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We present a new class of exact self-similar solutions possessing cylindrical or spherical symmetry in

Born–Infeld theory. A cylindrically symmetric solution describes the propagation of a cylindrical

electromagnetic disturbance in a constant background magnetic field in Born–Infeld electrodynamics.

We show that this solution corresponds to vacuum breakdown and the subsequent propagation of an

electron-positron avalanche. The proposed method of finding exact analytical solutions can be generalized

to the model of a spherically symmetric scalar Born–Infeld field in the (nþ 1)-dimensional Minkowski

space-time. As an example, the case n ¼ 3 is discussed.
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Born–Infeld electrodynamics was proposed in the
1930s as a nonlinear generalization of Maxwell electro-
magnetism [1]. The central idea of Born and Infeld was to
create a relativistic field theory that could admit a finite
energy classical solution describing an elementary electric
charge. Since the appearance of quantum electrodynamics
(QED), the interest in classical field theory has faded
considerably. However, in that time, Born–Infeld (BI)
theory received a fairly unexpected development. It was
related to Heisenberg’s suggestion to describe multiple
�-meson emission in high-energy hadronic collisions as
an expansion of a nonlinear wave packet in the context of
the effective scalar BI field [2]. This classical Heisenberg’s
model has proven to be very fruitful and continues to be
developed in the physics of quark-gluon plasma [3,4].

In the past decades, since its rediscovery in a low-energy
limit of string theories [5–10], BI electrodynamics has
been studied extensively by a large number of workers
(see, e.g., [8–16] and references therein). A substantial
degree of interest in the subject has also been stimulated
by recent advances in laser technology. Modern high-
power lasers make it possible to reach an intensity level
of 1026–1028 W=cm2. The corresponding field strength is
sufficient to make nonlinear electrodynamic effects in a
vacuum measurable [17–19]. The experimental verifica-
tion of BI electrodynamics could serve as an important
evidence in favor of string theory, and various ways for
laboratory testing of the corresponding nonlinear effects
are currently discussed in the literature [19–23].

It is known that BI electrodynamics has unique proper-
ties (causal propagation and the absence of birefringence
[24–26]) among other relativistic nonlinear theories of the
electromagnetic field. Born–Infeld theory possesses an
impressive mathematical beauty and has already found
numerous applications in different branches of physics.

Because of a rather complicated nonlinearity of the BI
field equations, only several exact solutions are known in

this theory. These are the point charge solution found by
the creators of the theory [1], 2D electrostatic solutions
[27,28], and plane wave solutions [29–32]. The problem of
finding new exact solutions in BI electrodynamics is very
topical. It is well known that BI equations admit the
existence of exact static singular solutions with finite total
energy (the so-called BIon solutions). The simplest cases
are cylindrically or spherically symmetric solutions with
a singularity on the axis or at the origin, respectively.
Recently, such solutions have received much attention in
string or M theory [7,9]. It should be noted, however, that
the properties of nonstationary solutions, which describe
the propagation of cylindrical and spherical wave distur-
bances, remain poorly studied not only in BI theory but
also in Maxwell electrodynamics of nonlinear media.
Some exact axisymmetric solutions of the Maxwell equa-
tions in a nonlinear medium have recently been found in
Refs. [33–35]. In this work, we obtain exact self-similar
solutions possessing cylindrical or spherical symmetry in
BI theory.
The Lagrangian density of BI electrodynamics is

given by

L ¼ ð4�Þ�1b2
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�2I� b�4J2

p �
; (1)

where b is Born’s constant [1], I ¼ � 1
2F��F

�� ¼
E2 � B2 and J ¼ � 1

4F��F�� ¼ E �B are the Poincaré

invariants, and F�� and F �� are the electromagnetic field

tensor and the dual tensor, respectively. The electromag-
netic field equations following from Lagrangian density (1)
formally coincide with the Maxwell equations if the
constitutive relations have the form D ¼ 4�@L=@E and
H ¼ �4�@L=@B. We introduce a cylindrical coordinate
system (r, �, z) and assume that the fields are independent
of� and z. Then the BI equations admit solutions in which
only the Ez and B� components are nonzero. Denoting

these components as E and B, respectively, and using the
fact that J vanishes in this case, we can write the field
equations in the form*kud@rf.unn.ru
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@rH þ r�1H ¼ @�D; @rE ¼ @�B; (2)

where D ¼ Eð1� b�2IÞ�1=2, H ¼ Bð1� b�2IÞ�1=2, I ¼
E2 � B2, � ¼ ct, and c is the speed of light. The second
equation in system (2) is satisfied by putting

E ¼ �b@�c ; B ¼ �b@rc ; (3)

where c is the normalized (to b) z component of the vector
potential. Assuming that I � b2, from the first equation in
system (2) we obtain

½1�ð@�c Þ2�@2rc þ2@rc @�c @rð@�c Þ�½1þð@rc Þ2�@2�c
þðn�1Þr�1½1�ð@�c Þ2þð@rc Þ2�@rc ¼0; (4)

where n ¼ 2 in the case considered. Here, the integer
parameter n is introduced for the following reasons.
Equation (4) can be considered as the Euler–Lagrange
equation for the scalar field c ðr; tÞ in the (nþ 1)-
dimensional Minkowski space-time, which follows from
the action

S ¼
Z
½1� ð@�c Þ2 þ ð@rc Þ2�1=2rn�1drd�; (5)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ � � � þ x2n

q
. Although our main attention

will be focused on the cylindrical symmetry in BI electro-

dynamics (n ¼ 2 and r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
), we will also consider

the spherical symmetry that corresponds to the case where

n ¼ 3 and r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. The generalization to the

higher dimensions is straightforward.
Equation (4) admits self-similar solutions of the form

c ¼ ruðsÞ; s ¼ �r�1: (6)

Substituting Eq. (6) into Eq. (4) yields the ordinary differ-
ential equation

ðs2�u2�1Þu00 þðn�1Þðu�su0Þ½1�ðu0Þ2þðu�su0Þ2�
¼0; (7)

where the prime denotes the derivative with respect to s.
We will seek an exact solution of Eq. (7) in parametric
form:

u ¼ �1=2 cosh�; s ¼ �1=2 sinh�: (8)

Here, � ¼ R
�ð�Þd�þ q, where q is an arbitrary integra-

tion constant. Substituting expressions (8) into Eq. (7) and
using the formulas

u0s ¼ u0�=s
0
�; u00ss ¼ ðs0�u00�� � u0�s

00
��Þ=ðs0�Þ3; (9)

we arrive at the Bernoulli equation

d�

d�
¼ �2�½ðn� 1Þ�� 1��3 � ð4� nÞ�þ 3

2�ð�þ 1Þ �: (10)

Integration of Eq. (10) gives

� ¼ � 1

2

ð�þ 1Þ�
�

ffiffiffiffiffiffiffiffiffiffiffiffi
	nð�Þ

p ; (11)

where � ¼ ðn� 1Þ=2, 	nð�Þ ¼ ð�þ 1Þn � ðpþ nÞ� is a
polynomial of order n, and p is an integration constant.
Restricting ourselves to consideration only of the simplest
cases n ¼ 2 and n ¼ 3, we write

	2ð�Þ ¼ �2 � p�þ 1 (12)

and

	3ð�Þ ¼ �3 þ 3�2 � p�þ 1: (13)

Thus, Eqs. (6), (8), and (11) give an exact solution of
Eq. (4). From these expressions, we have

@�c ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
	nð�Þ

p
cosh�þ ð�þ 1Þ� sinh�ffiffiffiffiffiffiffiffiffiffiffiffi

	nð�Þ
p

sinh�þ ð�þ 1Þ� cosh� ;

@rc ¼ �
ffiffiffi
�

p ð�þ 1Þ�ffiffiffiffiffiffiffiffiffiffiffiffi
	nð�Þ

p
sinh�þ ð�þ 1Þ� cosh� :

(14)

Now we should examine what physically meaningful
solutions can be obtained by appropriately choosing
the arbitrary constants p and q and the signs in
Eqs. (11) and (14).
Cylindrical symmetry.—Let us consider the following

representation of the quantity � in the case n ¼ 2:

� ¼ 1

2

Z �

�2

ffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p
d�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�� �1Þð�� �2Þ

p ; (15)

where �1 ¼ p=2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2=4� 1

p
, �2 ¼ p=2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2=4� 1
p

,
p > 2, and � > �2. Note that �1 and �2 are the real-valued
roots of the polynomial 	2ð�Þ in Eq. (12). Reduction of the
elliptic integral in Eq. (15) to the standard form gives

� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p ½ð�1 � �2Þ�ð
; �; kÞ þ ð�2 þ 1ÞFð
; kÞ�;
(16)

where F and� are incomplete elliptic integrals of the first

and third kinds, respectively, 
 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�� �2Þ=ð�� �1Þ
p

,

� ¼ �1=�2, and k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1 þ 1Þ=ð�2 þ 1Þp
. We use the fol-

lowing notation for the functions � and F:

�ð
; �; kÞ ¼
Z 


0

d�

ð1� ��2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �2Þð1� k2�2Þp (17)

and Fð
; kÞ ¼ �ð
; 0; kÞ. The components of the axisym-
metric electromagnetic field in BI electrodynamics are
given by Eqs. (3), (12), (14), and (16). With the identity

ct=r ¼ �1=2 sinh�, these formulas determine E and B as
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functions of the radial coordinate and time via the parame-
ter � (�2 < �<1).

The energy conservation law @tW þr �� ¼ 0, with the
energy density

W ¼ b2

4�

�
1þ b�2B2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�2I

p � 1

�
(18)

and the Poynting vector

� ¼ �êr
c

4�

EBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b�2I

p ; (19)

can easily be derived directly from the field equations (2).
Figure 1 shows the results of calculations of E and B by

Eqs. (3) and (14) for p ¼ 2:2 and p ¼ 6. The quantities D
and H are also presented in this figure for the same values
of p. The plots of Fig. 1 can be considered as oscillograms
of the field quantities at a fixed point r ¼ const � 0. The

branch of �1=2 in Eq. (8) and the signs in Eq. (14) were
chosen to provide the continuity of E and B at � ¼ 0 for
any r � 0 and ensure that the radial component � of the
Poynting vector is negative for � < 0 and positive for
� > 0. Figure 2 shows the energy density W, the radial
component � of the Poynting vector, and the invariant I as
functions of �=r. Figure 3 presents the snapshots of E and
B as functions of r for p ¼ 2:2 and various values of �.
Since there is no characteristic spatial scale in the problem
considered, the radial coordinate is given in arbitrary units.
It is seen in Figs. 1 and 3 that the field quantities described
by the obtained solution are single-valued continuous func-
tions at any space-time point, except for the points on the
symmetry axis. The solution describes the propagation of a

cylindrically symmetric disturbance in the azimuthally
magnetized vacuum. For � < 0, the cylindrical electro-
magnetic wave converges to the axis and the wave profile
becomes steeper [see Fig. 3(a)]. As a result, a shock wave
forms at r ¼ 0 and � ¼ 0. At this time instant, the electric
field and the energy-flow direction reverse their signs, so
that for � > 0 we observe propagation of a divergent
cylindrical wave [see Fig. 3(b)]. Although the fields E
and B are everywhere finite, it can be shown that D, H,
andW behave as const� r�1 for r ! 0 and � � 0. Such a
singularity is responsible for a linear increase in the
dependences Dð�=rÞ, Hð�=rÞ, Wð�=rÞ, and �ð�=rÞ in
Figs. 1(c), 1(d), 2(a), and 2(b). It is also seen in these
figures that (i) an increase inW corresponds to the positive
values of the invariant I, (ii) the quantities D, H, and W
diverge not only at � ¼ const � 0 and r ! 0, but also at
r ¼ const � 0 and � ! 1, and (iii) the local group veloc-
ity vg ¼ j�j=W does not exceed c. The energy density is

everywhere integrable.
The presence of the above singularity allows us to

propose a physical interpretation of the obtained exact
solution as that due to a distributional source on the
axis, which is similar to static BIon solutions [8,9].
The divergent cylindrical wave [see Fig. 3(b)] can be

FIG. 1. Normalized field components ~E ¼ E=b, ~B ¼ B=b,
~D ¼ D=b, and ~H ¼ H=b as functions of �=r for p ¼ 2:2
(a, c) and p ¼ 6 (b, d).

FIG. 2. Normalized energy density, the radial component of
the Poynting vector, and the invariant I (4�W=b2, 4��=cb2,
and I=b2, respectively) as functions of �=r for p ¼ 2:2 (a) and
p ¼ 6 (b). It is seen that I=b2 ! 1 for �=r ! �1.

FIG. 3. Normalized electric and magnetic fields ( ~E ¼ E=b
and ~B ¼ B=b, respectively) as functions of r for p ¼ 2:2 and
various values of �: �1 < 0 and �1 < �2 < 0 (a) and �3 > 0 and
�4 > �3 (b).

BRIEF REPORTS PHYSICAL REVIEW D 87, 087703 (2013)

087703-3



excited by the ‘‘switching on’’ of a delta-function source
on the axis at the time instant � ¼ 0. Since charges and
currents cannot be specified independently of the field in
nonlinear BI electrodynamics [1], the existence of such a
source is inseparably related to the presence of a constant
background azimuthal magnetic field BðrÞ � Bm ¼
b

ffiffiffiffiffi
�2

p
> b at � ¼ 0 and r � 0. On the axis, the chosen

source supports constant fields Eðr ¼ 0; � > 0Þ ¼ �E0

and Bðr ¼ 0; � > 0Þ ¼ B0 such that I ¼ E2
0 � B2

0 ¼ b2

and (D, H)! 1. This limiting field state existing in BI
electrodynamics has received an interpretation in string
theory as a divergence in the rate of pair production of
open strings [9,36]. An analogous effect follows from the
QED model of vacuum polarization. In QED, the electric
field, the strength of which is close to the Schwinger limit,
may cause electron-positron pair creation from a vacuum
[37]. The necessary condition for the Schwinger pair
creation process is I > 0 [17,37]. The interaction of the
created electrons and positrons with a sufficiently strong
field can lead to production of multiple new particles and
avalanchelike vacuum breakdown [38,39]. Thus, we can
state that the obtained solution describes radial expansion
of the electron-positron plasma bunch. Because of an
avalanchelike electromagnetic cascade, we have infinite
polarization and magnetization of the vacuum. This pro-
cess, which is created on the axis, progressively propagates
in the whole space. From the classical viewpoint, such an
expansion can be explained intuitively as a drift of charged
particles in the crossed fields Ez and B�.

Spherical symmetry.—Since a continuous tangential
vector field on a sphere cannot depend only on the radial
coordinate, this case obviously has no direct bearing on
electrodynamics. However, the model of a spherically
symmetric scalar field with BI action (5) is studied
intensely in connection with string/M theory [40–43].

In what follows, we consider the solution of Eq. (4) with
n ¼ 3 in a way similar to that used for the axial symmetry.
For n ¼ 3, the constants p and q can be chosen so that the
quantity � is given by

� ¼ 1

2

Z �

�3

ð�þ 1Þd�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�� �1Þð�� �2Þð�� �3Þ
p ; (20)

where �1, �2, and �3 are the real-valued roots of the
polynomial 	3ð�Þ in Eq. (13) such that �3 > �2 > �1.
Since complete analysis of the cubic equation is cumber-
some, we consider only a single value p ¼ 5 in Eq. (13).
In this case, the above-mentioned roots are equal to

�1 ¼ �2� ffiffiffi
5

p
, �2 ¼ �2þ ffiffiffi

5
p

, and �3 ¼ 1, so that �
can be represented as

� ¼ 1

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �1

p ½ð�2 � 1Þ�ð
; �2; kÞ þ ð�2 þ 1ÞFð
; kÞ�;
(21)

where 
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��1Þ=ð���2Þ
p

and k¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2��1Þ=ð1��1Þ
p

.
The quantities @�c and @rc are given by Eqs. (13), (14),
and (21). The energy density and flux can readily be
found from Eqs. (18) and (19) by representing E and B
in terms of the derivatives of c in accordance with Eq. (3).
The results of calculations of @�c , @rc , W, and � are
shown in Fig. 4. It is seen in the figure that by analogy with
the cylindrical case, the solution describes the propagation
of a spherically symmetric disturbance in a constant back-
ground field. It can be shown that W � const� r�2 for
r ! 0 (� � 0) and, hence, the singularity at the origin is
integrable. The physical constraint vg ¼ j�j=W � c is

also satisfied.
In conclusion, we emphasize that the obtained exact

solutions exist essentially due to BI nonlinearity and spa-
tial symmetry. Maxwell equations (b ! 1) as well as BI
equations in flat geometry [n ¼ 1 in Eq. (4)] obviously do
not allow the existence of such solutions. Although the
obtained solutions do not have a finite total energy, their
energy density is locally integrable. Because of this, by
suitably cutting off, the obtained solutions, as, e.g., plane
wave solutions, may provide useful approximations to
solutions with finite total energy. Moreover, BI wave
propagation in a constant background field represents con-
siderable interest in string theory [10]. Finally, we note that
Eq. (4) also admits self-similar solutions c ¼ �uðr=�Þ.
The parametrization u ¼ tanh� and r��1 ¼ ð��Þ�1=2 �
ðcosh�Þ�1 with � ¼ R

�ð�Þd�þ q leads again to

Eq. (10). Because of discontinuity or ambiguity, we failed
to give some of these solutions any physical interpretation.
However, it can be assumed that among the whole set of
partial solutions, there may exist physically meaningful
ones. Since they are determined by three governing
parameters (n and two integration constants) of the prob-
lem, an appropriate choice of these parameters needs
further studies.

This work was supported by the Government of
the Russian Federation (Project No. 11.G34.31.0048),
the RFBR (Project No. 12–02–00747-a), and the
Russian Ministry of Science and Education (Contract
No. 14.B37.21.1292).

FIG. 4. Quantities @�c and @rc of the spherically symmetric
BI field (a) and the energy density and the radial component of
the energy flux (b) as functions of �=r.
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