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We present our results on meson and nucleon screening masses in finite temperature two flavor QCD

using smeared staggered valence quarks and staggered thin-link sea quarks with different lattice spacings

and quark masses. We investigate optimization of smearing by observing its effects on the IR and UV

components of gluon and quark fields. The application of smearing to screening at finite temperature also

provides a transparent window into the mechanism of the interplay of smearing and chiral symmetry. The

improved hadronic operators show that for temperature T � 1:5Tc (Tc is the finite temperature cross

over), screening masses are consistent with weak-coupling predictions. There is also evidence for a rapid

opening up of a spectral gap of the Dirac operator immediately above Tc.
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I. INTRODUCTION

Screening masses control finite volume effects at finite
temperature in equilibrium. Studies of the final state of
fireballs produced in heavy-ion collisions indicate that they
are near equilibrium. Therefore, the study of screening
masses a little below the QCD crossover temperature,
near the freeze-out, should improve our understanding of
experimental conditions. In addition, the vector screening
masses below Tc should be of direct relevance to the study
of mass spectra of dileptons and photons.

There are also interesting questions about the nature of
the high-temperature phase, which are addressed by a
study of screening masses. In QCD at temperatures, T, of
a few times the crossover temperature, Tc, analysis of the
weak-coupling series in powers of the gauge coupling, g,
indicates that the physics of the magnetic scale of momen-
tum, g2T, is potentially nonperturbative. As a result, it may
be possible to find phenomena in hot QCD, only involving
harder scales, which are amenable to a suitable weak-
coupling analysis. For example, the fermionic part of the
pressure, as well as its derivatives with respect to chemical
potentials, the quark number susceptibilities, seem to admit
reasonably accurate weak-coupling descriptions at tem-
peratures of 2Tc or above [1].

However, even among static fermionic quantities,
screening masses (the inverses of screening lengths)
present a confused picture. Most computations have been
performed with staggered quarks, and these seem to in-
dicate that there are strong deviations from weak-coupling
prediction [2–6]. On the other hand, computations with
Wilson quarks give results that are closer to free field
theory [7], although they deviate in detail from predictions
of weak-coupling theories [8,9]. Since the same pattern is
visible in the quenched theory [10], we can attribute the
major part of the discrepancy to valence quark artifacts.

Here we examine this question systematically using
staggered sea quarks and improved staggered valence
quarks. Indeed, we see that smeared valence quarks pro-
vide a significant improvement. Using these we find that a
weak-coupling expansion does work quantitatively for the
description of fermionic screening masses at finite tem-
perature. In addition, our results may constrain models of
thermal effects on hadrons below and close to the QCD
crossover.
A significant technical component of this work is the

exploration of the cause of improvement in lattice mea-
surements when smeared gauge fields are introduced into
the staggered quark propagators [11–14]. Smeared opera-
tors have been explored extensively in the literature earlier
[15]. Here we explore optimization of smearing parameters
by direct observation of the effects on UV and IR modes
separately. It also turns out that the application to finite
temperature provides a transparent window into the inter-
play of improvement and chiral symmetry.
Discussion of technical lattice issues in this paper is

confined to the next two sections. Readers who are inter-
ested only in the results for thermal physics can read the
last two sections.

II. METHODS AND DEFINITIONS

We generated configurations for the Wilson gauge action
and two flavors of thin-link staggered sea quarks using the R
algorithm. For am ¼ 0:015 we used lattice sizes Nt � N3

s

with Nt ¼ 4 and Ns ¼ 8, 12, 16, and 24 for finite T studies
and scanned a range of gauge couplings, �, to find the
crossover coupling �c. This is completely standard, and
the results are collected in the Appendix. The simulations
were done using a molecular dynamics (MD) time step
dt ¼ 0:01 and trajectories with a number of steps, NMD ¼
100ðNs=8Þ. We checked that halving the time step did not
change the results. We observed that it was sufficient to
discard the first three hundred trajectories for thermalization.
The configurations analyzed were thermally equilibrated and
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spaced one autocorrelation time apart. Details of the runs and
statistics are collected in Table I. To set the lattice parame-
ters, we made zero temperature runs at�c and found am� ¼
0:3241ð7Þ and am� ¼ 1:32ð9Þ. This data set is called the set
N in the rest of this paper.

We also studied configurations generated earlier along
a line of constant m� with Nt ¼ 4 defined by setting
am ¼ 0:025 at the corresponding �c ¼ 5:2875 [16]
and Nt ¼ 6 defined by the choice am ¼ 0:01667 at its
�c ¼ 5:425 [17]. The data from Ref. [16] is referred to
as set O in this paper, and the data of Ref. [17] is referred to
as set P. Hadronic screening masses from the data set P
have been reported earlier using thin-link staggered
valence quarks [4]; its inclusion in this study enables a
clear understanding of the effects of smearing.

We studied screening correlators of mesons and the
nucleon. The valence quarks were improved using one-
level smeared gauge links [11–14]; the optimization of
the smearing algorithm is discussed in Sec. III. In the
course of this study, we needed to estimate the extremal
eigenvalues of the staggered Dirac operator. This was
done using a Lanczos iteration [18]. The tridiagonal
matrix generated using this process was diagonalized
using the Lapack routine DSTEVX. The investigation of
smearing also needed the determination of the taste part-
ners of the pion. For all the correlation functions, we used
Coulomb gauge fixed wall sources to project on the
modes with vanishing spatial momentum. At T ¼ 0 and
for temperatures below Tc, multiple wall sources sepa-
rated by four lattice units were used. We checked that
these gave statistically independent results, an observation
that could be justified after the fact by the measurement
of the Goldstone (local) pion mass.

The screening correlator for the meson � was parame-
trized as

C�ðzÞ ¼ A� cosh

�
��

�
Ns

2
� z
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þ ð�1ÞzA0
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: (1)

The alternating component is absent for the Goldstone pion
[19]. Among local operators, we measured the scalar (S)
corresponding to the �=a0 meson at T ¼ 0, the pseudo-
scalar (PS) corresponding to the � at T ¼ 0, the vector
(V, � at T ¼ 0), and the axial vector (AV). At T ¼ 0 all
three polarizations of the V and AV are equivalent.
However, for T > 0, we need to distinguish between the
spatial ðVs;AVsÞ and temporal ðVt;AVtÞ polarizations. For
the study of taste symmetry, we also measured the nonlocal
taste partners in some of these channels. Following
Ref. [19], the nucleon correlator is parametrized as
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The screening masses,��,�N , and the remaining parame-

ters were extracted from the measured correlators by fitting
to the above forms. The covariance between the measure-
ments at different zwere taken care of in the fits. The mean
and the error of the parameters were estimated by the
bootstrap. Fits were made to the ranges zmin � z � zmax,
where zmax was never more than two sites from the middle
of the lattice, zmin was never less than two sites from the
source, and the number of data points used was always

TABLE I. The number of independent configurations, N, obtained with the coupling, �, the
bare quark mass, am, and the autocorrelation time, �, for that simulation. Also given are the
plaquette value, P, measured at T ¼ 0, and the temperature, T=Tc, inferred from it.

�

T ¼ 0, 164 4� 163 4� 243

am P T=Tc am � N am � N

5.25 0.0165 0.4790 (3) 0.92 (1) 0.0165 19 65

5.26 0.0160 0.4827 (4) 0.96 (1) 0.0160 31 51

5.27 0.0153 0.4860 (5) 0.98 (1) 0.015 72 48

5.2746 0.015 0.4873 (4) 1.00

5.275 0.015 0.4873 (5) 1.01 (1) 0.015 328 76

5.28 0.0146 0.4887 (6) 1.02 (1) 0.015 65 62

5.29 1.06 (1) 0.015 21 49

5.3 0.0138 0.4957 (7) 1.10 (1) 0.0138 8 59

5.335 1.20 (1) 0.0125 7 75

5.34 0.0115 0.5100 (2) 1.29 (3) 0.0115 6 50

5.38 0.01 0.5243 (1) 1.51 (5) 0.01 6 57

5.48 0.0075 0.5480 (2) 2.03 (9) 0.0075 3 79
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greater than the number of parameters being fitted. Among
the fits satisfying �2=DOF< 2, we chose as the reported
estimate of the parameter and its error that which was
consistent with the smallest � within 2� and had the
smallest error. Chiral symmetry restoration can be tested
through the mass splittings

�S ¼ �S ��PS; �V ¼ �AVs
��Vs

(3)

as well as the parity projected correlators C�S ¼
CS � ð�1ÞzCPS, C�V ¼ CV � ð�1ÞzCAV [4].

We computed quantities in a fermionic free field theory
(FFT) by numerical inversion of the fermion matrix on a
trivial gauge configuration (all links being the unit matrix).
These quark propagators were then subjected to exactly the
same analysis as in the interacting theory. The negative
chiral projections of the screening correlators, C��, vanish
in the chirally symmetric phase, and the approach to FFT
can be studied using the positive chiral projections, Cþ�.
Wall sources work well in FFT, as shown in Fig. 1. Finite
volume effects are removed in the projection to the lowest
Matsubara frequency, and one can see the expected free
field theory behavior in all meson channels for the screen-
ing mass: 2sinh�1 sin ð�=NtÞ.

III. STUDY OF SMEARING

Smeared gauge links improve the scaling behavior of
staggered quarks at finite lattice spacing so that the results
approach the unchanged continuum limit faster [15]. This
has been measured through staggered pion taste splitting.
Optimal parameter values have been obtained numerically,
and there have been attempts to understand the results in
weak-coupling theories [14].

We examined four schemes that are currently popular:
APE [11], HYP [12], Stout [13], and HEX [14]. All these
schemes involve replacing the gauge field on a link by a
weighted sum of gauge transporters over different paths
connecting the end points of this link. The more steps of
such smearing we take, the more nonlocal the action
becomes. In order to retain a degree of locality compatible

with the sea quark action, we restricted ourselves to one
step of smearing. The APE and Stout schemes have a
single free parameter, 	, which determines how much
importance is given to link neighbors. The HYP and
HEX schemes have three different fattening parameters
in three orthogonal directions. We restricted our study to
the subset that has equal contributions from all directions,
controlled by a single parameter 	.

A. Optimization of smearing parameters

The usual lore about smearing is that it suppresses the
dependence of operators on high-momentum field modes.
Since the lattice cutoff affects UV modes strongly, the
result could be closer to the continuum limit. Since field
operators have a gauge dependence, it is hard to test this
idea directly on gauge fields. Instead, we tested it on the
plaquette at a site x averaged over all six orientations, PðxÞ.
As for any local operator, one can work with the Fourier
transform, PðkÞ, and the power spectrum, EðkÞ, where

PðkÞ ¼ X
x

exp ðik � xÞPðxÞ and EðkÞ ¼ jPðkÞj2; (4)

the mode numbers k� ¼ �ð2‘� þ 
�Þ=N�, N� is the size

of the lattice in the direction�, the integers 0 � ‘� < N�,

and 
� ¼ 0 for periodic boundary conditions and 1 for

antiperiodic. Periodic or antiperiodic boundary conditions
imply that the independent modes are those with ‘� inside

the Brillouin hypercube in which the body diagonal joins
the corners (0,0,0,0) and (Nx=2, Ny=2, Nz=2, Nt=2).

We used this power spectrum to find how smearing
affects the UV and IR modes. We separated the IR and
UV using hyperplanes perpendicular to the body diagonal.
All modes within the Brillouin zone closer to the origin
than a hyperplane �IR were called IR modes; conversely,
all modes within the Brillouin zone closer to the far corner
than the plane �UV were called UV modes. Everything else
was a generic mode—neither IR nor UV. We defined the
suppression of power in the IR and UV as a function of 	
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FIG. 1 (color online). Wall sources used on free field theory configurations show no finite volume effects (left) and show controlled
finite lattice spacing effects (right).
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QUV ¼ EUVð	Þ
EUVð0Þ ; and QIR ¼ EIRð	Þ

EIRð0Þ ; (5)

whereEUVð	Þ is the power summedover allmodes in theUV
for a fixed value of 	, and EIRð	Þ is a similar quantity
obtained by summing over all modes in the IR. The defini-
tions of IR and UV are arbitrary, so one needs to check
whether the results are sensitive to this definition. We placed
the planes �IR and �UV at a fraction d of the length of the
diagonal (with 0< d< 0:5, so that no mode is simulta-
neously in the IR andUV) from the nearest corner and varied
d. We observed that results were insensitive to d.

We investigated Q numerically with thermalized con-
figurations at T ¼ 0 using � ¼ 5:2746 and am ¼ 0:015.
Periodic boundary conditions were used so that all 
� ¼ 0.

The variation ofQX with 	 is shown in Fig. 2. One sees that
the slope of the curve for QUV always starts off larger than
that for QIR. Also, the slope of the latter seems to be close
to zero. This shows that smearing can be used to modify the
UV without modifying the IR. One can use this to seek an
optimum value of 	, such that QUV is as small as possible.
In a simulation with dynamical smeared quarks, one would
have to do this without making a significant change inQIR.
In this study the smearing is quenched; the set of gauge
configurations is not changed by smearing, and only
valence fermions are affected by smearing. Therefore, in
this context we are free to drop the condition on QIR.

We also investigated the quark mass and lattice
spacing dependence of QIR and QUV by studying thermal-
ized configurations at T ¼ 0 using � ¼ 5:2875 and
am ¼ 0:025 as well as � ¼ 5:53 and am ¼ 0:0125. The

first set has almost the same lattice spacing as the one with
� ¼ 5:2746 but has a somewhat different pion mass. The
last two sets have the same pion mass but have lattice
spacings that differ by a factor of 2. We show the results
in Fig. 2. As can be seen very clearly, there is a change in
the overall suppression of power in the IR and UV, but the
change in the optimum 	 is not large even when the lattice
spacing is halved. The optimum values of 	 move down
slightly. This movement is compatible with the intuition
that finer lattices require less improvement.
Interestingly, conjugate gradient inversion is also

optimized at similar values of 	 [20]. In Fig. 3 we show
the number of conjugate gradient (CG) iterations required to
invert a smeared staggered Dirac operator, NCG, in a repre-
sentative configuration drawn from thermalized ensembles.
These results were obtained with a CG stopping criterion

that the norm of the residual is less than 10�5
ffiffiffiffi
V

p
. Note that

the performance of the APE andHYP smeared operators are
very similar to each other, just as before. The behavior of the
Stout and HEX smearing are also similar, but quite different
from the previous pair. Again, the lattice spacing and pion
mass seems to make little difference to the optimization.
Using the smeared staggered Dirac operator, D, we

found the minimum and maximum eigenvalues of DyD:
�min and �max. We defined the condition number �ð	Þ ¼
�max ð	Þ=�min ð	Þ. One expects that the number of CG
iterations is closely related to �ð	Þ, as indeed it is seen to
be (see Fig. 3). We found that �min ð	Þ is independent of 	
to better than 1%, as expected, so �min ð	Þ=�min ð0Þ is flat.
The dependence of � on 	 is essentially due to the variation
of �max ð	Þ.
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FIG. 2 (color online). Power suppression, Q, in the UVand IR with different kinds of smearing at three different lattice spacings for
T ¼ 0. A halving of the lattice spacing leads to a weak change in the optimal value of 	.
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We can use any of these criteria, namely, the minimiza-
tion of QUV, NCG, or �max, to choose the best value of 	.
The results are shown in Table II in different smearing
schemes at different lattice spacings. There is a marginal

decrease in the best smearing parameter in each scheme
with a decrease in lattice spacing. We see that there is
reasonable agreement between the best values obtained
through the three methods. Given this, we choose to
work with the values 	 ¼ 0:6 for APE and HYP and with
	 ¼ 0:15 for HEX and 	 ¼ 0:1 for Stout.

B. Smeared quarks and chirally symmetric correlators

Chiral symmetry restoration in the high-temperature
phase of QCD is easily seen in hadronic correlation func-
tions. Below Tc the local meson correlators, S, PS, V, and
AV, are quite distinct, but above Tc they collapse into one
(see Fig. 4). A pairwise degeneracy of the S/PS and V/AV
shows chiral symmetry restoration—and has been demon-
strated earlier as well with thin-link staggered valence
quarks. However, the near degeneracy of the two pairs at
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FIG. 3 (color online). Speedup of the conjugate gradient inversion for T ¼ 0 at two different lattice spacings as a function of 	 in the
various different smearing schemes. The optimal value of 	 in each smearing scheme agrees with that seen in the glue sector. This
closely follows the change in the condition number, �, of the fermion matrix. The last panel shows that the change in the condition
number comes from the UV, i.e., �max; the IR, i.e., �min, is almost unchanged by smearing.

TABLE II. The best 	 for two different a, the second being
half of the first, evaluated in different schemes and by different
optimization criteria. The optimum parameter value in each
scheme is nearly independent of a.

Scheme

� ¼ 5:2875, am ¼ 0:025 � ¼ 5:53, am ¼ 0:0125

QUV NCG �max QUV NCG �max

APE 0.71 0.65 0.62 0.70 0.65 0.60

HYP 0.65 0.60 0.56 0.65 0.55 0.55

Stout 0.19 0.15 0.16 0.18 0.15 0.14

HEX 0.20 0.15 0.17 0.17 0.15 0.14
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high temperature, visible only after smearing, is a new
observation. This occurs in all the data sets: N, O, and P.

Pairwise degeneracy arising from chiral symmetry res-

toration is most easily seen in the vanishing of Cð�SÞ,
Cð�VtÞ, and Cð�VsÞ at high temperature [4]. On examining
these combinations, it turns out that the degeneracy for
T > Tc becomes clearer with smearing. For example,

Cð�VtÞðz ¼ 1=TÞ is ð6� 8Þ � 10�3 at Tc with thin-link
valence quarks but becomes ð0� 2Þ � 10�3 when optimal

HYP smeared valence quarks are used. The improvement
is most remarkable in the S/PS sector, in which we

found Cð�SÞðz ¼ 1=TÞ ¼ �3:3� 0:1 at Tc using thin-link
valence but �0:57� 0:04 using optimal HYP smeared
valence. At larger T all the negative chiral projections

vanished. It was seen earlier [4] that Cð�VsÞ for T � Tc

vanished when z > 1=T but remained nonzero at short
distances. In Fig. 5 we show this effect at Tc and also
that it vanishes at 2Tc. A more detailed view of the
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FIG. 4 (color online). Screening correlators from data set N above and below Tc. The signs of chiral symmetry restoration are clear
with either thin-link or improved valence quarks in the form of pairwise degeneracies of correlators above Tc. However, improved
correlators show even higher degeneracies at high temperature. Similar results are obtained for data sets O and P.
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temperature dependence is exhibited by showing how

Cð�VsÞðz ¼ 1=TÞ changes with T. Below Tc the correlator
does not vanish, but the spatial structure seems to have
entirely disappeared for T > 1:05Tc. With unsmeared cor-
relators the effect persists further into the hot phase. This
gives one definition of the width of the chiral crossover; it
is larger than the one implied by ��c (see Appendix).

CðþVsÞ is close to the FFT prediction with either thin-link
or smeared valence quarks. With thin-link staggered

valence quarks, we see that CðþSÞ is different from FFT,
as previously observed. However, on smearing, they
become compatible with FFT (see Fig. 6). This is a more
detailed understanding of why the meson screening corre-
lators are nearly degenerate in Fig. 4.

In Fig. 7 we show that the correlator CðþSÞðzÞ approaches
FFT as the parameter 	 is tuned to the optimum in each of
the smearing schemes, approaching closest to FFT at the
optimum. We used the distance z ¼ 1=T in this demon-
stration because it is neither in the far IR nor in the UV. The
optimum HYP and HEX schemes bring the correlator
closer to FFT than the APE and Stout smearing schemes,

although the latter also come very close to FFT. Next we
explore this difference between schemes.

C. Smearing, taste symmetry and screening masses

On examining screening masses, we found that they
depend on the smearing parameter 	 essentially only
through the taste symmetry breaking measure

m� ¼ m�5�i
�m�5

; (6)

where the subscripts on the right denote the pion taste
structure. The �5 taste is the Goldstone pion. We chose
the partner with taste structure �5�i as an indicator of taste
splitting since it turned out to be relatively easily mea-
sured. Figure 8 shows the nearly linear dependence of�=T
on m�a. The figure shows the clear superiority of the
HEX scheme over the Stout. Using the scaling shown in
Fig. 8, one could extrapolate screening masses to the limit
m� ! 0. However, this is premature, since it involves an
extrapolation to suboptimal values of 	. The S/PS screen-
ing masses obtained using local operators with dynamical
p4 quarks at a comparable temperature turns out to be
around 4:8T [6].
More information can be extracted from the taste split-

ting of the screening masses at finite T,

�PS ¼ ��5�i
���5

: (7)

The only previous study of this kind was reported in
Ref. [6]. In Fig. 8 we show �PS as a function of am�.
In making this comparison, we held the lattice spacing
fixed, with one set of measurements at T ¼ 0, one at
T ¼ 2Tc in set O, and a third at T ¼ 1:33Tc in set P. We
find �PS / Tðam�Þ2 over the range of values we
obtained. This removes the ambiguity remarked upon
in Ref. [6].
One can argue for this on general grounds. A hadron

mass, M, can be written as Ma ¼ fða�MS;ma; 	Þ, where
we treat 	 as a generic label for all the parameters that
control smearing. A screening mass, �, can be written as
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�=T ¼ gða�MS;ma; 	; NtÞ, since Nt ¼ 1=ðaTÞ, or as

a� ¼ g0ða�MS;ma; 	; NtÞ. For data taken at fixed cutoff,

a�MS, we need not show this parameter explicitly.

Although we work at fixed ma, it is profitable to consider
the dependence on this variable. A series expansion in ma
near the chiral limit would yield different dependence for
the Goldstone pion mass,

am�5
¼ �1

ffiffiffiffiffiffiffi
ma

p þOðmaÞ3=2; and

aM ¼ �0 þ �1maþOðmaÞ2;
(8)

where M is any other mass scale, and the coefficients
depend on 	. As a result, am� ¼ �0 � �1

ffiffiffiffiffiffiffi
ma

p þ �1ma
and �PS=T ¼ �0

0 þ �0
1ma. If taste symmetry were recov-

ered in the chiral limit by tuning 	, then one might argue
that �0 ¼ �0

0 ¼ 0 and hence a�PS / ðam�Þ2. This

would also mean that all pion tastes are forced to be
Goldstones, with an expansion starting at order

ffiffiffiffiffiffiffi
ma

p
.

Chiral logarithms, which we have neglected here,
could become important at smaller masses and spoil this
scaling.

Even if smearing achieves a more limited goal of sig-
nificantly decreasing m� at finite ma without actually
recovering taste symmetry completely, one might still
recover quadratic scaling. All that is needed is that �0

and �0
0 become much smaller than the actual T ¼ 0 taste

splitting in the problem. In general, one would have

�PS=T � �0
0 / ðam� � �0Þ2: (9)

The data in Fig. 8 shows that �0
0 and �0 are small compared

to am�. This quantifies how well smearing works. The
fact that it seems to work better at finite temperature than at
T ¼ 0 with fixed values of a�MS and ma possibly

indicates that the Dirac eigenvalue spectrum is simpler.
We shall return to this point later.
The main conclusion from these studies of smearing is

the following. Optimizing the suppression of UV modes
automatically improves taste symmetry in the hadron spec-
trum at T ¼ 0. This leads to superlinear improvement in
taste symmetry in the hot phase of QCD. In order to gain
most from such an improvement, one should then choose
the best possible smearing scheme.With partial quenching,
as here, this would mean working with the optimized HYP
scheme; with dynamical smeared quarks, it would mean
working with the optimized HEX scheme.

IV. RESULTS

A. Hot QCD: weak coupling and the Dirac spectrum

We found that the mass splitting between chiral partners
changes rapidly in the low-temperature phase and vanishes
fairly close to Tc in the hot phase. In Fig. 9 we show that�S

and �V both vanish at T ¼ 1:05Tc. Also, a comparison of
sets N and O shows very little quark mass dependence at
about the same lattice spacing. These results are in contrast
to the observations in Refs. [4,5] that �S remains signifi-
cantly nonzero up to a temperature significantly higher
than Tc. The change from the old results [4] using the
same data set P confirms that the improvement is due to
smearing.
The rapid approach to behavior similar to the weak-

coupling theory has implications for the spectrum of the
staggered Dirac operator. The vanishing of the pion mass in
the chiral limit at T ¼ 0 is related to a finite density of the
Dirac eigenvalues near zero. It was shown earlier in a
study of set O with thin-link quarks that a gap developed
in the massless staggered eigenvalue spectrum a little
above Tc and that the hot phase contained localized
Dirac eigenvectors [21].
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Here we studied the gap by measuring the smallest
eigenvalue of the massless staggered Dirac operator, �0.
The ensemble average, h�0i, at a given temperature was
generally seen to be within a factor of 4 of the minimum
over the ensemble. In view of this, we report h�0i. As can
be seen in Fig. 10, it climbs by 2 orders of magnitude
between Tc and 1:06Tc for the smeared Dirac operator. For
the thin-link operator, h�0i rises at significantly higher
temperature.

One sees some volume dependence in the result. This
was studied extensively in Ref. [21], in which it was found
that the volume dependence becomes negligible when the
spatial size, L, is of the order of 1=h�0i. For LT ¼ 4 this
would be at h�0i ’ 0:25, which seems to happen at 1:5Tc.
In the future it would be interesting to study this volume
dependence further.

It is also of interest to note that ah�0i becomes compa-
rable to am at T ¼ Tc with optimum HYP smearing. Since
this happens for all the data sets, it accounts for the lack of
quark mass dependence seen in �V and �S. With thin-link

quarks, this crossing is delayed to T=Tc ’ 1:5, thus affect-
ing all screening phenomena.
In set N at T ¼ 1:3Tc, we spotted one configuration out

of the 50 for which �0 was 2 orders of magnitude below
h�0i. This implies the existence of a small fraction of
atypical configurations in the thermal ensemble. These
would be interesting in a study of axial U(1) symmetry at
finite temperature, in which such atypical configurations
have been linked to topological configurations by observa-
tions with overlap [22] or highly improved staggered
quarks in Ref. [23]. However, that would require a much
larger statistical sample and is, therefore, best left to the
future.

B. Comparison with weak-coupling theory

Finally, the results for the screening masses as functions
of T are shown in Fig. 11 for all three data sets with optimal
HYP smearing. Also shown are the values expected in FFT
on lattices with the same size. The analysis of correlation
functions obtained with these smeared valence quarks
shows that the screening masses in all channels approach
FFT at high T. The most striking new feature of this data is
that this approach is from above, in conformity with the
predictions of Ref. [8]. Similar results are obtained with
optimal HEX smeared quarks. We have shown earlier in
Fig. 8 that there is a remaining uncertainty of around 15%
in the determination of the S/PS screening mass. This
comes from the residual taste symmetry breaking at the
best optimization of the screening parameters possible at
this lattice spacing. Reduction of this uncertainty requires
going to finer lattices.
The weak-coupling prediction for the mesonlike screen-

ing masses is

� ¼ �FFT þ 4

3
�S½1þ 2E0�T: (10)

Here�S is the two-loop QCD coupling evaluated in theMS
scheme at the scale 2�T. E0 ¼ 0:3824 for two flavors of
quarks in a dimensional reduction scheme evaluated in the
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continuum [8]. A hard thermal loop resummation that
neglects soft gluon contributions to the vertex yields
E0 ¼ 0 [9]. These weak-coupling predictions are also
shown in Fig. 11, with �S determined using Ref. [24];
since there is no computation with weak coupling on
a lattice, the effect of finite lattice spacing on E0 cannot
be estimated. Nevertheless, as one can see, both the

weak-coupling predictions are close to the observed
screening masses.

V. CONCLUSIONS

Several properties of quarks at experimentally acces-
sible temperatures above Tc seem to be explained in
weak-coupling QCD. However, one that showed puzzling
departures from weak-coupling predictions was screening
masses from hadronic excitations. In quenched computa-
tions it was seen that the results depended strongly on the
kind of valence quark used [10]. With this clue in hand, we
performed computations with dynamical staggered sea
quarks and improved valence quarks in three sets of
computations, one new (set N, see Table I) and two older
(sets O [16] and P [17]). Studies with staggered valence
quarks were reported earlier with set P [4].
A preliminary part of this work was the optimization of

the valence quarks. We used four popular versions of
fat-link staggered quarks. We optimized the smearing
parameter, 	, in each case by observing changes to the
power spectrum of the plaquette (see Fig. 2) and the largest
and smallest eigenvalues of the Dirac operator (see Fig. 3).
The optimum 	 was chosen so that the UV was suppressed
as much as possible without changing the IR behavior in
both cases. This also improved the performance of the
conjugate gradient algorithm used for the inversion of the
Dirac operator (see Table II). Such a tuning was done at
T ¼ 0. We found mild changes in the tuning parameters as
the lattice spacing was changed by a factor of 2.
Although the smearing parameter is optimized by

requiring that the IR components of fields do not change
appreciably, it does affect the long-distance properties of
the theory, such as masses. We compared different schemes
through a measure of the recovery of staggered quark taste
symmetry in the spectrum of pions (see Fig. 8). The
optimized HYP smearing works best, although optimized
HEX smearing is a close second. This is pleasant since
dynamical simulations with HEX smearing are easier than
with HYP.
Smearing causes systematic changes in finite tempera-

ture properties of interest. We found that the screening
mass in the hot phase increases systematically as taste
symmetry breaking is reduced at T ¼ 0 (see Fig. 8).
Also, taste symmetry breaking in the hot phase improves
superlinearly with improvement at T ¼ 0 (see Fig. 8).
Since recovery of taste symmetry has been used as the
main indicator of the reduction of UV effects, it is natural
in this study to use optimized HYP smearing in order to
best reduce lattice artifacts.
On doing this we find that the screening correlator

recovers the degeneracies that a theory of weakly coupled
fermions would predict (see Fig. 4). This happens very
close to, and above, Tc (see Fig. 5). The correlators them-
selves are also close to the predictions of a free fermion
field theory (see Fig. 6). Consistent with this, the screening
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masses at high temperature are found to be close to the
weak-coupling theory (see Fig. 11). A computation in
dimensional reduction [8] gives results that are slightly
different from a hard thermal loop computation neglecting
soft-gluon effects on the vertex [9]. The lattice computa-
tion is unable to distinguish these as yet, but we may expect
this to improve in the near future.

We also see that the smallest eigenvalue of the optimally
HYP smeared massless staggered Dirac operator shows a
rapid jump from extremely small values in the mean below
Tc to fairly large values above (see Fig. 10). The behavior
of the thin-link staggered operator is qualitatively similar,
although quantitatively slower to change. Since the
smallest eigenvalue of the massless smeared operator is
comparable to the bare mass already at T ¼ Tc, the limit of
physical renormalized mass becomes easy to take in the
high-temperature phase. There is evidence for a very small
fraction of completely atypical configurations in the hot
phase. A study of the topology of these gauge configura-
tions lies outside the scope of this paper.
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APPENDIX: DETERMINATION OF �c

The crossover is determined at Nt ¼ 4 for a bare quark
mass acm ¼ 0:015, where ac is the lattice spacing at �c.
We determined �c by positions of the peaks of different
susceptibilities.��c was defined to be the full width at half
maximum of the same susceptibilities.
We measured the Wilson line susceptibility, �L [17], the

bare chiral susceptibility, �M [25], the corresponding re-
normalized quantity m2

r�
r
M=T

4 [26], and the fourth-order
quark number susceptibilities, �22 and �40 [16], at various
values of� in the crossover region. For the measurement of
m2

r�
r
M=T

4, we determined the chiral condensate at zero
temperature on 164 lattice at the same values of � as the
finite temperature ones.
Prior to the runs listed in Table I, we performed a series

of runs at fixed bare quark mass, am ¼ 0:015, with Ns ¼ 8
and 12. We used these runs to make first estimates of �c

and followed up with the runs along lines of constantm=Tc

listed in Table I. The compatibility of these runs is shown
in Fig. 12, where m2

r�
r
M=T

4 is given as a function of T=Tc.
The figure also shows that with this cutoff, the deconfining
and chiral crossovers in QCD coincide; m2

r�
r
M=T

4 peaks
between 0.98 and 1:02Tc.
To determine �c accurately, we interpolated data for

susceptibilities using multihistogram reweighting [27] in
the crossover region. From bootstrap resampling of the
histograms, we determined the means and errors in the
position of the peak of each susceptibility and its full width
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at half maximum, so obtaining �c and��c [28]. We found
�c and ��c for each of the susceptibilities on the three
different lattice volumes, the results of which are shown in
Fig. 13. Since we found very little volume dependence in

�c, we made a fit to a constant, independent of volume.
The values of �c so determined are displayed in Table III.
In Fig. 13 we also show the volume dependence of ��c.
This decreases with the volume and gives some indication
of saturating, within errors, close to our largest lattice.
Therefore, we take ��c obtained on Ns ¼ 16 as our best
estimate. These estimates are also listed in Table III.
We find that the variation in �c with different susceptibil-
ities occurs well within the width of the crossover mea-
sured from each indicator separately. In fact, the four
estimates of �c are consistent with each other within
68% confidence limits. Combining all four measurements,
we quote �c ¼ 5:2744ð7Þ and ��c � 0:006.

[1] J. P. Blaizot, E. Iancu, and A. Rebhan, Phys. Lett. B 523,
143 (2001); A. Vuorinen, Phys. Rev. D 67, 074032 (2003);
Y. Schroder and M. Laine, arXiv:hep-lat/0509104.

[2] C. E. Detar and J. B. Kogut, Phys. Rev. Lett. 59, 399
(1987).

[3] K. D. Born, S. Gupta, A. Irbäck, F. Karsch, E. Laermann,
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