P (x3)

+ ¢k (x3)] - EL(1))h, (x1, x5, x3, by, b))}, (32)
327 C M4 (N
M = - [ dxidrad [ bidbibadbaytn, b BN x5~ D) + ri( ) + Ghs)]
6 0 0
X EL(tp)h,(xy, %2, X3, by, by) + [xak(x3) + r3x3(dk(x3) — dR(x3)JEL())h, (x), X0, X3, by, by)}, (33)

where X; = 1 — x;, while ¢, denotes g{)nq or ¢, .
For the factorizable annihilation diagrams, Figs. 1(e) and 1(f), the decay amplitudes are of the form

FVI;A — FVI;—A
= —8Cy} [ dradss [ badbabidby X s~ D)) — drars ) b ()
+ 2ryr3x; ¢f,(xz)(¢§(x3) - ¢%(x3))]Ea(tc)ha(x2r X3, by, bs) + [x2¢§‘7(x2)¢;‘}(x3) + 272’3(‘151;(?52)
— 1 (0)) i (x3) + 2rr3x5 (7 (00) + d7(02) PR () E (1) Ry (X3, X, b3, by}, (34)
P = —16mCothy [dvadns [ badbabidbil2rad g ) + (1 x)rs bl (@) + )]
X E(t)hg(xp, X3, by, b3) + [2r30%(x2) pR(x3) + raxa(dh(x2) — &1 (x2)) p% (3)E, (1) h,(%3, X, b3, by)}. (35)

The contributions from the nonfactorizable annihilation diagrams, Figs. 1(g) and 1(h), are

327TC 1‘44 1 00
MXEA = _ﬁ fo dxldxzdx_gfo bldblbzdbzd’g\.(xl’ bl){[_xzd’?;(xz)(ﬁ?}(xa) - 4r2r3¢‘;(x2)¢2(x3)

+ rar3(1 = x)(h7(x2) + d5 ()N (@E(x3) = di(x3)) + rarsxs(@h(x2) — 7 ()N (i (x3) + Pi(x3))]
X Ef(tg)hng(x1, X0, X3, by, by) + [X30%4(x) b (x3) + X3rars (D (xa) + d1(x2)) (PR (x3) — dk(x3))

+ xoror3(dh(x2) — L (0)) (% (x3) + P () IE, (L)) R0 (x1, X2, X3, by, by)}, (36)
4 o0
MXI?A =~ 3277\(/%]”3 f()l dxldxzdx3f bydb,bydb, pg(xy, by){[r>(2 — xz)(¢f7)(x2) + ¢£(x2))¢j‘}(x3)
= r3(1 + x3) 5 (02D (x3) — DR (NEL (1) R0 (x1, X0, X3, by, by) + [raxa(dh(x2) + dF(x2)) i (x3)
— 13 X35 () (R (x3) — PR () IEL (1)) M (x1, X2, X3, by, b))}, (37)
327 Cr M5 0
M =~ [andindy, [ bidbibadbabaten bl — D)) — drars b # )

+ rar3xs (@ (x) + &1 (0)) (D% (x3) — Dk (x3)) + rar3(1 — x)(Ph(x2) — 1 (X)) (DR (x3) + DR (x3))]
X Ef(t9)hyg(x1, X0, X3, by, b)) + [x20%(x0) g (x3) + xor2r3(d5(x2) + ¢7(x2)) (D% (x3) — Bk (x3))
+ ror3(1 — xs)(d?f,(xz) - ¢£(x2))(¢,’2(x3) + ¢17;(x3))]EZ(l£1)h;m(x1, X2, X3, by, b))} (38)
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The evolution functions E;(f) and hard functions h;

1 ] \
appearing in Eqgs. (29)-(38) are given explicitly in = 7 —ék .44/— —:k

Appendix B. B g L K . g

If we exchange the position of K and 7" in Fig. 1, we (;) (g) (C 1
will find the corresponding decay amplitudes for the case
of B— 77(/) transitions. Since the K and 77(/) are all FIG. 2 (color online). Feynman diagrams that may contribute

~

(d

=

pseudoscalar mesons and have similar wave functions,  to the B — K7 decays in the pQCD approach at leading order.

the decay amplitudes for new diagrams—say Fen ,
FYA FSP MYy A AVHA  pgSP EV-A  EV+A  pSP B. B — K7, at leading order

> ens > en en» an an ans

MXWA, MX;r A and M35P—can be obtained from For B — K7, decays at leading order in the pQCD

those as given in Egs. (29)_(38) by the following  approach, the Feynman diagrams which may contribute

replacements: are shown in Fig. 2. The B — K7, decays have been

studied in Ref. [23] in the pQCD approach at the full

L ¢A L o ¢P leading order and with the inclusion of the partial NLO

o K " 39 vertex corrections. We recalculated theses decays and con-

oy ¢n(”’ ry < Ik firmed the results of Ref. [23]. The relevant decay ampli-

tudes are the following:

1 00
Fox= _SWCFM?;L dxldx3ﬁ) bydbybsydbydp(xy, b1 — 5 )1 + x3) — X373, 15 (x3)

+ r3(1 = 2x3)[ @k (x3) + P (x3)] + r3r5, [(1 + 2x3) R (x3) — (1 — 2x3) % (x3)11E, (2,) R, (x1, x3, by, b3)

+2r3(1 = 13 )R () E (£ R, (x5, x4, b3, by)}, (40)
32 e ® v 2\ 4A 2\ AT

Mn(,l( = %WCFMBIO dx dx,dx; /(; bydb bydbyg(xy, by) C(xz)[%(l - 27”7,(,,)¢K(x3) — 2x3r3(1 — rm)¢1<(x3)]
: E’e(t})hﬁl(xl, X, X3, by, by), (41)

where ry = mf /mg, r, =m, /mg, and r. = m./mp. ¢} is the leading twist-2 part of the distribution amplitude
for the pseudoscalar meson nc The evolution function E?(#), hard function h;, and the scale t,, t, are given in
Appendix B.

In the leading-order pQCD approach, the total decay amplitude for the B — 7K decay can then be written as

M(B - ncK) [V:bvcva - V[*bvts(a?) —ds T ay + a‘))]

\/— n Kfn
G
+ LM, k[VEVeiCy — Vi V,(Cy + Cg + Cg + C)], (42)

2

where a; is the combination of the Wilson coefficients C;,

c C; C;_
alz—C21+¥, a;=C; + 13“, for i =3,5,79; a;=C, +—=1

, fori=40628,10. (43)

C. Total decays amplitudes of B — Kn') decays

For B — K%y and B — K* 7 decays, by combining the contributions from all possible Feynman diagrams (Figs. 1
and 2), one finds the general expressions for the total decay amplitudes (here the Wilson coefficients and Cabibbo-
Kobayashi-Maskawa (CKM) factors are all included),
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M(K®n) =

PHYSICAL REVIEW D 87, 094003 (2013)

G _ - 1 1 _
TS{)‘M[an%FXKA +CM MF ()] - )\f<2a3 ~2as—5ar+ §a9)f%FZK A

1 1 1 _ 1
- )\z[<a3 tag—astsar—5a Ealo)ffyFXK At (‘16 - Eag)

11 L 1 _
IRFS P (Cot €5 C 3 Cu M Fa(d) + (26, +5Coo LM F (9)

SFSR + [aFok Fa(p) + fpFab Fi()

1 i 1 1 i
+ (Cs - §C7)MZK+A' Fy(p) + (2C6 + ECS)Mfll;’qﬂ(@ + (Cs - ECS)MSI? Fy(o)

+ (0!4 - %alo)[fBFXEAFz(@ + [k Fl AF () + fuFiy AF ()] + <C3 - %C9)[MXEAF2(¢) MU AF (@)

MY AR ()] + <C5 —%a)[MX;Aw) M

VAR () +MX;AF1(¢)]]}+ MB—1.K)*F.(6. b6 ).

(44)

G _
M(K*n) = —F{)\u[azf%FXK_A + CMUcMF (@) + a) fal FUg A Fa(@) + FUrAF ()] + a) fxFYAF ()

NG

T+ C MY Fo() + MY, AF () + MY AF ()] — At[(z% ~ 24;

n° eK

1 1 _
_ E617 + Eag)f%FXKA

1 1 1 1
+ ((13 + 04 - a5 + 507 _—09 - —010) XFV_A + (a6 - Eag) %ng

2 2
1 1

s 1 . 1 i
+ <C3 +Cy — §C9 - ECIO)MZK A, (¢) + <2C4 + ECIO)MZK () + (Cs - §C7>MZI:A’ Fy (o)

+ (200 + 3 MEEF) + (Co= S CMEFA0) + (s + a0l FsFi Fo(d) + eFLy *Fi()

+ faFun *Fi(P)] + (ag + ag)[fsF3xF2(¢) + fxFon Fi(@) + frFanFi(d)] + (Cs + Co)[MY A Fy()

+ MU AR (@) + MY AF ()] + (Cs + C)IM,

+ M(B - ﬂcK) * FC(H’ ¢G’ ¢Q):

where A, =V, Vi, A, =V}, V,, and the Wilson coeffi-
cients a; are the same as those defined in Eq. (43). The
expressions for the mixing parameters F l(-’)(qb) depend on
the choice of the different mixing schemes:
(1) In MS-1, i.e., the FKS 5-7' mixing scheme, the mix-
ing parameters F; 5(¢) and F ,(¢) are of the form

V2F|(¢) = Fj(¢p) = cos (),
Fy(¢) = —V2F|(¢) = — sin ().

(i) In MS-2, i.e., the n-n'-G mixing scheme, F;,(¢)
and F{,(¢) are of the form

(46)

Fi(¢) = %(cos ¢ + sinfsin 0,A;),
Fr(¢p) = —sin ¢ + sin 6 cos 6,A,

1 (47)
Fi(¢) = —=(sin ¢ — cos Osin 6;A),

V2

Fi(¢) = cos ¢ — cos O cos 0;Ag.

(iii) In MS-3, i.e., the third n-%'-G-7,. mixing scheme,
Fy,(¢) and F ,(¢) are the same as those defined in

VEAE, () + MYIAF, () + Mx;AF1<¢>]]}

(45)

Eq. (47). For this case, the 7. also contribute
through mixing, and the relevant mixing parame-
ters are

F.(0, ¢, po) = —sinfsin ¢ sin ¢,

Fi(0, ¢, po) = cosfsin ¢ sin . “48)

Finally, the total decay amplitudes for B — K°%’ and
B* — K* 7' in the pQCD approach at leading order can be
obtained easily from Egs. (44) and (45) by the following
replacements:

=1l = r
Fa() = Fy()),

Fi(¢) = Fi(9),

Fo($) — FL(e). “9)

IV. NLO CONTRIBUTIONS IN THE
PQCD APPROACH

In this section we will present the total decay amplitudes

for B— K" decays in the pQCD approach with the
inclusion of all currently known NLO contributions.
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A. General analysis of the NLO contributions
in the pQCD approach

As is well known, the power-counting rule in the pQCD
factorization approach [21] is rather different from that in
the QCD factorization [7,36,37]. When compared with the
previous LO calculations in pQCD [9], the full pQCD
predictions should include the following NLO contributions:

(1) We should use the Wilson coefficients C;(my,) at the

NLO level in the naive dimensional regularization
scheme [29], the NLO renormalization group evolu-
tion matrix U(t, m, «) as defined in Ref. [29], and the
strong-coupling constant a,(z) at the two-loop level.

(2) Besides the LO hard kernel HO(a,), all the

Feynman diagrams that contribute to H"(a?2) in
the pQCD approach should be considered. The typi-
cal Feynman diagrams that contribute to HV(a2) at
the NLO Ievel in the pQCD approach are shown in
Figs. 3-5, and can be classified into six types.

(1) The vertex correction: the NLO contributions
from the Feynman diagrams as shown in
Figs. 3(a)-3(d), which were evaluated ten years
ago [21,36,37].

(i) The quark loops: the NLO contributions from
the quark loops as shown in Figs. 3(e) and 3(f);
the relevant analytical formulas can be found in
Ref. [21].

(iii)) The magnetic penguins: the NLO contributions
from the operator Og,, as shown in Figs. 3(g)
and 3(h). These Feynman diagrams were eval-
uated several years ago [38].

(iv) The NLO form factors (FF): i.e., the NLO
contributions to the B — P transition form
factors F§—F(0) with P = (K, n,) in this

1 (K)
VA . 27 Y
B K

(")

b 4 — —
B Osg Ogy
(c) 0 (&) (h)

FIG. 3 (color online). The typical Feynman diagrams that
provide NLO contributions to B — K7 decays in the pQCD
approach. (a)-(d) are the vertex corrections, (e)—(f) are the
quark-loops, and (g)—(h) are the chromomagnetic penguins Os,.

FIG. 4 (color online). The typical Feynman diagrams that may
provide NLO contributions to B — P form factors.

PHYSICAL REVIEW D 87, 094003 (2013)

paper. The typical relevant Feynman diagrams
are shown in Fig. 4, and were calculated very
recently in Ref. [14].

(v) The NLO contributions from the spectator dia-
grams as shown in Figs. 5(a)-5(d), which are
obtained by adding a new gluon line between
any two quark lines in Figs. 1(c) and 1(d), or by
replacing the one-gluon lines with a three-
gluon vertex in Figs. 1(c) and 1(d). Such con-
tributions are still unknown.

(vi) The NLO contributions from the annihilation
diagrams, as shown by Figs. 5(e)-5(h), which
are obtained by adding a new gluon line be-
tween any two quark lines in Figs. 1(e)-1(h).

Such contributions are also unknown.

The NLO contributions from the Feynman diagrams in
Fig. 3—the vertex corrections, the quarkloops, and chro-
momagnetic penguins—were evaluated several years ago
[21,36,38] and taken into account in our previous studies
for the B— K7 decay in Ref. [12].

The Feynman diagrams shown in Fig. 4 can provide the
NLO contributions to the B — P transition form factors and
have been calculated very recently in Ref. [14]. The authors
of Ref. [14] calculated the NLO corrections to the B — 7
transition form factors in the leading twist in the k4 factori-
zation theorem, and they found that the NLO part can provide
a 20-30% enhancement to the LO results for the correspond-
ing form factors. Since 7, K, and 77(’) are all pseudoscalar
mesons and have similar wave functions, it is straightforward
to extend the calculations in Ref. [14] to the cases for the
B — K, n" transition form factors. In this paper, we will
consider the effects of the NLO part of the form factors.
According to general expectations, the enhanced form factors
may lead to a larger branching ratio for B — K7 decays.

The still-missing NLO parts in the pQCD approach are
the O(a?) contributions from nonfactorizable spectator
diagrams and annihilation diagrams, as illustrated by
Figs. 5(a)-5(h). The analytical calculations for these
Feynman diagrams are still absent at present. But it is
generally believed that the NLO contributions from these
Feynman diagrams should be small.

5 \ES 4{ _\:ES 4_ Wﬁ

P EETEE

FIG. 5 (color online). The typical Feynman diagrams that may
provide NLO contributions to B — K7 decays in the pQCD
approach. (a)—(d) are the spectator diagrams and (e)—(h) are the
annihilation diagrams.

O

Oﬂﬂ
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(i) The contributions from the nonfactorizable spectator
diagrams in Figs. 1(c) and 1(d) at leading order are
strongly suppressed by the isospin symmetry and
color suppression with respect to the factorizable
emission diagrams, Figs. 1(a) and 1(b). The NLO
contributions from Figs. 5(a)-5(d) are higher-order
effects on small LO quantities, and therefore should
be much smaller than the LO ones.

(i) The annihilation spectator diagrams at leading order,
i.e., Figs. 1(e)-1(h) are power suppressed and gen-
erally much smaller with respect to the contributions
from the emission diagrams [Figs. 1(a) and 1(b)].
The contributions from Figs. 5(a)-5(d) are also the
higher-order corrections to the small quantities and
therefore should be much smaller than its LO parts.

In the next section, we will explicitly evaluate the nu-

merical values of the individual decay amplitudes corre-
sponding to different Feynman diagrams, and will compare
the size of every part of the total decay amplitude for the
considered decays. We will try to make a simple and clear
comparison between the contributions from different
sets of Feynman diagrams or from the different sources
numerically.

B. The NLO contributions to B — Kn') decays

In Ref. [12], by using the ordinary FKS -5 mixing
scheme, we calculated the branching ratios and
CP-violating asymmetries of the four B — K7 decays
at leading order and partial next-to-leading order, i.e., the
NLO contributions from the Feynman diagrams in Fig. 3

|

PHYSICAL REVIEW D 87, 094003 (2013)

were taken into account in Ref. [12]. Fordetails about the

calculations of these NLO contributions and the expres-

sions of their relevant functions, we refer the reader to

Ref. [12]. For the sake of the reader, we here give a brief
summary of these “old” NLO parts.

(a) Vertex corrections: The vertex corrections to the

factorizable emission diagrams, as illustrated by

Figs. 2(a)-2(d), were calculated years ago in the

QCD factorization approach [7,36,37]. The differ-

ence between the cases that do or do not consider the

parton transverse momentum k; are very small and

can be neglected [21]. The NLO vertex corrections

will be included by adding a vertex function V;(M)

to the corresponding Wilson coefficients a;(u)

[36,371,
agpm) . Cia(u)
aj (p) — aj (u) + 4: Cr 1,3# Vi2(M),
a(u) . Cipi(p)
a(p) = ai(w) + 2 0, Ty ),
4 3
fori=3,5709,
a,(n) , Ciy(pm)
a(p) — a;(pw) + ~ Ccr—=1 £ Vi(M),
4qr 3
fori =4,6,8, 10, (50)

where M is the meson emitted from the weak vertex.
When M is a pseudoscalar meson, the vertex func-
tions V,(M) can be written as [21,37]

1210 — 18 + 28 1 axgf (x)g(x), for i =1—4,9,10,
ViM) = { —12In" + 6 — 28 [l vt (x)g(1 —x), fori =57, (51)

—6+ 258 fldxef(x)h(x),

where f, is the decay constant of the meson M, and
the hard-scattering functions g(x) and h(x) can be
found in Ref. [12].

(b) Quark loops: The contribution from the so-called
“quark loops™ is a kind of penguin correction with
the insertion of the four-quark operators, as illus-
trated by Figs. 3(e) and 3(f). We here include the
quark-loop amplitudes from the operators O, and
03¢ only. The quark loops from O;_;y will be
neglected due to their smallness.

For the b — § transition, the contributions from the
various quark loops are given by

I . (M)
Hé;]f) = Z Z qu qs (Iu‘r 12)
q=u,c,t ql
X (by,(1 = ys)T*s)(@y*Tq"), (52)

fori = 6,8,

where /2 is the invariant mass of the gluon, which
attaches the quark loops in Figs. 3(e) and 3(f).
The functions C?(u, [*) can be found in Ref. [12].
The ‘“‘quark-loop” contribution to the considered
B — Kn"” decays can be written as [12]

M,?2—<Kn|3{ 1B

Z ViV M) Fa($) + MY Fy(4))

q u,c,t
(53)
ME =(Kn'| H B
G . @) @)
éq%tvqu[w Fi(¢)+ M ()]
(54)
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where F (l')2(¢) are the mixing parameters (which have been defined in previous sections), while the decay
amplitudes Mf,?;s and M (Q)K are of the form [12]

8 1 00
Mﬁg,)h = \/—EC%m‘gfo dxldxzdx3[0 bydb bydbydp(xy, by) - {[(1 + x3) pi(x3) 5 (x2) + rg(1 — 2x3) (i (x3)

+ P (x3)d% (x2) + 21, di(x3)dh (x2) + 2rgr,, (24 x3) PR (x3) — X305 (x3)) P (x2)]
“ED(t,, PYh,(xy, x3, by, bs) + [2rg oL (x3) 4 (x2) + drgry, dR(x3)dh (x2)] ED(1), I?)h,(x3, xy, b3, b))}
for the B — K transition and (55)

M9, =%c2m3 [ awidxadss [ bidbibsdbsbpta, b)) L0 + x84, () + (1 = 2685, 33

+ @3, () PR () + 2y (x3)pf(x2) + 2ry k(2 + x3) P (x3) — X307, (x3)) Pk (x7)]
“E'D(1,, PYh,(xy, x3, by, b3) + [2r, @7, (x3) P (x2) + dryr s (x3)Pi(xs)]- ED(t), I”)h,(x3, x1, b3, by)}
(56)
for the B — 7 transition. Here, r, = m¢/mp and ry. = my/mpg. The expressions for the evolution functions
E(q)(tq, I?) and E(‘?)(r;, 1), as well as the hard functions h,(x;, x3, by, b3) and h,(xs, x;, b3, by), can be found in
Ref. [12].

(c) Chromomagnetic penguins (MP): This is another kind of penguin correction but with the insertion of the Og,. The
corresponding effective weak Hamiltonian for the b — §g transition is of the form [21]

cmp __ GF 8s

eff \/_ 8 Q2

where the effective Wilson coefficient Ceff = Cg, + Cs [21]. The total chromomagnetic penguin contribution to the
considered B — K7 decays can be wrltten as

Miy? = (Kn| HGPIB) =

my Vi Vi Callb,o# (1 — y5)T4GY,, s (57)

ij I S

Sr\IME) Fa(@) + MO F ()] (58)

a2

ME — (K| HLEP|B) = — ZLAIME) Fi($) + MY Fi(4)], (59)

\/_

where the mixing parameters F Y »(¢) have been defined in Sec. II. The decay amplitudes M %37 and M (g)K are obtained by
evaluating the Feynman dlagrams in Figs. 3(g) and 3(h) [12],

8 1 o0
M%’f,c = _%C%mgﬁ dxldxzdx3](; bydb,bydbybydbypp(xy, by) - {{2(—1 ~|—x3)q’>A5(x2)¢’I‘}(x3)

+ry (14 x3)[ =367 (x5) + ¢7, ()% (x3) + rgl(=3 + 2x3 + x3) P (x3) + (— 1 + 223 — x3) P (x3)] 5 (x2)
+3r, rel(—1 = Xy + X3+ 2x0x3) p R (x3) + (1 — xp — x5 + 2x0x3) Pk (x3) ] % (%)

+ry re[(— 1+ X0 + X3 — 2x0x3) % (x3) + (1 + X — x3 — 2x0x3) P (x3) |, (x2)} - Eo(2,)h, (A, B, C, by, by, by, x3)
— [4rg %, (x2) Pk (x3) + 21, rx pk(03) B (x3) — b7, (x2))]+ Ep(t)ho(A', B/, C', b3, by, by, xy)}, (60)

8 1 00
M;ég,)?q = —%C%m%fo dxldxzdxsfo b1db1bydbyb3dbyp(xy, by) - {2(—1 +x3)¢?}(x2)d)§‘74(x3)

+ rgxp(l +x3)[—3¢%(x) + ¢1T((x2)]¢3474 (x3) + rp[(=3 +2x3 + xg)d’P (x3) + (=1 +2x3—x3)¢p (xz)]ﬁb (x2)
+3r,rg[(—1—xp + x5 + 2x2X3)¢§q(x3) +(1—x—x3+ 2x2x3)¢£q(x3)]¢x(x2)

+ ryrkl(=1 4 x5 4 x3 = 2x0023) ) (x3) + (1 + %, — x5 — 2000x3) @1, (x3)]pk (x2)} - Eg(1)hg(A, B, C, by, b3, by, x3)
— [4r, dx () b7 (x3) + 21y rkxa ) (x3)3b(xy) — Pl (x2))] - Eg(t)hy (A, B!, C', b3, by, by, 1)}, (61)
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— 4
where r,, = mg/mp, r,

PHYSICAL REVIEW D 87, 094003 (2013)

= m}/mpg, and rx = mf /mp. The explicit expressions of the evolution functions £ ¢ and the hard

functions %, in Egs. (60) and (61) can be easily found in Ref. [12].

C. The form factors at NLO level

As mentioned in the Introduction, Li ef al. derived the kr-dependent NLO hard kernel V) for the B — 7 transition
form factor [14]. We here extend their results for the B — 7 form factors to the ones for B— K and B — (nq, n;)

transitions, under the assumption of SU(3) flavor symmetry. As given in Eq. (56) of Ref. [14], the NLO hard kernel H) can

be written as

HY = F(x}, x3, , Kp M {OHY

C P 2
ay(py) F[ In (lnt 13)1
4 m?

4 2 {1 2 ms

1 7 3 15
(21n£—13 + - g Innp — Z)lnxl + (§ Innp — §>lnx3 + (—
101 219
+——m+ HO,
a8 " 16]

where the scale | = 25mg and n = 1 — (p; — p3)?/m}
is the energy fraction carried by the meson that picks up the
spectator quark. For B — Kn,, K7, decays, the large
recoil region corresponds to the energy fraction n ~
O(1). For B— Kn,, n(K) ~ (1 = r2 ). p; is the factori-
zation scale, which is set to be the hard scales

1 = max (Jxzqmg, 1/b,1/b3) or
tb = max (\/xl nmp, 1/blr 1/b3);
corresponding to the largest energy scales in Figs. 1(a) and

1(b), respectively. The renormalization scale w is defined
as [14]

m% 5 2 |2
po=t(pug) = {EXP[CI + (lng—f + Z) In Mé :le X3 } J7rs
1 B

(64)

(63)

with the coefficients

1 1 2 2
c = —(—S—llnn)lnn-i- lnm3(31 —+2)

416 2 2\ g
ot , 219
48 16"

2 7 1 7 3
62=—(21n%+§1n7]—1), c3=—§ln7]+§.
1

At the NLO level, the hard kernel function H can then be
written as

H=H%a,) + HY(a?)
=[1+ F(xy, x3, o oo 1 §)JHO (). (65)

7 1
+—ln 2(x1x3) +fln X
my 16

1
+-1 1
4 nx;inxs

Lomg(  mj
T )iy — L8 (31" 4 2
416 n")n" 2 gf( 2 )

(62)

D. NLO contributions to B — K7, decays

For B — 1.K decays, the NLO contributions include
two parts: (a) the NLO vertex corrections to these decays,
which have been taken into account in Ref. [23], and
(b) the NLO contributions to the B — K transition form
factors, which is the newly known NLO part.

Since the emitted meson is 1. = cc, the soft and col-
linear infrared divergences of the four-vertex correction
diagrams will cancel each other. So these vertex correc-
tions can be calculated without considering the transverse-
momentum effects of the quark at the end-point region, the
same way as in the collinear factorization theorem.

The NLO vertex corrections can be included through the
redefinition of the Wilson coefficients,

ay — a, +—CFC2(—18 + 121n@+f,),
4 3 m

C.
a;— a; + 2 ¢ ”'(—18+121n@+f,),
47 M
fori =309,
o C'+1(M)( my, >
—a; ——Cp—L——=(-6+12In—+ f;)
aj=aj = g 5 F T3 n,u S

for j =5,7, (66)

where the function f; is of the form

fi=2 szc [01 dx¢}; (x) [3(1 29+ 3(0n(1 — 2) — im)
2z(1—x)
*ﬁ]’ “

— 2 2
where z = mj, /my.
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The NLO contributions to the B — K transition form
factors can be included for the B — K1, decay in the same
way as for B— Kn'") decays.

V. NUMERICAL RESULTS AND DISCUSSIONS

A. Input parameters

We use the following input parameters [10,11] in the
numerical calculations (all masses and decay constants are
in units of GeV):

fs =021, fx = 0.16, fq, = 0.4874,

m,, = 0.5475, m,y = 0.9578, mgo = 0.498,
mg+ = 0.494, mog = 1.7, Mp = 5.28,

my = 4.8, m, = 1.5, m, =298,

My, = 80.41, Tgo = 1.53 ps, T+ = 1.638 ps.

(68)

For the CKM quark-mixing matrix, we adopt the
Wolfenstein parametrization as given in Ref. [10,11],

Via = 0.9748, Ve = A = 0.2246,
|V,,| =3.61 X 1073, V., = —0.225,
V., = 0.9748, V., = 0.04197,
[V,4| = 8.8 X 1073, V,, = —0.042,
V., = 1.0, (69)

with the CKM parameters A = 0.2246 = 0.0011, A =
0.832 +0.017, p=10.130*+0.018, and 7% = 0.350 =
0.013.

B. Form factors at the LO and NLO levels

We first calculate and present the pQCD predictions for
the form factors at zero momentum transfer for B — K7
decays at the LO and NLO levels, respectively. In the
calculation, we consider three different mixing schemes.

In this paper the form factors F, g_'”(O) and Fgﬁ"’(O) are
defined as

Fgﬁ"(O) = cos </>F€_'77"(0)1,

FE(0) = sin ()P (0), o

in the ordinary FKS -7’ mixing scheme, and

Fg_"’(O) = [cos ¢ + sin@sin 6,(1 — cos d)G)]Fg_m”(O)U,

Fg_"’/(O) = [sin ¢p — cos 0 sin H,;(1 — cos qu)]Fg_'n"(O)H
(71)

in the MS-2 and MS-3 mixing schemes. One should note

B— . B—
that the form factor F, "(0), is different from F, "*(0);,
since some relevant parameters in the distribution
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TABLE I. The LO and NLO pQCD predictions for the form
factors of the B — Kn”) decays for three different mixing
schemes.

Form factors MS LO NLO

Fy™(0) 1 0.20 0.26 * 0.04
2,3 0.28 0.33 = 0.06

F5=X(0) all 0.37 0.43591

amplitudes, such as Py, = 2m,17 / Mgy, are different in dif-
ferent mixing schemes. The pQCD predictions for the
numerical values of the form factors for three different
mixing schemes are all listed in Table I, and they are
obtained by using the central values of all input parame-
ters. For the relevant mixing angles, we take ¢ = 39.3° in
the MS-1 mixing scheme, while we take 6; = 54.7°, 8 =
—11°, ¢ =0 + 0; =43.7°, and ;5 = 12° in both the
MS-2 and MS-3 mixing schemes. The error comes from
the uncertainty of w, = 0.40 = 0.04 GeV.

From the numerical values of the form factors in Table I,
we can see that (a) the form factors are the same for the
1-71'-G mixing scheme and the 1-7'-G-7, mixing scheme
since the 77, component in the 1-7'-G-71,. mixing scheme
does not affect the evaluation of the form factors F g —n" 0)
and F57%(0), and (b) the NLO contributions also provide
~20% enhancements to the corresponding form factors.

C. Br(B — K7") in the %-n' mixing scheme

In the B rest frame, the branching ratio of a general
B — M,M; decay can be written as

Br(B — M2M3) = Tp le(B - M2M3)|2’ (72)

16mmp

where 75 is the lifetime of the B meson and y = 1 is the
phase space factor, which is equal to unity when the masses
of the final-state light mesons are neglected.

Using the input parameters and the wave functions as
given in previous sections, it is straightforward to calculate
the CP-averaged branching ratios for the four B — K5
decays considered in different mixing schemes. For the
case of the ordinary 7-n’ mixing scheme, the pQCD
predictions are listed in Table II, where the label
“NLO-1" refers to the pQCD predictions with the inclu-
sion of the same set of NLO contributions as in Ref. [12].
The label “NLO” in Table II means that all currently
known NLO contributions are included, especially the
NLO part of the form factor obtained by evaluating the
Feynman diagrams as shown in Fig. 4 [14]. For compari-
son, we also list the corresponding experimental measure-
ments [10] and the theoretical predictions in the pQCD
approach [12] and in the QCD factorization (QCDF) ap-
proach [37].

Of course, the NLO pQCD predictions for the
CP-averaged branching ratios still have large theoretical
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TABLE 11
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The pQCD predictions for the branching ratios (in units of 107%) in the ordinary

7-m' mixing scheme with ¢ = 39.3°. The label “NLO” means that all currently known NLO

contributions are included.

Channel LO NLO-1 NLO Data [10]  pQCD [12]  QCDF [37]
B — K%y 2.12 2.76 2.62135 1.2379%] 21138 1.1%34
B — K%/ 27.9 483 57.28%37 661 3.1 50.37158 46.57313
Bt —K'n 3.83 3.78 4.0738 2.47022 3.2432 1.9739
B*—K'n' 303 49.8 5877240 711 +26 51.07189 49.17432
uncertainties. If we take into account the effects of the Ref. [12] (i.e., the results as listed in the

uncertainties of the main input parameters, we find that
Br(B"— K°n)
=[2.625535(w,) 102 (m) 55 (Fp) T104(a)] X 1076,
Br(B"— K 7%')
=[57.27 183 (w)) 155 (m) T 154 (f5
Br(B* — K" n)
=[3.9741%](w,) 1350 (m,
Br(B* — K" ')
=[58.7513(w},) F230(my) T 15T (fp) T34 (@)1 X 1076,

(73)

Hi(a)]x 1076,

(a5 1075,

where the major errors are induced by the uncertainties of
w, =04 *0.04 GeV, m; =0.13*0.03 GeV, fp=
0.21 = 0.02 GeV, and the Gegenbauer moment a,
0.44 = 0.22 (here a) denotes a,’ or aj*), respectively.
The total theoretical errors in the NLO pQCD predictions
as shown in the fourth column of Table II are obtained by
adding the four individual theoretical errors in quadrature.
From the numerical results as given in Eq. (73) and Table II
we make the following points.

(i) By comparing the predictions as listed in the
“NLO-1” column and the “NLO” column, one
can see that the inclusion of the NLO contributions
in the form factors can provide about an 18% en-
hancement to Br(B — Kmn’') The gap between the
pQCD predictions and the measured values therefore
becomes effectively narrow, but there is still a small
difference between the central values of the pQCD
predictions and the data.

(i) For B — Kn decays, however, the pQCD predic-
tions for their branching ratios remain basically
unchanged after the inclusion of the NLO part of
the form factors. Although the NLO pQCD predic-
tions for Br(B — K7) are consistent with the data
within one standard deviation, the central values of
the NLO pQCD predictions are still larger than the
measured values by almost a factor of 2.

(iii)) The pQCD predictions as given in the NLO-1

column agree well with those presented in

“pQCD” column of Table II), and the small difter-
ences are induced by the variations of some input
parameters, such as the CKM matrix elements.
Although the NLO pQCD predictions for
Br(B— K7n) and Br(B — Km') are consistent
with the data within one standard deviation, here
we cannot provide a good interpretation for the
observed pattern of Br(B— kn”)) in the FKS
7-n' mixing scheme.

(iv)

D. Br(B — K7") in the 9-1’-G mixing scheme

In the n-n’-G mixing scheme, by using the input pa-
rameters and the wave functions as given in previous
sections and fixing the mixing parameters § = —11°, ¢ =
43.7°, and ¢; = 12°, we find the LO and NLO pQCD
predictions for the CP-averaged branching ratios as listed
in Table III. As a comparison, we also show the measured
values and the QCDF predictions as given in Ref. [37] in
the last two columns of the Table III.

The NLO pQCD predictions with the inclusion of the
major theoretical errors are the following:

Br(B® — K%n)

= [1.137830(w,) §890m,) *$30(F5) S50 (@d)] X 1075,
Br(B — K°%')

=[66.55138(w,) "
Br(B™ — K" n)

= [2.367051(w,) 503 (m) 35 (F5) 50 (a7)] X 1076,
Br(Bt — K™ 7n/)

=[67.3513%(w,) T %% (m

eam)*33(fp) 3 (a))] X 1076,

DI i@h] x 107°.

(74)

Analogous to the case of MS-1, the major theoretical errors
in the MS-2 mixing scheme are still induced by the un-
certainties of the input parameters: w, = 0.4 £ 0.04 GeV,
my; = 0.11 £0.02 GeV, fp=0.21 =0.02 GeV, and
Gegenbauer moment a; = 0.44 *+ 0.22. The total theoreti-
cal errors of the NLO pQCD predictions in the fourth
column of Table IIl are obtained by adding the four
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TABLE III. The same as in Table I but for the case of the
7n-7n'-G mixing scheme with the mixing parameters ¢ = 43.7°,
0= —11°,6,=547°, and ¢p; = 12°.

PHYSICAL REVIEW D 87, 094003 (2013)

TABLE IV. The same as in Table I but for the case of the
“n-n'-G-1,.” mixing scheme. The label NLO means that all
known NLO contributions are included.

Channel LO NLO-1 NLO Data[10] QCDF [37]

Channel LO NLO-1 NLO Data[10] QCDF [37]
B®— K% 090 115 113720 1237037  1.1%%¢
B'— K%' 352 574 6657239 66.1+3.1 46574
B*—K'n 198 210 23626 2367337  1.97})

B*—K*n' 389 583 67.372%0 TL1+26 49.17432

B— K% 067 087
B — K%' 435 556
B*—K"'n 150 200
BT — K™y’ 517 562

0.82+)8 1.23%027 11434
64.87268 66.1 £ 3.1 46.57417
2.19%2% 236702 1.97})
65.21370 71.1 £2.6 49.17332

individual theoretical errors in quadrature. One can make
the following points from the numerical results in Eq. (74)
and Table III.

(1) In the 7-n’-G mixing scheme, the glueball part
plays an important role in improving the agreement
between the pQCD predictions and the data. Even
at the leading order, the pQCD predictions for
Br(B— K7n') [Br(B— Kn)] become larger
(smaller) than those in the case of MS-1. The corre-
sponding changes are what we need to interpret the
data.

(ii) For the B® — K%%/ (B* — K" n') decay, the NLO
contribution provides a 89% (73%) enhancement to
its branching ratio with respect to the LO prediction.
The NLO part of the form factors provide a 23%
enhancement to the corresponding branching ratios.
The NLO pQCD predictions for both Br(B° —
K°%') and Br(B* — K'%’) are now in full agree-
ment with the data.

(iii) For both B® — K%% and B* — K* 7 decays, the
NLO enhancements are small in size, and the

agreement between the pQCD predictions and
the data also improved effectively due to the in-
clusion of all of the known NLO contributions.

(iv) For all four B — K7 decays considered, the dif-
ferences between the numerical values as listed in
the NLO-1 column and the NLO column in
Table III show the effects of the inclusion of the
NLO part of the form factors. It is easy to see that
the NLO pQCD predictions for the branching ratios
are in perfect agreement with the measured values
due to the contribution from the glueball compo-
nent in the n-7’-G mixing scheme and the inclu-
sion of the NLO contributions.

E. Br(B — K7") in the “n-7’-G-n,” mixing scheme

In the “n-n'-G-7,.” mixing scheme, by using the input
parameters and the wave functions as given in previous
sections and fixing the mixing parameters § = —11°, ¢ =
43.7°, ¢ = 12°,and ¢, = 11°, we find the LO and NLO
pQCD predictions for the CP-averaged branching ratios,
which are listed in Table IV.

In the “n-n'-G-n,” mixing scheme, the contributions
from the decay chain B — K7, — K7 are included. The

NLO pQCD predictions for the CP-averaged branching
ratios with the major theoretical errors are of the form

Br(B® — K°7)

= [0-827573(w,) 2557 (m) Z6:13(f5) Z555(a5)] X 107°,
Br(B° — K%7')

= [64.81313(w)) 1% (m) L1735 (fp)] X 1076,
Br(B* — K" 1)

= (21979 (w,) 73980, ) 348 f5) “40(aD)] X 107°,
Br(B* — K* 7))

= [65.272)2(w,) T %0 (m) T 133(f5)] X 107C. (75)

Analogous to the cases of the n-%' and 7-1'-G mixing
schemes, the major errors here are also induced by the
uncertainties of w,,, my, fp, and the Gegenbauer coefficient
ay. For B— Kn' decays, however, the error induced by
the uncertainty of a, = 0.44 = (0.22 is very small and has
been neglected. The total theoretical errors of the NLO
pQCD predictions in the fourth column of Table IV are
obtained by adding the individual theoretical errors in
quadrature.

From Table IV, one can see that the NLO pQCD pre-
dictions for Br(B — K ') also agree well with the data. For
B — K7 decays, the central values of the NLO pQCD
predictions for Br(B — Kn) are a little smaller than the
measured values, but they are still consistent with the
data within one standard deviation. Since the values of
the relevant mixing parameters Fc(6, ¢g, ¢o) and
F(0, dg, ¢) as defined in Eq. (49) are all very small,

FL(0, ¢g, dg) = 0.039
(76)

Fc(0, ¢, ¢p) = 0.0076,

for (0, ¢g., pp) = (—11°,12°,11°), the 7, contributions
to the B — K7 decays are indeed very small.

F. CP-violating asymmetries

Now we turn to the evaluations of the CP-violating
asymmetries of B — K7 decays in the pQCD approach.
For B* — K* ") decays, the direct CP-violating asym-
metries A ~p can be defined as
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dir — r(f?o _’JE) ~T(B°—f) _ |jj/lf|2 — M2
POTE - HATE =) IMP+ Mg P
(7

Using the input parameters and the wave functions as
given in previous sections, it is easy to calculate the direct
CP-violating asymmetries for the considered decays,
which are listed in Table V. The major theoretical errors
given in Table V are induced by the uncertainties of the
input parameters w,,, m,, and a; . As a comparison, we also
list currently available data [10] and the corresponding
QCDF predictions [37]. The label “NLO” means that all
known NLO contributions are taken into account. For
B* — K™ decays, there is a large direct CP asymmetry
(ﬂ‘éi,r,) due to the destructive interference between the
penguin amplitude and the tree amplitude.

From the pQCD predictions and the relevant data listed
in Table V, one can see the following.

(i) For B* — K*n decays, the LO pQCD predictions
for A% in all three mixing schemes have a sign
opposite that of the measured values. The inclusion
of the NLO contributions changes the sign of the
pQCD prediction for A%, and the NLO pQCD
predictions for AYL(B* — K= n) in the cases of
MS-1 and MS-2 become consistent with the data
within one standard deviation. In the “x-n'-G”
mixing scheme, for example, the NLO pQCD pre-
dictions are of the form

AdL(B* — K* ) = (—22.97133) X 1072,
ADX(BT — K*n') = (=5.5713) X 1072,

(78)

where the individual errors shown in Table V are
added in quadrature.

(@i1) In the case of MS-3, however, the pQCD prediction
for AYL(B= — K*n) changes its sign after the
inclusion of the NLO contributions. The NLO
pQCD prediction is of the form

AdL(B* — K* ') = (=2.871%7) X 1072, (79)

which is still much smaller in magnitude than the
measured value. There is a clear difference between

PHYSICAL REVIEW D 87, 094003 (2013)

the pQCD prediction and the data for le‘éi},(Bi —
K*n') in the “n-n'-G-n,.” mixing scheme.

(iii) For B* — K*n' decays, the measured value of
AdL(K*n') = 1.3716 X 1072 is consistent with
zero. The NLO pQCD predictions in the three
different mixing schemes agree well with the data
within one standard deviation, while the consis-
tency between the pQCD predictions and the data
are effectively improved by the inclusion of the
NLO contributions.

As for the CP-violating asymmetries for the neutral
decays B® — K9, the effects of B® — B® mixing should
be considered. The CP-violating asymmetry of B°(B") —
K°n") decays are time dependent and can be defined as

_ Fég—»f(Af) - FB?,—»f(Af)
@ Ty p(Ar) + Ty (A1)

= Cpcos (AmAt) + Sy sin (AmAt), (80)

where Am is the mass difference between the two BY mass
eigenstates, and Af = fcp — 1y, is the time difference
between the tagged B® (B°) and the accompanying B°
(B%) with opposite b flavor decaying to the final CP
eigenstate f.p at the time t-p. The direct and mixing-
induced CP-violating asymmetries C; (or A as used by
the Belle Collaboration) and Sy can be written as

. A7 =1 : 2Im(A)
A== Amy=§, =00
cpP f 1+ |/\|2 CP f 1+ |/\|2

(81)

with the CP-violating parameter A,

_ 1 . <f|Heff|BO>
A‘(p)d 1 He|BY (82)

By integrating the time variable ¢, one finds the total CP
asymmetries for B — K°7) decays,

tot —

X .
=T P 83

Adir +
P l+x

where x = Am/I" = 0.774 [11].
In Table VI, we show the LO and NLO pQCD predic-

tions for the direct, the mixing-induced, and the total CP

TABLE V. The LO and NLO pQCD predictions for the direct CP asymmetries Adr(B* —
K*n) and A% (B* — K*7’) in the three different mixing schemes (in units of 1072).

Mode MS LO NLO Data [10]  QCDF [37]
1 100 —25.273(w,)*193(m) 8, (a7)

AdL(K=n) 2 3.1 —22.9778(w,) F148(m,) TS 3 (ad) -37=x8 —18.973)9
3 424 —2.8783(w,)1530m,)153(a))
1 -10.4 —4.470 () E i (mg) 15 (a))

Al(K=n) 2 =122 —5570%(w,)09(m) 3 (ad) 13718 —9.07198
3 =9.0 =237 (w,) 3 (my) i)
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TABLE VI.
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The pQCD predictions for the direct, mixing-induced, and total CP asymmetries

(in units of 1072) for B® — K%%") decays in three different mixing schemes, and the world

averages as given by HFAG [10].

Mode MS LO NLO Data
1 —4.6 =111 (w,) 50 (mg) T25(ay)
Adr (B — K9n) 2 —6.6 —16.0503(w,) 5§ (my) T30 (a))
3 -7.8 —19.4t3;3(wb)t?;2(ms er(al)
1 69.3 66.3793(w,) 34 (my) *33(a))
Am(BO — Kd7) 2 69.9 66.7"12(w,) &S (m,) 53 (a7)
3 703 69.542 1 (@,) 798 (m, )+os(“2)
1 30.6 25.2703(wp) "3 (m, )*40(%)
ALL(B® — K9n) 2 29.7 22.3t8‘5(wb)t‘8‘,§(ms)i §5(az)
3 292 21.6%13(w), f?'fs(ms)fgﬁg(ag)
1 11 34702 (w,) 93 (m) 31 (ad)
_;Z[Cg;(BO — Kgn’) 2 1.0 ?)’H)z(“‘)brr (ms)irgi(ag) 1x9
3 0.9 3.5501 (@) "9 (m,) *92(al
1 70.7 69.8751(wy) *03(my) 53 (a))
AmX(BY — KO7') 2 70.8 70.0% (@) 31 (my) ¥4 (a] 64 =11
3 70.8 70550 (@) 206 (mg) X0 1 (a3)
1 34,9 35.9702(w,) *§(m) T30 (a)
A(BY — K07) 2 34.9 36.0205(w,) X0 (m) £50(a3)
3 34.8 36.3i8:%(wb)i‘&%(ms)i%%(a

asymmetries for B® — K9n") decays in the three different
mixing schemes. Analogous to the NLO pQCD predictions
for the branching ratios, the label “NLO”’ here means that
the inclusion of all currently known NLO contributions are
taken into account.

From the pQCD predictions and currently available
experimental measurements for the CP-violating
asymmetries of B” — K9n) decays, one can see the
following.

(i) Unlike the cases for the branching ratios, the pQCD
predictions for the CP-violating asymmetries of the
neutral B® — K97 decays are not sensitive to both
the NLO contributions and the choice of the mixing
schemes.

(ii) The NLO pQCD predictions for A%L(B® — K97’
and APX(B®— KY7') have small theoretical
errord and agree very well with the measured
values,

Adr (B — Kdn') = (3.3 = 0.3(theory)) X 1072,
ABX(B® — K%n') = (70.3 = 0.5(theory)) X 1072,
(84)

while the measured values are (1 *9)% and
(64 = 11)%, respectively.

(iii) The pQCD predictions of AUL(B® — Kin) ~
—16% and AR (B — K%7m) ~ 67% will be tested
by the LHCb and the forthcoming Super-B
experiments.

G. Relative strength of the contributions
from different sources

In the pQCD approach at leading order, we usually have
the following general expectations.

(a) The factorizable emission diagrams [Figs. 1(a) and 1(b)]

provide the dominant contribution to the considered
B — Kn" decays.
The nonfactorizable spectator diagrams [Figs. 1(c)
and 1(d)] are strongly suppressed by both the isospin
cancelation and the color suppression and therefore
play a minor role.

(c) The annihilation diagrams [Figs. 1(e)—1(h)] are gen-
erally power suppressed in magnitude, but may pro-
vide a large strong phase to produce large
CP-violating asymmetries for some decay modes.

In the pQCD approach at next-to-leading order, as
discussed in previous sections, we have made two
assumptions.

(a) The currently known NLO
H"(a?)—such as those coming from the Feynman
diagrams shown in Figs. 3 and 4—are the dominant
part of the full NLO contribution.

(b) The still missing parts of the NLO contributions
from the spectator and annihilation diagrams shown
in Fig. 5 are small in size and can be safely
neglected.

Of course, these two assumptions should be examined

properly before the analytic calculations for the missing
parts are performed. For this purpose, we take the four

(b)

contributions to
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B — K1 decays as an example, and try to check the
relative strength of the LO or currently known NLO con-
tributions coming from different sources.

If the LO contributions [ « O(«;,)] from the nonfactor-
izable spectator diagrams [Figs. 1(c) and 1(d)] and the
annihilation diagrams [Figs. 1(e)-1(h)] are already much
smaller in size when compared with those from the factor-
izable emission diagrams [Figs. 1(a) and 1(b)], it is
reasonable for us to assume that the still missing
next-to-leading order O(a?) corrections coming from
Figs. 5(a)-5(h) should be smaller than their counterparts
at leading order, and therefore much smaller than those
dominant LO contributions; they can therefore can be
neglected safely.

In order to check whether these general expectations or
assumptions are correct, we here firstly decompose the LO
decay amplitude M,  into different parts according to the
corresponding Feynman diagrams, and then make numeri-
cal evaluations for each part and compare their magnitudes
directly. We try to make a simple and clear numerical
comparison between the contributions from different
sources.

For the BY — K™ 1 decay in the -1’ mixing scheme,
for example, the decay amplitude M(B™ — K™ n) at lead-
ing order as given in Eq. (45) 2 can be rewritten as a sum of
three parts,

M o(BY — K*'n) = M0 (K*n) + MK )
+ j\/lanni(K+ 77): (85)

where the decay amplitude M%*? is obtained by evaluating
the dominant emission diagrams Figs. 1(a) and 1(b), M¢*4
refers to the LO contribution from the spectator diagrams,
Figs. 1(c) and 1(d), and M denotes the LO contribution
from the annihilation diagrams, Figs. 1(e)-1(h).

By using the central values of the input parameters and
the relevant wave functions, we make the numerical cal-
culations step by step and then find the numerical results
(in units of 107%),

M o(B* — K*n) = —1.76 — i0.37 + 0.065 — i0.14

o e
+ 0.03 + i0.57
;_—V.—_J
:]Vlunni
= —1.67 + i0.062. (86)

It is easy to see the following.
(a) Mo+t = (—1.76 — i0.37) X 107* is indeed large
and dominant.
(b) Me*P = (—1.76 — i0.37) X 10™* is indeed large
and dominant.

’In the 1-n' and 7-1/-G mixing schemes, the last term,
M(B — n.K) - F.(6, ¢, d¢), in Eq. (45) is absent.
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(c) Mt = (0.065 — i0.14) X 10™*; its real and
imaginary parts are all much smaller than the corre-
sponding parts of both M**? and Manni,

(d) Mami = (0.03 4+ i0.57) X 107%; its real part is
close to zero, but its imaginary part is large and
interferes destructively with Me*?,

Since the branching ratio of the considered decays are
proportional to the square of the decays amplitude |M|?,
as shown by Eq. (72), we can define the relative strength of
the individual contribution from different sources as the
ratio Ry o and then compare the numerical results directly,

RLO(K+ 7’) — |Ma+b|2:|Mc+d|2:|manni|2:|MLol2
= 3.23:0.02:0.33:2.79. (87)

One can see directly from the above numbers that the
contribution from M¢*¢ is less than 1% and can be safely
neglected, while the contribution from Manni §g also small
in magnitude—around 10% of the dominant contribution
from the emission diagram [Figs. 1(a) and 1(b)]. This
hierarchy of the contributions from different sources agrees
very well with the general expectations, as stated in the
beginning of this subsection.

Using the same methods, we make similar decomposi-
tions and numerical calculations for the remaining three
decay modes, B — K7’ and B* — K" 7/, and find the
numerical values of the decay amplitudes and the relative
strength. We make the calculations in both the -1’ and
1-71'-G mixing schemes and show all the numerical results
in Table VII. For the case of each mixing scheme we use
the same input parameters as those used in the calculation
for the branching ratios in Secs. V C and V D, respectively.

From the numerical results shown in Table VII, we find
the following points.

(1) For all four of the considered decays, the factorizable
emission diagrams in Figs. 1(a) and 1(b) provide the
dominant contribution to the branching ratios. In
both the MS-1 and MS-2 mixing schemes, we have

|j\/lc+d|2 |j\4anni|2

MR < 0.01, EYGaE <0.5 (88
for the two B — K decays, and

|:]\/lc+d|2 |Manni|2

MR < 0.03, M <0.7 (89)

for the two B — Kn' decays.

(i1) For all four of the considered decays, one can see
from Eqgs. (88) and (89) that the contribution from
the spectator diagrams [Figs. 1(c) and 1(d)] is very
small in size,

| j\,lc+d|2
| MLO|2
and therefore can be neglected safely, which is
consistent with the general expectation. Since the

< 0.03, (90)
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LO part Mt is already negligibly small, it is
reasonable for us to neglect the corresponding
higher-order NLO contribution Mg ¢ from the
corresponding spectator diagrams [Figs. 5(a)-5(d)].

(iii) For all four of the considered decays, the real parts
of M2 are very small, but their imaginary parts
are relatively large. This leads to a large strong
phase, which is consistent with the general
expectation.

(iv) For the two B — Kn' decays, the large imaginary
parts of M®™ can also provide an effective en-
hancement to their branching ratios. From this point
we understand that although the factorizable emis-
sion diagrams [Figs. 1(a) and 1(b)] provide the
dominant contribution to the considered decays,
the LO contribution from the annihilation diagrams
also provide an essential contribution. Therefore,
the NLO contribution M from the correspond-
ing annihilation diagrams shown in Figs. 5(e)-5(h)
may be comparable with other NLO parts, and thus
the analytical calculations for these diagrams
should be done as soon as possible.

Now we study the relative strength for all known NLO
contributions from different sources and collect all numeri-
cal results in Tables VIII and IX.

In Table VIII we list the numerical values for individual
decay amplitudes. The decay amplitude My;owc is

TABLE VII.

PHYSICAL REVIEW D 87, 094003 (2013)

obtained by evaluating Figs. 1(a)-1(h) using the NLO
Wilson coefficients C;(u), the NLO renormalization group
evolution matrix U(f, m, @), and a,(u) at the two-loop
level. The label My denotes the changes of My owce
when only the NLO vertex corrections are also included.
The label M (M,,,) shows the changes of My owc
when only the NLO contributions from the quark loops
(chromomagnetic penguin) are included. The label Mg
shows the variation of My; owc when only the B — K and
B — 7 transition form factors at the NLO level are taken
into account.

The labels “Myciqiimp” and “Myio” in Table VIII
and “Myio;” in Table IX are defined by the following
summations:

MVC+ql+mp = MVC + Mql + ‘jvlmp! (91)

Myior = Myrowe + Mycrgismp 92)

NLo = Mot + Me. (93)

Here My o, is equivalent to the total decay amplitude M
as defined in Eq. (76) of Ref. [12] and My, o is the decay
amplitude when all currently known NLO contributions are
taken into account.

The LO pQCD predictions for the numerical values (in unit of 10™%) of the individual and total decay amplitudes of

B — K9 and B* — K* 5" decays, and in the -7’ and 5-7/-G mixing scheme.

Decay MS Meath Metd Manni Mo Rio
K%y 1 —1.30 + i0.04 0.06 — i0.11 —0.06 + i0.53 —1.30 + i0.47 1.69:0.01:0.29:1.91
2 —0.80 + i0.03 0.03 — i0.07 0.01 + i0.54 —0.76 + i0.51 0.63:0.01:0.30:0.83
K%' 1 3.42 +i0.03 0.25 —i0.47 —0.07 — i2.85 3.40 — i3.29 11.7:0.29:8.1:22.4
2 4.12 +i0.03 0.24 — i0.45 —0.03 —i2.94 4.32 —i3.37 17.0:0.27:8.6:30.0
Kty 1 —1.76 — i0.37 0.07 — i0.14 0.03 + i0.57 —1.67 +i0.06 3.23:0.02:0.33:2.79
2 —1.18 — i0.52 0.03 —i0.09 0.10 + i0.58 —1.05 —i0.03 1.66:0.01:0.35:1.10
Kty 1 3.65 —i0.30 0.26 — i0.54 —0.41 — i2.99 3.50 —i3.83 13.4:0.36:9.1:26.9
2 4.44 — i0.49 0.25 — i0.52 —0.38 — i3.07 4.31 — i4.08 20.0:0.33:9.6:32.2
TABLE VIII. The numerical values (in units of 10~#) of the individual NLO contributions to the decay amplitudes, coming from
different sources in the -1’ and 7-1'-G mixing schemes.
Decays  MS Mnrowe My Mg M np Myciqimp M
K% I —154+i048 —0.03-i026 —032-i044  035-i027 —0.004—i0.97  0.05— i0.04
2 —096+i0.54 —007—i0.08 —025-i036  022-i025 —0.10—i0.68  —0.001 — i0.02
Ko/ 1 483 —i3.94 063 —il34  129+il59 —135+i037 057 +i0.62 0.50 — i0.25
2 5.62—i403 061 —il.22  140+il73  —147+i036  0.54 +i0.87 0.47 — i0.24
Kty 1 —1.65 + i0.11 —0.05 —i0.35 —0.32 — i0.44 0.37 —i0.27 0.00 — i1.06 0.001 — i0.18
2 —1.13 + i0.06 —0.10 — i0.18 —0.25 — i0.36 0.26 — i0.26 —0.09 —i0.80 —0.04 —i0.13
Kty 1 4.66 — i4.34 0.65 — i1.38 1.30 + i1.59 —1.38 + i0.36 0.57 + i0.57 0.46 — i0.36
2 5.39 — i4.57 0.62 —i1.29 1.41 + i1.73 —1.50 + i0.35 0.53 + i0.79 0.43 —i0.35
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TABLE IX. The numerical values of Mo, Myio1, Mnro (in units of 107#) and the ratio Ry, o for B — K7 decays in the %-7’'
and 77-7'-G mixing schemes.

Decay MS Mo Mo Mo Rnio
KOT} 1 —1.30 + i0.47 —1.54 —i0.49 —1.49 —i0.53 1.91:2.61:2.50
2 —0.76 + i0.51 —1.05 —i0.14 —1.05 —i0.15 0.84:1.12:1.13
K%/ 1 3.40 — i3.29 5.41 —i3.32 5.91 — i3.57 22.4:40.3:47.7
2 4.32 — i3.37 6.16 — i3.16 6.63 — i3.40 30.0:47.9:55.5
K*n 1 —1.67 — i0.06 —1.65 — i0.96 —1.65 —il.13 2.79:3.64:4.00
2 —1.05 —i0.03 —1.22 —i0.74 —1.26 — i0.87 1.10:2.04:2.35
Kty 1 3.50 — i3.83 5.22 —i3.77 5.69 — i4.13 26.9:41.5:49.4
2 4.31 — i4.08 5.91 —i3.78 6.34 — i4.13 32.2:49.2:57.3

The ratio Ry o in Table IX is defined as (1) In all three mixing schemes considered, the NLO

Rnio = Mol Mypor |2 I M o 1% (94)

From the numerical results shown in Tables VII, VIII,
and IX, we find the following points.

(i) For all four B— Kn" decays, there are strong
cancelations between My, M, and M,

(ii) For two B — K decays, the corresponding Mg
are also much smaller in magnitude than the other
NLO parts (Myc, Mg and M), and also smaller
in size than their summation, My q1+mp-

pQCD predictions for the branching ratios and
CP-violating asymmetries agree with the data within
one standard deviation; of course, this is partially
due to the still large theoretical errors. However, the
NLO pQCD predictions in the 7-7'-G mixing
scheme provide a nearly perfect interpretation of
the measured values. The NLO pQCD predictions
in MS-2 are the following:

Br(B — K%%) = (1.13%1:3%) X 1076,
Br(B? — K'%') = (66.57339) X 107,

iii) For the two B — Kn' decays, the correspondin . N _ ©5)
o Mpg are also muchnsmallery than the othgr NL(% Br(B™ — K71) = (2'36t%gg) X 1075,

parts (Myc, My and M,,,), but comparable in Br(B~ — K*n') = (67.372§9) x 107°

size with their summation, My qj+mp, and there- i .

fore all NLO contributions together provide the for branching ratios, and

required enhancements to Br(B — Kn’) to account Adr(B* — K* ) = (—22.97132) X 1072,

for the measured values. dir (o SN (e at19 -
(iv) The only missing NLO parts in the pQCD approach Aep(BT — K= n') = (=5.5119) X 1072,

are MS¢ from Figs. 5(a)-5(d) and M from AdL(B® — K9n) = (—16.017,) X 1072,

Figs. 5(e)-5(h). They are most probably small in ' (96)

size according to the studies in this paper and the
general expectations based on the isospin cancel-
ation and power suppression.

VI. SUMMARY

In this paper, we made a systematic study of the four
B — K7 decays in the pQCD factorization approach. We
calculated the CP-averaged branching ratios and
CP-violating asymmetries of the four B — K7 decays
in three different mixing schemes: the ordinary FKS 7-n’
mixing scheme, the 7-7'-G mixing scheme, and the
1n-1'-G-n,. mixing scheme. We considered the full LO
contributions and all currently known NLO contributions
to B — K1 decays in the pQCD approach. Besides those
NLO contributions considered in Ref. [12], we here took
the newly known NLO part of the B — (K, ")) transition
form factors into account as well.

From our numerical calculations and phenomenological
analysis, we find the following points.
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ADX(BY — Kin) = (66.7731) X 1072,
AdL(B®— Kdn') = (3.3 £0.3) X 1072,
Anix(B® — K%7') = (70.0 = 0.3) X 1072

for the CP-violating asymmetries, where the indi-
vidual theoretical errors have been combined in
quadrature.

(ii) For the B — K%%' and B* — K" 7/ decays, the

NLO contributions provide significant enhance-
ments to their branching ratios. In the 5-1'-G mix-
ing scheme, for example, the NLO contribution
provides a 89% (73%) enhancement to Br(B° —
K°%') [Br(B* — K" n/)] with respect to the LO
prediction. Such enhancements play a key role in
our effort to resolve the Kn) puzzle and to under-
stand the patten of Br(B — Kn")).

(iii) For the B® — K% and B* — K" 7 decays, the

inclusion of the NLO contributions only leads to
relatively small changes to their branching ratios,
but the resulting variations are in the right direction
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@iv)

)

(vi)

and helpful for us in improving the consistency
between the pQCD predictions and the measured
values. In the -71'-G mixing scheme, for instance,
the central values of the pQCD predictions are
Br(B" — K%9) =0.90 X 107® and Br(B" —
K*n) =198 X 107° at the leading order; these
changed to Br(B’— K%%) =1.13 X 107® and
Br(B* — K™7n) =236 X 107% when the NLO
contributions were taken into account, while the
corresponding measured values are 1.23%237 X
1076 and 2.36753% X 107°, respectively.

By comparing the pQCD predictions given in the
“NLO1” and “NLO” columns in Tables II, III, and
IV, one can directly see the effects of the NLO form
factors: the NLO part Mg of the B— K and B —
1) form factors can produce an about 20% en-
hancement to the branching ratios Br(B — K7'),
which plays an important role in closing the gap
between the pQCD predictions and the relevant
data.
In the 5-7’-G-7, mixing scheme, the decay chain
B— Kn,— Kn") can provide an effective en-
hancement to the branching ratios at the leading
order, but when the large NLO contributions are
taken into account the effects of the 1, component
become unimportant.

For B* — K= 1 decays, the LO pQCD predictions
for AL in all three mixing schemes have a sign
opposite that of the measured value. The inclusion
of the NLO contributions changed the sign of the
pQCD predictions for A %L while the NLO pQCD
predictions for AYL(B* — K*7) in the MS-1 and
MS-2 cases are now becoming consistent with the
data within one standard deviation. However, the
NLO pQCD prediction for AYL(B* — K*7) in
the MS-3 case is still much smaller in magnitude
than the measured value.

(vii) For AdL(B* — K= 7'), the NLO pQCD predic-

tions agree with the data within one standard de-
viation, while the consistency between the pQCD
predictions and the data is improved by the inclu-
sion of the NLO contributions.

(viii) For the direct and mixing-induced CP-violating

(ix)

asymmetries AL (B — KIn¥) and
AX(B® — K1), the pQCD predictions have
a weak dependence on the NLO contributions and
the choice of different mixing schemes. For
Adnmix(B0 —, KOq/), for example, the NLO
pQCD predictions are AYL(BY — K97n') =~ 3%
and A2X(BY — K)7') = 70%, which are consis-
tent with the measured values of (1 = 9)% and
(64 = 11)%, respectively.

The factorizable emission diagrams [Figs. 1(a) and

1(b)] provide the dominant contribution to the con-

sidered decays. The LO contribution M*¢ from
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the spectator diagrams [Figs. 1(c) and 1(d)] is
already less than 3% of the total contribution. The
next-to-leading-order contributions M ¢ from
the Figs. 5(a)-5(d) are the higher-order contribu-
tions and therefore should be smaller than their LO
counterpart M€+ Consequently, it is reasonable
for us to neglect M4 from the spectator dia-
grams [Figs. 5(a)-5(d)].

(x) The real part of M*™i is always negligibly small,
but its imaginary part is relatively large and leads to
a large strong phase, which can also produce an
effective enhancement to the branching ratios of
the considered decays. Although | M| is most
probably much smaller than its LO counterpart
| Mami| but the still missing NLO contribution
,’]\/laN“L“b from Figs. 5(e)-5(h) may be comparable in
size with Mg, and should be calculated as soon as
possible.
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APPENDIX A: DISTRIBUTION AMPLITUDES

The expressions for the relevant distribution amplitudes
(DAs) of the K meson are the following [34,39]:

k) = 2J2T6x(1 — [+ a¥CV2(0) + a5 CV(0)
+af ¢y ] (A1)
5
- 3[ n3w3 + 290 2(1 + 6a K)]Clm(t)}, (A2)
1 7

3
- gp%af)(l — 10x + 10x2):|, (A3)
with the mass ratio px = mg/myg. The Gegenbauer
moments are of the form [34]
ak =02, a¥ =0.25, ak¥ = —-0.015. (A%
The values of the other parameters are 13 = 0.015 and
® = —3.0. Finally, the Gegenbauer polynomials C%(t) are

given as

094003-22



ANATOMY OF B— K 17(’) DECAYS ... PHYSICAL REVIEW D 87, 094003 (2013)
CV (1) = l(3t2 -1 C2(r) = l(3 —30¢% + 35¢%) () = 3t
2 2 ’ 4 8 » 1 ’
3 15
() = 562 = 1), () = 5 (1= 142 216, (A5)

with t = 2x — 1.
The distribution amplitudes ¢7,"" are given as [34]

f q3/2 q3/2 ¢ 3/2
4.0 = 2\/§N:6x(1 =0 +al CP2x = 1) + alC2x — 1) + a]'C*(2x — 1)], (A6)
f 5 12 9 7| 1/2
P (x) = zﬁqu‘[ (30773 - 5,o%,q)c2 Qx— 1) — 3{n3w3 + 5503, (1 + 6a )}c (2x — 1)] (A7)
f 1 7 3 n,

Z,q(x) = Z—JZ(]TC(I - 2x)[1 + 6(5773 —5Mws ~ 20p,7’ §pn,a2 ) -(1—10x + IOxZ)], (A8)
where Py, = =2m,/m,,, =0, a"" =ay =044 £0.22, a"" = aj = 0.25, and the Gegenbauer polynomials
Cu(1) have been given mE (A5) As for the wave functions and the corresponding DAs of the s§ components, we also use

g q P g p
the same form as ¢g but with some parameters changed: p, = 2m,/m,,, al’ = 77" fori=1,2,4.

APPENDIX B: RELATED HARD FUNCTIONS

The hard scales appearing in the decay amplitudes are chosen as

t. = max{\/xsMp, 1/by, 1/b3}, t, = max{\/x;Mp, 1/b,, 1/bs},

tb = max {1/XI.X'3M ,"“1 - Xp — X2|X3MB, l/bl, l/bz}, tz = max {,/x1x3MB, \“xl - X2|X3MB, l/bl, l/bz},
t, = max{«l — x3Mp, 1/b,, 1/b3} 1. = max{\/x;Mp, 1/b,, 1/b3},
g = max{ xo(1 = x3)Mp, \/1 — X = x)x3Mp, 1/by, 1/172},
tl = max{ X2(1 - X3)M |X1 - .X'zl(l X3)M y 1/b1, 1/b2} te = max{ X3(1 - rz )M y l/bl, 1/b3},
d B \/ B V . Mp B1)
t/e=max{ xl(l—r )MB’ 1/[91, 1/[93}
tr = { x1x3(1 = r3 )My, \/|( 1+ +x)[s + (1 — xp — x3)r5 1+ 3 |Mp, 1/by, l/bz}
fp = max{\/x1x3(1 3 )Mp, \/|(x1 0)lxs + (g = x3)r5 1+ 13, [Mp, 1/b), 1/52}-
The hard functions £;s appearing in the decay amplitudes are defined by
he(x1, x3, by, b3) = [0(by — b3)Io(\/xsMpb3)Ko(\/x3Mpby) + 6(b3 — b)Io(x3Mpb1)Ko(/x3Mpb3)]
X Ko(\x1x3Mpb1)S,(x3),
hy(x1, X0, X3, by, by) = [0(by — by)Ko(\/x1X3M b)) 1o ((/x1x3Mpb,) + 6(by — by)Ko(\/X1x3M by )1o(\/x1X3Mpb,)]
” {%TH(()I)(V(xz — x)x3Mgby), x; — x, <0, (B2)
Ko((x; = x3)x3Mb,), X; — x>0,
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7T

s 33 b bs) = () SO0z — b HS (JT5Mpbo) Iy TMbs) + 015 — b2)HY (JT5Mybs) ol M bo)]

X H(()l)(\/xz%MBbz),

i
(), X9, X3, by, by) = 7[9(171 - bz)H(()l)<Vx2(1 - x3)MBb1)JO< x(1 — X3)M3l72)
+0(b; — bl)H(()1)<\/x2(l - X3)M3172)Jo(\/x2(1 - X3)M3b1>]K0(\/1 — (1 —x — xz)x3MBb1),

(B3)
hya(x1, X, X3, by, by) = %[9(51 - bz)H(()])(sz(l - x3)MBb1)J0<Vx2(1 - x3)MBb2)
+ 6(b, — b1)H(()l)(\/x2(1 - x3)M3b2)J0( x(1 — X3)M3b1)]
X {?H((Jl)(\/(xz —x)(I = x3)Mgh,), x; —x, <0, B4
Ko(W(xy = x0)(1 = x3)Mphy), X — x>0,

where H(()l)(z) = Jo(z) + iYo(2),

R, (xy, x3, by, b3) = [0(b) — b3)Io(/aMybs)Ko(NaMpb,) + 0(by — b))Iy(/aMyb,)Ko(vaMpb)IKo(BMgb,)S,(x3),

(B5)
where a = x3(1 — 72 ) and B = xyx3(1 — 12 ),
h(x1, X2, X3, by, by) = [0(by — b)) Ko(Na'Mgby)Io(Na/Mgh)) + 6(by — by)Ko(Na'Mpb,)o(Na'Mgb,)]
y {%Hé“(dlﬂ%@ B2 <0, ®6)
KoWIB IMby),  B?>0,
where o' = x;x;3(1 — r% ) and B? = (x; — xp)[xyr3, + x3(1 — 2 )]+ 7% .
The function S,(x) has been parametrized as [32,40]
50 =2 202 I -y, ®7)
with ¢ = 0.3.
The evolution factors E(e/) and E(a/) appearing in the decay amplitudes are given by
E (1) = a,(exp[=Sp(t) = S3(0],  EL(1) = ay(t)exp[=Sp(1) = S2(t) = S3(D]l, s, (B8)
E (1) = a,(t)exp[—S,() — S5(1)], EL (1) = a(t)exp[—Sp(1) — S5(t) — S5(0)]lp, =,
where the Sudakov exponents are defined as [5,6,9]
$u) =50 2.00) 43 [ Foyaan s =s(e22 ) +o(0 - Fn) v2 [ Ly )
(B9)
with the quark anomalous dimension y, = —a,/ 7. Replacing the variables (x,, b,) in S, by (x3, b3), we get the expression
for S;. At the one-loop order, the explicit expression of the function s(Q, b) is [5,6]

where the variables are defined by

094003-24
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q

and the coefficients AY) and S, are of the form

B2y ?

BPr=—p— 3’

In[Q/(v2A)],

b

a0 =87
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In[1/(bA)], (B11)
w10 8 ,
3 27 f+§,311n(—e ﬁ), (B12)

where n; is the number of quark flavors and 7y is the Euler constant.
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