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Four-fermion operators have been used in the past to link the quark-exchange processes in the

interaction of hadrons with the effective meson-exchange amplitudes. In this paper, we apply the

similar idea of a Fierz rearrangement to the self-energy and electromagnetic processes and focus on

the electromagnetic form factors of the nucleon and the electron. We explain the motivation of

using four-fermion operators and discuss the advantage of this method in computing electromagnetic

processes.
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I. INTRODUCTION

Although the calculation of the nucleon form factors
based on a quark-diquark model certainly differs from
the calculation of the electron form factors using quantum
electrodynamics (QED), one may still discern commonal-
ities between the two apparently different calculations. For
example, both calculations on the one-loop level share
essentially the same type of triangle diagram as shown in
Fig. 1 for the computation of amplitudes. While the con-
tents of the lines drawn in the two triangle diagrams are
certainly different, both calculations share the same type of
one-loop integration for the amplitudes given by three
vertices connected by three propagators. In particular, the
structure of the two fermion lines intermediated by a boson
exchange is common in the two triangle diagrams and may
be generically identified as the four-fermion operator that
we discuss in this work. Due to this commonality, it may be
conceivable to compute the two apparently different triangle
amplitudes in a unified way. Such a unified way of compu-
tation is possible since the four-fermion operator can be
Fierz rearranged.

A similar idea of Fierz-rearranged four-fermion
operators was developed in a rather different context of
applications in the early 1980s. The basic idea of these
developments was to provide a basis for the one-boson-
exchange interactions of baryons at low energy in the gluon
exchange, which mediates quark-exchange scattering in
conjunction with quark interchange in a nonperturbative
bag-model framework [1–5]. In elastic nucleon-nucleon
(NN) scattering, the four-fermion operator appears from
the gluon-exchange mediating quark-exchange scattering
and becomes bilocal when it is dressed with long-range
quark-gluon correlations by means of bag-model wave

functions [1]. As this four-fermion operator is Fierz rear-
ranged, the quark-interchange amplitude takes on the usual
local form for each nucleon that is expected from the
wealth of empirical knowledge at low energy [1]. The
same idea was applied to �N and �� scattering as well
as the scattering involving hyperons [2]. A partial-wave
helicity-state analysis of elastic NN scattering was carried
out in momentum space [3], and a mesonic NN potential
from an effective quark interchange mechanism for non-
overlapping nucleons was obtained from the constituent
quark model [5]. Also, meson exchanges were introduced
into the harmonic oscillator quark model along with a
lower component of the quark spinor [4].
In this paper, we apply the Fierz-rearranged four-

fermion operator in the form factors shown in Fig. 1 and
present a global formula to cover the triangle diagrams
frequently used for the form factor calculations. The basic
idea is presented in the next section, Sec. II, and a simple
illustration of this idea is given in Sec. III via the self-
energy calculation. In Sec. IV, we apply it to the form
factor calculations that involve triangle diagrams and
present a corresponding global formula. The conclusion
and outlook follow in Sec. V. Appendices A and B detail
the four-fermion invariants in comparison with the well-
known Fierz identities [6,7] and the manifestly covariant
calculation of form factors, respectively.

(b)(a)

FIG. 1. Triangle diagrams for (a) nucleon form factors in
quark-diquark model and (b) electron form factors in QED.
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II. BASIC IDEA

The basic idea of the four-fermion operator in electromag-
netic processes is depicted in Fig. 2, where a single-photon
process for a target nucleon is drawn as an illustration. The
left and right portions of Fig. 2 correspond to the amplitude
intended for computation and the equivalent amplitude after
the four-fermion operator is Fierz rearranged, respectively. In
the left portion, a photon is attached to the hadronic part,
which has the two intermediate quarks denoted by the spinor
indices k and ‘ that inherit the fermion number from the
external nucleons, �ui and uj, with the corresponding spinor

indices i and j, respectively. Here, the two vertices, Oik and
O‘j, connecting the nucleon and the corresponding quark are

linked to the scattering amplitude Tk‘ where the photon
interacts with the constituents from the target nucleon; the
rest of the constituents beside the quark is denoted by a
wiggly line below the corresponding quark, and the loop
integration over the internal momentum is understood.
From this configuration of the integrand in the amplitude,
we may identify the four-fermion operator as the multiplica-
tion of two vertices OikO‘j and rearrange it as

ðO�ÞikðO�Þ‘j ¼C�
S�ij�‘kþC�

Vð��Þijð��Þ‘k
þC�

T ð���Þijð���Þ‘k
þC�

A ð���5Þijð���5Þ‘kþC�
Pð�5Þijð�5Þ‘k

¼X
�

C�
�ð��Þijð��Þ‘k; (1)

where the index� specifies the nature of the operatorO in the
vertex, whether it is scalar (S), pseudoscalar (P), vector (V),
axial-vector (A), or tensor (T). Similarly, the index � speci-
fies the nature of the rearranged operator� such that�S ¼
I, �P ¼ �5, �V ¼ ��, �A ¼ ���5, and �T ¼ ��� ¼
i
2 ½��; ���, where the Lorentz indices appear obviously for

V, A, and T as denoted by � and/or �. Although there are
only six independent tensor operators in the full Dirac alge-
bra, we prefer to sum over the full number of 12� tensors in
Eq. (1) using Einstein’s summation convention. Appendix A
details the comparison among different conventions [6,7]
regarding, in particular, the compensating factor 1

2 for this

double counting in tensor operators as well as the location
of �5 in the axial-vector operator whether it be ���5 or

�5��.

The Fierz coefficients C�
�ð�;� ¼ S; P; V; A; TÞ depend

on the nature of the vertices ðO�Þik and ðO�Þ‘j. The opera-
torO is defined the same way as� is defined, i.e.,OS ¼ I,
OV ¼ ��, OT ¼ ���, OA ¼ ���5, OP ¼ �5. With this

definition of operators O and �, we shall use the Fierz

coefficients C�
� in Table I for different couplings O� (and

��) (see also Eq. (A5) in our Appendix A).1

For example, one can take the following coefficients
from Table I: ðCS;CV;CT;CA;CPÞ ¼ ð3; 0;�1=2; 0; 3Þ
and ð�1;�1=2; 0;�1=2; 1Þ for tensor vertices ð���Þik �
ð���Þ‘j and the axial-vector vertices ð���5Þikð���5Þ‘j,
respectively.
With this Fierz rearrangement, we may write the

integrand of the amplitude (omitting the index � for sim-
plicity) as follows:

�uiOikTk‘O‘juj ¼
X
�

C�ð �ui��
ijujÞð��

‘kTk‘Þ

¼ X
�

ð �u��uÞC�Tr½��T�; (2)

where the external nucleon current (or biproduct �u��u)
part is now factorized from the internal scattering part
given by the trace of the quark loop (Tr½��T�) as depicted
in the right portion of Fig. 2. With this rearrangement of the
same amplitude, one may get the general structure of the
target hadron’s current more immediately and factorize
the details of the internal probing mechanism just due to
the relevant constituents for the current of the target had-
ron. It provides an efficient and unified way to analyze the
general structure of the amplitudes sharing the common-
ality of the same type of diagram for the process.

III. SIMPLEST ILLUSTRATION

For an illustration of the basic idea, we start from the
simple example of a fermion self-energy amplitude, which

Trace

Biproduct

FIG. 2 (color online). Basic idea of Fierz-rearranged four-
fermion operator in electromagnetic processes.

TABLE I. Fierz transformation coefficients of Eq. (1) [6].

S V T A P

S 1=4 1=4 1=8 �1=4 1=4
V 1 �1=2 0 �1=2 �1
T 3 0 �1=2 0 3

A �1 �1=2 0 �1=2 1

P 1=4 �1=4 1=8 1=4 1=4

1Although our definition of the axial-vector operator, i.e.,
OA ¼ ���5, differs from the corresponding operator �5��
used in Ref. [6], Table I is identical to the Fierz coefficients
given in the same reference [6] [see, e.g., Eq. (A5)] because the
swap of �5 and �� does not matter on the level of the four-
fermion operator ðOAÞikðOAÞ‘j. See more details in Appendix A.
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does not have any external photons but just has one loop
due to an exchanged boson as shown in Fig. 3. Such a
process may occur in chiral perturbation theory to yield the
self-energy of the nucleon due to the surrounding pion
cloud [8]. Also, in the Yukawa model with a scalar cou-
pling, the fermion self-energy due to a scalar boson has
been investigated [9].

For the purpose of simple illustration, we consider here
only scalar and pseudoscalar couplings (rather than the
pseudovector coupling in the chiral perturbation theory)
and write the self-energy amplitude for a nucleon of mass
M, four-momentum p, and spin s in a unified formula both
for scalar and pseudoscalar couplings:

�ðp; sÞ ¼ �uiðp; sÞ�̂ijujðp; sÞ
¼ �S �uðp; sÞuðp; sÞ þ �

�
V �uðp; sÞ��uðp; sÞ; (3)

where, modulo the appropriate normalization factor, the

self-energy operator �̂ij is given by

�̂ij ¼
Z d4k

ð2�Þ4
Oikð6p� 6kþMÞk‘O‘j

DkDN

; (4)

with Dk ¼ k2 �m2
X þ i	 (mX is the intermediate meson

mass) and DN ¼ ðp� kÞ2 �M2 þ i	. The four-fermion
operator OikO‘j becomes IikI‘j ¼ �ik�‘j for the scalar

coupling theory, while it becomes ð�5Þikð�5Þ‘j for the

pseudoscalar coupling theory. From Table I, we get

�ik�‘j ¼ 1

4
�ij�‘k þ 1

4
ð��Þijð��Þ‘k þ 1

8
ð���Þijð���Þ‘k

� 1

4
ð���5Þijð���5Þ‘k þ 1

4
ð�5Þijð�5Þ‘k (5)

and

ð�5Þikð�5Þ‘j ¼ 1

4
�ij�‘k� 1

4
ð��Þijð��Þ‘k

þ 1

8
ð���Þijð���Þ‘kþ 1

4
ð���5Þijð���5Þ‘k

þ 1

4
ð�5Þijð�5Þ‘k; (6)

using Eq. (1) and Table I. The structure given byP
�C

�
�ð��Þijð��Þ‘k in Eq. (1) is manifest both in

Eqs. (5) and (6). Now, using the Fierz rearrangement given

by Eq. (1), one may replace OikO‘j with
P

�C
�
�ð��Þij �

ð��Þ‘k. Then, the multiplication of the operator factor
ð��Þ‘k with the factor ð6p� 6kþMÞk‘ in Eq. (4) yields
the trace Tr½��ð6p� 6kþMÞ� corresponding to the fer-
mion loop shown in the right side of Fig. 3.
Computing the trace Tr½��ð6p� 6kþMÞ�, one can

easily see that only � ¼ S and V survive while � ¼ P, A
and T vanish as expected from the structure of the fermion
self-energy given by Eq. (3). Since Tr½6p� 6kþM� ¼ 4M
and Tr½��ð6p� 6kþMÞ� ¼ 4ðp� kÞ�, we get �S and ��

V

in Eq. (3) as

�S ¼ 4CSM
Z d4k

ð2�Þ4
1

DkDN

;

��
V ¼ 4CV

Z d4k

ð2�Þ4
ðp� kÞ�
DkDN

;
(7)

where CS ¼ 1=4ð1=4Þ and CV ¼ 1=4ð�1=4Þ for the scalar
(pseudoscalar) coupling case from Table I. This shows that
both scalar and pseudoscalar coupling theories share the
same expressions given by Eq. (7). From this unified
formula, one can rather easily find a relationship between
the two results, one from the scalar coupling theory and the
other from the pseudoscalar theory, i.e.,

ð�SÞS ¼ ð�SÞP and ð��
V ÞS ¼ �ð��

V ÞP: (8)

The usual dimensional regularization method can be ap-
plied to obtain explicit results for�S and�

�
V after the four-

dimensional integration over the internal four-momentum
k� in the fermion loop. They are found to be identical to
the previous results [8,9] obtained by the direct calculation
without using the Fierz rearrangement. It is amusing to
notice that the results for the scalar coupling theory [9] and
the pseudoscalar coupling theory [8] indeed satisfy the
relationship given by Eq. (8). Using the Fierz rearrange-
ment, we now understand explicitly how and why they are
related to each other.

IV. APPLICATION TO FORM FACTORS

We now apply the idea of the four-fermion operator and
Fierz rearrangement to the form factors shown in Fig. 1 and
present the result that covers both the nucleon form factors
in a quark-diquark model and the electron form factors in
QED. Using the four-fermion method illustrated in Sec. II,
the current operator J� in the amplitude �uðp0ÞJ�uðpÞ from
the triangle diagram with the external fermion massM, the
internal fermion mass m, and the intermediate boson mass
mX can be given by (modulo normalization)

J� ¼ ig2
Z d4k

ð2�Þ4
N�

Dp1
Dp2

Dk

; (9)

Trace

Biproduct

k l
lk

i

i jk l

ji

FIG. 3 (color online). Self-energy amplitude and the corre-
sponding Fierz rearrangement.
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where p1ð2Þ¼pðp0Þ�k, Dpi
¼ p2

i �m2 þ i", Dk ¼ k2 �
m2

X þ i", and N� is the numerator of the amplitude corre-
sponding to the triangle diagram (e.g., Fig. 1). Using the
Fierz rearrangement given by Eq. (1), the numerator N�

can be written as

N� ¼ X
�

C�Tr½ð6p2 þmÞ��ð6p1 þmÞ�����; (10)

where � ¼ S, V, T, A, P and the corresponding �� ¼ I,
��, ���, ���5, �5 with the dummy Lorentz indices � and
�. As expected from the parity conservation in the electro-
magnetic current, � ¼ P never contributes to N�, i.e.,
Tr½ð6p2 þmÞ��ð6p1 þmÞ�5� ¼ 0. Thus, after the trace
calculation, we get

N� ¼ 4½CSmðp1 þ p2Þ� þ CVfðm2 � p1 � p2Þ��

þ p�
2 ðp1 � �Þ þ ðp2 � �Þp�

1 g þ iCTmðg��q�

� g��q�Þ��� � iCA	
����ðp2Þ���ðp1Þ��5�; (11)

where q ¼ p0 � p.
Now, using the usual Feynman parametrization for the

loop integration, the denominator of the integrand in
Eq. (9) yields

1

Dp1
Dp2

Dk

¼ 2
Z 1

0
dx

Z 1�x

0

dy

½Dk þ xðDp1
�DkÞ þ yðDp2

�DkÞ�3

¼ 2
Z 1

0
dx

Z 1�x

0

dy

ðk02 �M2
covÞ3

; (12)

where in the second line we used the shifted momentum
k0 ¼ k� xp� yp0 and defined

M2
cov ¼ ðxþ yÞm2 þ ð1� x� yÞm2

X � xyq2

� ðxþ yÞð1� x� yÞM2 (13)

with the on-shell condition p2 ¼ p02 ¼ M2. Then, the
current operator J� given by Eq. (9) becomes

J� ¼ 2ig2
Z 1

0
dx

Z 1�x

0
dy
Z d4k0

ð2�Þ4
~N�

ðk02 �M2
covÞ3

; (14)

where the numerator with shifted momentum is now
given by

~N� ¼ 4

�
CSð1� x� yÞmðp0 þpÞ� þCV

��
m2 � k02 � ð1� x� yÞ2M2 þ ð1� x� yþ 2xyÞq

2

2

�
�� þ 2k0� 6k0

þ ð1� x� yÞ2
2

ðp0 þpÞ�ð6pþ 6p0Þ � 1� ðx� yÞ2
2

q� 6q
�
þ 2iCTmg��q���� þ iCAð1� x� yÞ	����p���p

0
��5

�
:

(15)

Although one expects to get J� ¼ ��F1ðq2Þ þ i
���q

�

2M F2ðq2Þ, our result for J� appears to exhibit not only the vector and

tensor currents but also the scalar and axial vector currents. This issue can be resolved by the Gordon decomposition and a
similar extension, namely,

ðp0 þ pÞ� ! 2M�� � i���q�; i	�����5p���p
0
� ! q2

2
�� � iM���q�: (16)

Using Eq. (16), we get the expected decomposition of J� in terms of just vector and tensor currents and find the form
factors (i ¼ 1, 2) as follows:

Fiðq2Þ ¼ 8ig2
Z 1

0
dx

Z 1�x

0
dy

Z
d4k0

~Ni

ðk02 �M2
covÞ3

; (17)

where

~N1 ¼ 2mMð1� x� yÞCS þ ð1� x� yÞ q
2

2
CA þ

�
m2 þ ð1� x� yÞ2M2 þ ð1� x� yþ 2xyÞ q

2

2
� k2

2

�
CV;

~N2 ¼ �2mMð1� x� yÞCS � 2ð1� x� yÞM2CA � 2ð1� x� yÞ2M2CV þ 4mMCT:
(18)

Apparently, F1 is UV divergent and requires a regulariza-
tion along with the renormalization set by the normaliza-
tion condition F1ð0Þ ¼ 1. More explicit expressions for
F1ðq2Þ and F2ðq2Þ are derived in Appendix B using dimen-
sional regularization with Wick rotation.

We may point out that the results in Eq. (17) can cover
not only the nucleon form factors in a quark-diquark
model, whether the diquark is scalar or axial-vector, but
also the electron form factors in QED taking the corre-
sponding Fierz coefficients and masses. For example, from

JI et al. PHYSICAL REVIEW D 87, 093004 (2013)

093004-4



Table I, CS ¼ CV ¼ 2CT ¼ �CA ¼ CP ¼ 1=4 if the di-
quark is taken as a scalar boson, while CS ¼ �1, CV ¼
�1=2, CT ¼ 0, CA ¼ �1=2, and CP ¼ 1 if the diquark is
taken as an axial vector boson in a quark-diquark model for
the nucleon form factors. For the electron form factors in
QED, one should take of course CS ¼ 1, CV ¼ �1=2,
CT ¼ 0, CA ¼ �1=2, and CP ¼ �1. Also, M, m, and
mX are the nucleon, quark, and diquark masses for the
nucleon form factors, while M ¼ m is the electron mass
in the QED calculation of the electron form factors. It is
interesting to see that the Fierz coefficient CP appears
neither in the nucleon form factors nor in the electron
form factors reflecting the parity conservation both in the
strong and electromagnetic interactions. We should note,

however, that the disappearance of CP in Eq. (17) is not

coming from the Fierz rearrangement itself but coming

from the trace calculation reflecting the conservation of

parity in the single photon process; e.g., a pion can never

decay into a single photon but can decay into two photons.

Thus, we may expect that the contribution from�P would

show up in the amplitude defined in a process involving

two photons such as the generalized parton distributions in

deeply virtual Compton scattering.

Finally, we note that the usual decomposition of J� ¼
��F1ðq2Þ þ i

���q
�

2M F2ðq2Þ in terms of vector and tensor

currents with the Dirac (F1) and Pauli (F2) form factors

is just one of six possible decompositions:

J� ¼ ��F1þ i
���q�
2M

F2 ¼ ��ðF1þF2Þþ ðpþp0Þ�
2M

F2 ¼ ðpþp0Þ�
2M

4M2F1þq2F2

4M2�q2
� i	�����5��p�p

0
�

2ðF1þF2Þ
4M2�q2

¼ ðpþp0Þ�
2M

F1þ i
���q�
2M

ðF1þF2Þ ¼ ��

�
F1þ q2

4M2
F2

�
� i	�����5��p�p

0
�

F2

2M2

¼ i
���q�
2M

�
4M2

q2
F1þF2

�
þ i	�����5��p�p

0
�

2F1

q2
: (19)

One should note, however, that the equivalence presented
in Eq. (19) meant the equality on the level of matrix
elements, e.g., �uJ�u, but not on the level of operators
themselves. In other words, Eq. (19) is valid only for the
spin-1/2 fermion case such as the nucleon. Thus, for
the nucleon target, these six different decompositions in
Eq. (19) are all equivalent. Any particular choice of de-
composition may depend on a matter of convenience and/
or effectiveness in the given situation of computation.

V. CONCLUSION

The idea of rearranging four-fermion operators provides
an effective way to analyze hadronic processes. It factor-
izes the details of the internal probing mechanism from the
external global structure owing to the target hadrons. In
this work, we illustrated the idea of Fierz rearrangement to
the fermion self-energy and electromagnetic form factor
calculations. Processes sharing a certain commonality
(e.g., the same type of diagrams) may be described in a
unified way. For instance, whether the mesons surrounding
the nucleon are scalar or pseudoscalar bosons, the Fierz
rearrangement of the four-fermion operators can be used to
yield a unified expression for the nucleon self-energy
amplitude and provide a relationship between the two
amplitudes, one for the scalar coupling and the other for
the pseudoscalar coupling. Likewise, the electromagnetic
nucleon form factors in a quark-diquark model and the
electron form factors in QED can be given by a unified
expression based on the commonality of sharing the same
type of diagram, e.g., the triangle diagrams shown in Fig. 1.
Moreover, the quark-diquark calculations of baryon form

factors using the idea of rearranging four-fermion opera-
tors proposed in this work may provide a unified expres-
sion that can cover all types of diquarks such as scalar,
pseudoscalar, vector, axial-vector, and tensor diquarks.
With this idea, we can offer a clear understanding of the
interrelationships among different calculations sharing a
commonality.
While we presented only the basic idea and a few simple

examples in this paper, we may foresee a great potential for
further application to other hadronic processes. In particular,
the application to the two-photon processes would be inter-
esting since the generalized hadronic tensor structure of
deeply virtual Compton scattering still needs further inves-
tigation [10] in view of forthcoming experiments with the
12 GeVupgrade at JLab. Work along this line is in progress.
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APPENDIX A: CONVENTIONS IN FIERZ
IDENTITIES FOR DIRAC MATRICES

A Fierz identity is an identity that allows one to rewrite
bilinears of the product of two spinors as a linear combi-
nation of products of the bilinears of the individual spinors.
In all, 16 bilinear terms can be constructed using bispinors
�a and b. The linear combinations of these terms form five
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different types of Lorentz-covariant quantities, �ab, �a��b,
�a���b, �a�5��b, �a�5b, where ��� ¼ i

2 ½��; ���. These
covariants are normalized as follows:

I � I ¼ 1; ���
� ¼ 4; ����

�� ¼ 12;

ð�5��Þð�5��Þ ¼ �4; �5�
5 ¼ 1:

(A1)

There are several ways of constructing the Lorentz scalar
out of four bispinors �a, b, �c, d [6,7,11]. According to the
convention by Weber [6], the five Lorentz scalars can be
constructed out of four bispinors �u1, u2, �u3, u4 as
follows:

S�variant: SWð4;2;3;1Þ¼ ð �u4u2Þð �u3d1Þ;
V�variant: VWð4;2;3;1Þ¼ ð �u4��u2Þð �u3��u1Þ;
T�variant: TWð4;2;3;1Þ¼ ð �u4���u2Þð �u3���u1Þ;
A�variant: AWð4;2;3;1Þ¼ ð �u4�5��u2Þð �u3�5��u1Þ;
P�variant: PWð4;2;3;1Þ¼ ð �u4�5u2Þð �u3�5u1Þ: (A2)

Counting only the independent tensors, ��� with �< �,
the 16 matrices (I, ��,���, �5��, �5) form a complete set
so that any one of the above variants can be expressed as
a linear combination of variants with a changed sequence
of spinors:

ð �u4Wiu2Þð �u3Wiu1Þ ¼
X
k

Ci
kð �u4Wku1Þð �u3Wku2Þ; (A3)

where

WS¼I; WV¼��; WT¼���; WA¼�5��; WP¼�5:

(A4)

Our vertex operators denoted byO� aswell as the rearranged

operators denoted by�� are the same as Weber’s operators
Wi except for the swap of �5 and �� in the axial vector

operator, i.e., OS¼WS, OV¼WV , OT ¼ WT , OA ¼ �WA,
OP¼WP. Thus, the coefficientsC

i
k in Eq. (A3) are identical

to the Fierz coefficients given byTable I.More explicitly, one
may write Eq. (A3) as a matrix equation, i.e.,

SW

VW

TW

AW

PW

2
666666664

3
777777775
ð4; 2; 3; 1Þ ¼ 1

4

1 1 1
2 �1 1

4 �2 0 �2 �4

12 0 �2 0 12

�4 �2 0 �2 4

1 �1 1
2 1 1

2
666666664

3
777777775

�

SW

VW

TW

AW

PW

2
666666664

3
777777775
ð4; 1; 3; 2Þ: (A5)

For example, either from Table I or Eq. (A5), one can
read off the following coefficients: (CT

S ¼ 3, CT
V ¼ 0,

CT
T ¼ �1=2, CT

A ¼ 0, CT
P ¼ 3) for the tensor product or

T variant ð �u4���u2Þð �u3���u1Þ and (CA
S ¼ �1, CA

V ¼
�1=2, CA

T ¼ 0, CA
A ¼ �1=2, CA

P ¼ 1) for the axial-vector
product or A variant ð �u4�5��u2Þð �u3�5��u1Þ.
On the other hand, according to the convention by

Itzykson and Zuber (IZ) [7], the five different Lorentz-
covariant quantities are taken as f �ab; �a��b; �a���b;
�a�5��b; �aði�5Þbg. Note here that the factor i in front of
�5 makes the pseudoscalar operator i�5 Hermitian. These
five Lorentz-covariant quantities are paired with their part-
ners f �ab; �a��b; �a���b; �a���5b; �að�i�5Þbg to construct

the corresponding five Lorentz scalars. Using the four bis-
pinors �u1, u2, �u3, u4, we may write those Lorentz scalars as
follows:

SIZð4; 2; 3; 1Þ ¼ ð �u4u2Þð �u3d1Þ;
VIZð4; 2; 3; 1Þ ¼ ð �u4��u2Þð �u3��u1Þ;
TIZð4; 2; 3; 1Þ ¼ 1

2
ð �u4���u2Þð �u3���u1Þ;

AIZð4; 2; 3; 1Þ ¼ ð �u4�5��u2Þð �u3���5u1Þ;
PIZð4; 2; 3; 1Þ ¼ ð �u4�5u2Þð �u3�5u1Þ:

(A6)

Note here that the factors i in i�5 and �i in �i�5 are not
written explicitly in PIZ because they cancel out. Also, the
usual summation convention is used in TIZ to sum over all
twelve tensor operators. Because only six independent ten-
sor operators exist, the factor of 1

2 is introduced in TIZ to

compensate for this double counting. Finally, we note that
the T and A variants defined in Eq. (A6) are different from
those in Eq. (A2), i.e., TIZ ¼ 1

2T
W and AIZ ¼ �AW .

Accordingly, the coefficients Ci
k in the IZ convention of

Lorentz scalars are given by

SIZ

VIZ

TIZ

AIZ

PIZ

2
666666664

3
777777775
ð4; 2; 3; 1Þ ¼ 1

4

1 1 1 1 1

4 �2 0 2 �4

6 0 �2 0 6

4 2 0 �2 �4

1 �1 1 �1 1

2
666666664

3
777777775

�

SIZ

VIZ

TIZ

AIZ

PIZ

2
666666664

3
777777775
ð4; 1; 3; 2Þ: (A7)

APPENDIX B: EXPLICIT RESULTS OF FORM
FACTORS IN EQ. (17)

Using the four-fermion method illustrated in Sec. II
and the usual Feynman parametrization for the loop
integration, we computed the triangle diagrams shown
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in Fig. 1 for the electromagnetic form factors of the
spin-1/2 target particle and obtained Eq. (17) as pre-
sented in Sec. IV. Since the momentum integral in
Eq. (17) diverges for the k02 and k0�k0� terms in the
ultraviolet region, we need to regularize it. In this ap-
pendix, we perform the four-dimensional k0 integration
using the Wick rotation to Euclidean space, k0 ¼ i
E,
and the dimensional regularization to find the more
explicit expressions for F1ðq2Þ and F2ðq2Þ. Then,
Eq. (14) is rewritten as

J� ¼ 2�4�dg2
Z 1

0
dx
Z 1�x

0
dy

Z dd
E

ð2�Þd
~N�
E

ð
2
E þM2

covÞ3
;

(B1)

where �d�4 is the usual mass factor that comes in to
compensate the change in the dimensionality of the
momentum integration. Using the property of symmetric
integration for 
�

E

�
E ¼ 
2

Eg
��=d, we have now the

following numerator, which corresponds to Eq. (15):

~N�
E ¼ d

�
CSð1� x� yÞmðp0 þ pÞ� þ C V

��
m2 þ

�
1� 2

d

�

2
E � ð1� x� yÞ2M2 þ ð1� x� yþ 2xyÞ q

2

2

�
��

þ ð1� x� yÞ2Mðp0 þ pÞ�
�
þ 2iCTm���q� þ iCAð1� x� yÞ	����p����5p

0
�

�
: (B2)

Now, using Eq. (16), we can decompose J� in terms of vector and tensor currents and find the form factors Fiði ¼ 1; 2Þ:

Fiðq2Þ ¼ 2d�4�dg2
Z 1

0
dx

Z 1�x

0
dy

Z dd
E

ð2�Þd
Ni

ð
2
E þM2

covÞ3
; (B3)

where

N1 ¼ 2mMð1� x� yÞCS þ ð1� x� yÞ q
2

2
CA þ

�
m2 þ ð1� x� yÞ2M2 þ ð1� x� yþ 2xyÞ q

2

2
þ
�
1� 2

d

�
k

�
CV;

N2 ¼ �2mMð1� x� yÞCS � 2ð1� x� yÞ2M2CV � 2ð1� x� yÞM2CA þ 4mMCT: (B4)

The momentum integration can be performed in Eq. (B3) using the following standard results:

d�4�d
Z

dd
E

1

ð
2
E þM2

covÞ3
¼ 2�2

M2
cov

þOð	Þ; d�4�d
Z

dd
E


2
E

ð
2
E þM2

covÞ3
¼ �2ð2� 	Þ2

�
�2

�M2
cov

�
	
�ð	Þ; (B5)

where on the right-hand side we used the definition 2	 ¼ 4� d. Expanding the second result above for small 	, we have�
1� 2

d

�
d�4�d

Z
dd
E


2
E

ð
2
E þM2

covÞ3
¼ 2�2

�
1

	
� �� 3

2
þ ln

�
�2

�M2
cov

�
þOð	Þ

�
: (B6)

We finally get

F1ðq2Þ ¼ g2

4�2

Z 1

0
dx

Z 1�x

0
dy

("
1

	
� �� 3

2
þ ln

 
�2

�M2
cov

!#
CV þ 2Mmð1� x� yÞCS þ ð1� x� yÞ q22 CA

M2
cov

þ ½m2 þ ð1� x� yÞ2M2 þ ð1� x� yþ 2xyÞ q22 �CV

M2
cov

)
(B7)

and

F2ðq2Þ ¼ g2

2�2

Z 1

0
dx

Z 1�x

0
dy

�
2MmCT �Mmð1� x� yÞCS

M2
cov

� ð1� x� yÞ2M2CV þ ð1� x� yÞM2CA

M2
cov

�
: (B8)

We now check whether the form factors given by Eqs. (B7) and (B8) are consistent with specific spectator particles, such
as scalar meson exchange, vector meson/photon exchange, etc. To do that, we need to consider how the different
coefficients are expressed, and this is achieved by using appropriate Fierz rearrangements in OikO‘j given by Eq. (1)

and Table I. For example, if we want the coefficients for the scalar meson exchange (e.g., the Yukawa model), the proper
coefficients are CS ¼ CV ¼ 2CT ¼ �CA ¼ CP ¼ 1

4 . Substituting these values in Eqs. (B7) and (B8), we get
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Fscalar
1 ðq2Þ ¼ g2

16�2

Z 1

0
dx

Z 1�x

0
dy

�
1

	
� �� 3

2
þ ln

�
�2

�M2
cov

�
þ ½mþ ð1� x� yÞM�2 þ xyq2

M2
cov

�
;

Fscalar
2 ðq2Þ ¼ g2

8�2

Z 1

0
dx
Z 1�x

0
dy

ðxþ yÞ½mþ ð1� x� yÞM�M
M2

cov

:
(B9)

This is exactly what we get from the standard calculation, i.e., N� ¼ ð6p2 þmÞ��ð6p1 þmÞ in Eq. (9).
Another example is the calculation of the electron vertex correction in four-dimensional QED, where the exchanged

particle is a vector photon (i.e., mX ¼ 0). In this case, the external fermion lines have the same mass as the internal ones,
i.e., M ¼ m. From the Fierz transformation relations in Table I for this case, we have CS ¼ 1, CV ¼ � 1

2 , CT ¼ 0, and

CA ¼ � 1
2 , CP ¼ �1. Substituting these values in Eqs. (B7) and (B8), we get

FQED
1 ðq2Þ ¼ � g2

8�2

Z 1

0
dx

Z 1�x

0
dy

�
1

	
� �� 3

2
þ ln

�
�2

�M2
QED

�
þ ½ðxþ yÞ2 þ 2ðxþ y� 1Þ�m2 þ ð1� xÞð1� yÞq2

M2
QED

�
;

FQED
2 ðq2Þ ¼ � g2

4�2

Z 1

0
dx

Z 1�x

0
dy

ðxþ yÞð1� x� yÞm2

M2
QED

; (B10)

whereM2
QED ¼ M2

covðM ! m;mX ! 0Þ. Again, this is exactly the result we get from the standard calculation in Feynman
gauge, i.e., N� ¼ ��ð6p2 þmÞ��ð6p1 þmÞ�� in Eq. (9).
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