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S. Sandilya,55 D. Santel,4 T. Sanuki,59 Y. Sato,59 V. Savinov,48 O. Schneider,28 G. Schnell,1,13 C. Schwanda,17

D. Semmler,6 K. Senyo,67 O. Seon,36 M. E. Sevior,33 M. Shapkin,18 C. P. Shen,36 T. -A. Shibata,61 J. -G. Shiu,41

A. Sibidanov,54 F. Simon,32,56 J. B. Singh,47 R. Sinha,19 P. Smerkol,22 Y. -S. Sohn,68 A. Sokolov,18 E. Solovieva,21
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We report a search for charmless hadronic decays of neutral B mesons to the final state KþK��0.

The results are based on a 711 fb�1 data sample that contains 772� 106 B �B pairs, and was collected at the

�ð4SÞ resonance with the Belle detector at the KEKB asymmetric-energy eþe� collider. We find the first

evidence for this decay with a significance of 3.5 standard deviations and measure its branching fraction as

BðB0 ! KþK��0Þ ¼ ½2:17� 0:60ðstatÞ � 0:24ðsystÞ� � 10�6.

DOI: 10.1103/PhysRevD.87.091101 PACS numbers: 13.25.Hw, 14.40.Nd

The B-meson decay B0 ! KþK��0 is suppressed in
the standard model (SM) and thus offers a useful probe
for new physics beyond the SM. Figure 1 shows typical
Feynman diagrams that contribute to this decay. The domi-
nant one is the color- and Cabibbo-suppressed b ! u tree
transition followed by the internal W exchange diagram
leading to B0 ! K��K� with K�� ! K��0. The latter
diagram dominates in the decay B0 ! KþK�, for which
only upper limits have been placed on the branching frac-
tion [1–4]. This is in contrast to the related decays (having
two kaons in the final state) that are already observed such
as B0 ! K0 �K0, Bþ ! K0Kþ [4,5], and Bþ ! KþK��þ

[6,7], where the b ! d gluonic penguin amplitude can
contribute as well [8].
The three-body decay B0 ! KþK��0 has not yet been

observed, with only one measured upper limit of BðB0 !
KþK��0Þ< 19� 10�6 at 90% confidence level from the
CLEO Collaboration [9]. Intermediate resonant modes that
decay preferentially to this final state have also not been
seen. A search for a related channel by Belle has set an
upper limit of BðB0 ! ��0Þ< 1:5� 10�7 [10]. The lat-
ter mode is quite sensitive to possible beyond-the-SM
contributions; a branching fraction of Oð10�7Þ would con-
stitute evidence for new physics [11]. No experimental
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information is available for other potential resonance
modes such as K�ð892Þ�K�, K�

0ð1430Þ�K�, and

f0ð980Þ�0. For the decay B0 ! K�ð892Þ�K� dominated
by internal W exchange [Fig. 1(b)], the branching fraction
is predicted to be in the range 10�8 to 10�7 [12–14].

Another motivation for the study of B0 ! KþK��0

comes from the observation of Bþ ! KþK��þ by
the BABAR Collaboration [6]. In particular, an unexpected
structure is seen near 1:5 GeV=c2 in the KþK� invariant-
mass spectrum, which accounts for about half of the total
events. Similar structures have also been observed in
the Dalitz plots of Bþ ! KþK�Kþ and B0 ! KþK�K0

decays [15–17]. If these structures are due to a particular
KþK� resonant state, it should show up in B0!KþK��0;
on the other hand, if it is a reflection from the b ! d
penguin, it will not contribute to KþK��0. Since the u
and d quarks are spectators in the b ! u tree diagram
[Fig. 1(a)] for Bþ ! KþK��þ and B0 ! KþK��0,
respectively, one can estimate the branching fraction for
the latter using the BABAR results. Assuming isospin sym-
metry and the b ! u transition to be the main contributor
to B0 ! KþK��0, we expect its branching fraction to be
at the level of 3� 10�6, which is well within Belle’s reach.

Our results are based on a data sample containing
772� 106 B �B pairs collected at the �ð4SÞ resonance
with the Belle detector [18] at the KEKB asymmetric-
energy eþe� (3.5 on 8.0 GeV) collider [19]. The principal
detector components used in the study are a silicon vertex
detector, a 50-layer central drift chamber (CDC), an array
of aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
(TOF), and a CsI(Tl) crystal electromagnetic calorimeter
(ECL). All these components are located inside a 1.5 T
solenoidal magnetic field.

To reconstruct B0 ! KþK��0 decay candidates, we
combine two oppositely charged kaons with a �0 meson.
Each track candidate must have a minimum transverse
momentum of 100 MeV=c, and a distance of closest
approach with respect to the interaction point of less than
0.2 cm in the transverse r-� plane and less than 5.0 cm
along the z axis, where the z axis is defined by the direction
opposite the eþ beam. Identification of charged kaons is

based on a likelihood ratio RK=� ¼ LK

LKþL�
, where LK and

L� denote the individual likelihoods for kaons and pions,
respectively, calculated using specific ionization in the
CDC, time-of-flight information from the TOF, and the

number of photoelectrons from the ACC. A requirement
RK=� > 0:6 is applied to select both kaon candidates. The

kaon identification efficiency is approximately 86% and
the probability of misidentifying a pion as a kaon is 11%.
We reconstruct �0 candidates from photon pairs that have
an invariant mass between 112 and 156 MeV=c2, corre-
sponding to �3:5� around the nominal �0 mass [20].
These photons are reconstructed from neutral clusters in
the ECL with energy above 60 (100) MeV in the barrel
(endcap) region. In addition, requirements on the �0 decay
helicity angle, j cos�helj< 0:95, and the �0 mass-
constrained fit statistic, �2

mass < 50, are imposed. Here,
�hel is the angle between one of the daughter photons and
the B momentum in the �0 rest frame.
B-meson candidates are identified using two

kinematic variables: beam-energy constrained mass,

Mbc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
beam � jPi ~pij2

q
, and energy difference, �E ¼P

iEi � Ebeam, where Ebeam is the beam energy, and ~pi and
Ei are the momentum and energy, respectively, of the ith
daughter of the reconstructed B in the center-of-mass (CM)
frame. We retain events with 5:271 GeV=c2 <Mbc <
5:289 GeV=c2 and �0:30 GeV<�E< 0:15 GeV for
further analysis. The Mbc requirement corresponds to ap-
proximately �3� around the nominal B0 mass [20]; we
apply a looser window of (� 12�, þ6�) around �E ¼ 0
because it is used in the fitter (as described below). The
average number of B candidates found per event is 1.3. In
events with multiple B candidates, we choose the one(s)
whose �0 has the lowest �2

mass value. If more than one B
candidate shares the same �0 meson, the candidate yield-
ing the best B0 vertex fit is selected.
The dominant background is from the eþe� ! q �q

(q ¼ u, d, s, c) continuum process. To suppress this back-
ground, observables based on the event topology are uti-
lized. The event shape in the CM frame is more spherical
for B �B events and jetlike for continuum events. We employ
a neural network [21] to combine the following six input
variables: the Fisher discriminant formed from 16 modified
Fox-Wolfram moments [22], the cosine of the angle
between the B momentum and the z axis, the cosine of
the angle between the B thrust and the z axis, the cosine of
the angle between the thrust axis of the B candidate and
that of the rest of the event, the ratio of the second- to the
zeroth-order Fox-Wolframmoments (all of these quantities
being calculated in the CM frame), and the separation
along the z axis between the vertex of the B candidate
and that of the remaining tracks. The training and optimi-
zation of the neural network are accomplished with signal
and q �q Monte Carlo (MC) simulated events. The signal
MC sample is generated with the EVTGEN program [23] by
assuming a three-body phase space. We require the neural
network output (CNB) to be above 0.2 to substantially
reduce the continuum background. The relative signal
efficiency due to this requirement is approximately 88%,
whereas the continuum suppression achieved is close to
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FIG. 1. Typical Feynman diagrams that contribute to the decay
B0 ! KþK��0: (a) b ! u tree and (b) internal W exchange.
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92%. The remainder of the CNB distribution peaks strongly
near 1.0 for signal, and thus we have difficulty in modeling
it with an analytic function. However, its transformed
variable

C0
NB ¼ log

�
CNB � CNB;min

CNB;max � CNB

�
; (1)

where CNB;min ¼ 0:2 and CNB;max ¼ 1:0, has a distribution
with a Gaussian-like tail.

The background due to B decays via the dominant
b ! c transition is studied with an MC sample of a col-
lection of such decays. The resulting Mbc distribution is
found to peak strongly in the signal region. We also ob-
serve two peaks in the KþK� invariant-mass spectrum that
corresponds to the contributions from (a) D0 ! KþK�
peaking at the nominal D0 mass [20], and (b) D0 !
K��þ with the peak shifted slightly from the D0 mass
owing to K-� misidentification. To suppress these peaking
contributions, we exclude candidates for which the invari-
ant mass of the KþK� system lies in the range of
½1846; 1884� MeV=c2 (about �5� around the nominal
D0 mass). In the case of (b), we use the pion hypothesis
for one of the tracks. The surviving events constitute the
‘‘generic B �B’’ background.

There are a few background modes that contribute in the
Mbc signal region having the �E peak shifted to positive
values. The so-called ‘‘rare peaking’’ background modes
arising mostly from K-� misidentification are identified
with a B �BMC sample in which one of the Bmesons decays
via b ! u, d, s transitions with known or estimated
branching fractions. The rare peaking background includes
the B0 ! Kþ���0 nonresonant decay as well as pos-
sible intermediate resonant modes that result in the
Kþ���0 final state, such as B0 ! K�ð892Þ0�0 and B0 !
K�ð892Þþ��. The events that remain after removing the
signal and rare peaking components comprise the ‘‘rare
combinatorial’’ background.

The signal yield is obtained with an unbinned ex-
tended maximum likelihood fit to the two-dimensional
distributions of �E and C0

NB. We define a probability
density function (PDF) for each event category j (signal,
q �q, generic B �B, rare peaking, and rare combinatorial B �B
backgrounds):

P i
j � P jð�EiÞP jðC0i

NBÞ; (2)

where i denotes the event index. Since the correlation
between �E and C0

NB is found to be negligible, the product
of two individual PDFs is a good approximation for the
combined PDF. We apply a tight requirement onMbc rather
than including it in the fitter because it exhibits an irreduc-
ible correlation with �E owing to shower leakage in the
ECL. The extended likelihood function is

L ¼ exp

�
�X

j

nj

�
�Y

i

�X
j

njP i
j

�
; (3)

where nj is the yield of event category j. The correctly

reconstructed (CR) and misreconstructed fragments of the
B-meson decay referred to as self-crossfeed (SCF) compo-
nents of the signal are considered distinct in the fitter: their
combined PDF is nsig � ½ð1� fÞP CR þ fP SCF�, where

nsig is the total signal yield and f is the SCF fraction fixed

to the MC expected value of 3%.
Table I lists the PDF shapes used to model the �E and

C0
NB distributions for each event category. Distributions

that are difficult to parametrize analytically are modeled
with histograms. The yields for all event categories except
the rare peaking B �B background are allowed to vary in the
fit. We fix the yield of the rare peaking B �B component to
the value calculated using the branching fraction measured
in an amplitude analysis of B0 ! Kþ���0 [25]. The
following PDF shape parameters of the q �q background
are floated: the two parameters of the second-order
Chebyshev polynomial used for �E, and the mean and
two widths of the asymmetric Gaussian function used to
model C0

NB. The PDF shapes for signal and other back-
ground components are fixed to the corresponding MC
expectations. We adjust the parameters of the signal �E
and C0

NB PDFs to account for possible data-MC differ-
ences, according to the values obtained with a large-
statistics control sample of Bþ ! �D0ðKþ���0Þ�þ. The
same correction factors are also applied for the rare peak-
ing B �B background.
Figure 2 shows the �E and C0

NB projections of the fit
applied to 39066 candidate events. We obtain 299� 83
signal events (nsig), 32167� 428 continuum q �q, 3814�
517 generic B �B, and 2691� 321 rare combinatorial B �B
background events. The statistical significance of the
signal is 3.8 standard deviations. It is calculated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log ðL0=Lmax Þ

p
, where L0 and Lmax are the fit

likelihood values with the signal yield set to zero and the
best-fit case, respectively. The obtained background yields
are consistent with the respective MC predictions. The
signal decay branching fraction is calculated as

B ðB0 ! KþK��0Þ ¼ nsig

NB �B � "rec � rK=�

; (4)

TABLE I. List of PDFs used to model the �E and C0
NB

distributions for various event categories. G, AG, CB, and
Poly2 denote Gaussian, asymmetric Gaussian, Crystal
Ball [24], and second-order Chebyshev polynomial function,
respectively.

Event category �E C0
NB

CR signal CBþ AG 3 AG

SCF signal histogram histogram

Continuum q �q Poly2 AG

Generic B �B Poly2 AG

Rare peaking B �B 2 G AG

Rare combinatorial B �B histogram 3 AG
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where NB �B is the total number of B �B pairs (772� 106),
"rec is the signal reconstruction efficiency (19.6%)
obtained in the study described below, and rK=� denotes

the kaon-identification efficiency correction factor that
accounts for a small data-MC difference. It is given by

rK=� � "dataK=�="
MC
K=�; (5)

where "dataK=� ("MC
K=�) is the efficiency of the RK=� require-

ment in data (MC simulations). The rK=� value per kaon

track is 0.95, resulting in a total rK=� ¼ 0:952 ¼ 0:90 for

two kaons. We have verified that the RK=� correction factor

is almost constant over the Dalitz plot. For the branching
fraction calculation presented in Eq. (4), we assume equal
production of B0 �B0 and BþB� pairs at the �ð4SÞ reso-
nance. The resulting value is

B ðB0 ! KþK��0Þ ¼ ½2:17� 0:60� 0:24� � 10�6;

(6)

where the uncertainties are statistical and systematic,
respectively. The contributions to the systematic uncer-
tainty are discussed below and listed in Table II.

The uncertainties due to the PDF shape parameters are
estimated by varying all fixed parameters by �1�. To
assign a systematic error for the histogram PDF used to
model �E for the rare combinatorial component, we carry
out a series of fits by fluctuating each of the histogram bin
contents according to the Poisson distribution. The spread
of the fitted signal yields is taken as the systematic error.
We also vary the yield of final states that dominantly
contribute to that component according to their errors. As
we use a fairly complex function (a sum of three asym-
metric Gaussians) to model the signal C0

NB PDF shape, we
evaluate possible systematics due to the uncertainty in the
functional dependence by checking other alternatives. This
systematic contribution is denoted as ‘‘Signal C0

NB func-
tional dependence’’ in Table II. The uncertainty due to the

fixed (small) SCF fraction is estimated without knowing
a priori how these SCF events vary across the Dalitz plot.
We adopt a conservative approach to vary the SCF fraction
by�50%when calculating the associated systematic error.
The potential fit bias is evaluated by performing an en-
semble test comprising 200 pseudoexperiments, where the
signal and rare peaking background components are em-
bedded from the corresponding MC samples, and the PDF
shapes are used to generate the data for the other event
categories. We obtain an almost Gaussian pull distribution
of unit width, and add the mean and error on the pull in
quadrature for assigning the systematics. Uncertainty due
to continuum suppression is derived with the control sam-
ple by comparing the nominal fit result with that obtained
without any CNB requirement. We estimate the error due to
the Mbc requirement by varying its nominal selection
threshold by the resolution. The D�þ ! D0ðK��þÞ�þ
control sample is used to determine the systematic uncer-
tainty due to the RK=� requirement. The systematic uncer-

tainty due to �0 reconstruction is evaluated by comparing
data-MC differences of the yield ratio between � !
�0�0�0 and � ! �þ���0. We use partially recon-
structed D�þ ! D0ðK0

S�
þ��Þ�þ decays to assign the

systematic uncertainty due to charged-track reconstruction
(0.35% per track). To account for the possible variation of
efficiency across the Dalitz-plot distribution, we calculate
a weighted signal reconstruction efficiency by fitting dif-
ferent regions of that distribution. The mean value is used
to obtain the branching fraction and the error is taken as the
systematic contribution due to the efficiency variation. The
total systematic uncertainty is calculated by summing all
these uncertainties in quadrature. To determine the signifi-
cance of our measurement, we use a convolution of the
statistical likelihood with a Gaussian function of width

E (GeV)∆
-0.3 -0.2 -0.1 0 0.1

E
ve

nt
s 

/ (
10

 M
eV

)

0

20

40

60

80

100

120

140

160

NB
/C

-6 -4 -2 0 2 4 6

E
ve

nt
s 

/  
0.

2 

0
20
40
60
80

100
120
140
160
180
200

FIG. 2 (color online). Projections of candidate events onto
(left) �E for C0

NB > 3 and (right) C0
NB for j�Ej< 30 MeV.

Points with error bars are the data, solid (blue) curves are the
total PDF, dashed (red) curves are the total background, dotted
(green) curves are the sum of continuum q �q and generic B �B
backgrounds, dash-dotted (magenta) curves are the continuum
q �q background, and filled (cyan) regions show the signal.

TABLE II. Summary of various systematic uncertainties.
The first and second horizontal blocks denote the additive and
multiplicative systematic uncertainties, respectively.

Source Uncertainties (%)

Signal PDF þ3:4 �2:9
Generic B �B PDF þ2:4 �3:1
Combinatorial background PDF þ1:3 �2:0
Peaking background PDFs þ1:7 �1:9
Fixed histogram PDF þ1:7 �2:0
Signal C0

NB functional dependence þ2:3 �2:3
Fixed SCF fraction þ1:7 �1:7
Fit bias þ2:4 �2:4
Continuum suppression þ2:2 �2:2
Requirement on Mbc þ1:5 �0:2
Kaon ID requirement þ1:9 �1:9
�0 detection efficiency þ4:0 �4:0
Charged-track reconstruction þ0:7 �0:7
Efficiency variation over Dalitz plot þ7:5 �7:5
Number of B �B pairs þ1:4 �1:4
Total þ11:1 �11:3
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equal to the additive systematic errors that only affect the
signal yield. The total significance, including these uncer-
tainties, is 3.5 standard deviations.

To elucidate the nature of the observed signal, especially
whether there are contributions from the decays with in-
termediate resonant states, we study the KþK� and Kþ�0

invariant mass distributions. We perform the [�E, C0
NB]

two-dimensional fit in bins of themðKþK�Þ andmðKþ�0Þ
distributions after applying the orthogonal requirements
mðKþ�0Þ> 1:5 GeV=c2 and mðKþK�Þ> 2:0 GeV=c2,
respectively. These requirements suppress kinematic re-
flections. Figure 3 shows the resulting signal yields along
with their statistical errors. With these data, we cannot
make any definitive statement about possible intermediate
KþK� resonances, including the structure seen by BABAR
near 1:5 GeV=c2 [6]. It is worth noting here that the recent
LHCb study of B� ! KþK��� decays [7] has revealed
an unidentified structure in the same mass range; however,
it is only present in Bþ events, giving rise to a large local
CP asymmetry. Furthermore, we observe some excess of
events around 1:4 GeV=c2 in the Kþ�0 invariant-mass
spectrum. A detailed interpretation will require an ampli-
tude analysis with higher statistics that would be available
at a next-generation flavor factory [26].

In summary, we report measurement of the suppressed
decay B0 ! KþK��0 using the full �ð4SÞ data sample
collected with the Belle detector. We employ a two-
dimensional fit for extracting the signal yield. Our measured

branching fractionBðB0!KþK��0Þ¼½2:17�0:60ðstatÞ�
0:24ðsystÞ��10�6 constitutes the first evidence for the decay.
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