
Note on an application of the method of uniqueness to reduced quantum electrodynamics

A.V. Kotikov1 and S. Teber2

1Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
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the two-loop polarization operator in reduced quantum electrodynamics.
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I. INTRODUCTION

The exact analytical computation of multiloop
Feynman diagrams is of crucial importance for the
evaluation of renormalization group functions, i.e., �
functions and anomalous dimensions of fields. Since
the early days of quantum field theory a variety of
methods have been developed, and often combined, in
order to achieve this task, e.g., the Gegenbauer polyno-
mial technique [1,2], integration by parts [3,4], and the
method of uniqueness [3,5–7]. The latter allows, in prin-
ciple, the computation of complicated Feynman diagrams
using sequences of simple transformations. A given dia-
gram is straightforwardly integrated once the appropriate
sequence is found. The task of finding such a sequence
for a given diagram is, however, nontrivial; see Ref. [8]
for a review.

One of the basic building blocks of multiloop calcula-
tions is the two-loop massless propagator diagram:

Jð�1;�2;�3;�4;�5Þ

¼
ZZ dDk1d

Dk2

k2�1

1 k2�2

2 ðk2�pÞ2�3ðk1�pÞ2�4ðk2�k1Þ2�5

; (1)

with arbitrary indices �i and external momentum p in a
Euclidean space-time of dimensionality D (Fig. 1); see
Ref. [9] for a historical review on this diagram. When all
indices are integers the diagram of Eq. (1) is well known
and easily calculated. Its evaluation for arbitrary indices
is however highly nontrivial: the results can be repre-
sented [10] as a combination of twofold series. In some
particular cases, however, the results can be obtained
[2,3,7,11–14] in significantly simpler form. In Ref. [2]
a class of complicated diagrams, with two integer indices
on adjacent lines and three other arbitrary indices, has
been computed exactly on the basis of a new develop-
ment of the Gegenbauer polynomial technique. The latter
approach is technically involved and the result is ex-
pressed in terms of a generalized hypergeometric func-
tion, 3F2 with argument 1. For this class of diagrams,

similar results have been found in Ref. [13] using an
ansatz to solve the recurrence relations for the two-loop
diagram arising from integration by parts. In this brief

report we consider the simplest but an important
diagram belonging to this class, whose coefficient func-
tion reads

Ið�Þ ¼ p2ð2��Þ

�D Jð1; 1; 1; 1; �Þ; � ¼ D

2
� 1; (2)

where the index �5 has been restricted to �, all other
indices being 1. This diagram has been already calculated
[3] (see also discussions in Ref. [12]) but it seems that
our evaluation is simpler and more transparent. As will
be seen in the following, the diagram can indeed be
straightforwardly integrated using the method of unique-
ness in momentum space with the help of a simple but
ingenious three-step transformation. As an application,
we compute the two-loop polarization operator (Fig. 2) in
reduced quantum electrodynamics [15].

II. DEFINITIONS AND NOTATIONS

In what follows we use dimensional regularization. All
calculations are performed in a Euclidean space-time of
dimensionality D ¼ 2þ 2� which may either be even
dimensional (� ! 1) or odd dimensional (� ! 1=2).
Diagrams will be analyzed in momentum space. For a
given diagram, the integrations are over loop momenta
and the lines are simple power laws of the form: 1=k2�

FIG. 1. Two-loop massless propagator diagram.

(a) (b)

FIG. 2. Two-loop vacuum polarization diagrams.
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where � is the index of the line. The index of a diagram
is defined as the sum of the indices of its constituent
lines. A line with an arbitrary index � can be represented
graphically as

In order to simplify notations, arrows will not be dis-
played in the following but they are implied, e.g., Fig. 1.
With these definitions and graphical notations, chains

reduce to the product of propagators:

On the other hand simple loops involve an integration:

In momentum space a vertex and a triangle are said to be unique if their indices are equal to D=2 ¼ 1þ � and
D ¼ 2þ 2�, respectively. They are related to each other by the uniqueness (or star-triangle) relation:

where ~�i ¼ D=2� �i is the index dual to �i. Finally, for an arbitrary triangle (unique or not) the following recurrence
relation is obtained from integration by parts [3,4]:

where� on the right-hand side of the equation denotes the increase or decrease of a line index by 1 with respect to its value
on the left-hand side. In the following, in order to simply notations, we will assume that lines with no index are ordinary
lines. In momentum space ordinary lines have index � ¼ 1.

III. CALCULATION OF THE DIAGRAM

With the help of the above notations and identities we proceed on calculating Ið�Þ. The first transformation consists in
replacing the central line by a loop [16], Eq. (5), in order to make the right triangle unique. The uniqueness relation, Eq. (6),
can then be used. In graphical notations this reads

Finally, using integration by parts, Eq. (7), the last diagram is reduced to sequences of chains and simple loops which can
immediately be integrated with the help of Eqs. (4) and (5):
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¼ �D2ð�þ �Þ
p2ð1þ2�Þ Að1; 1Þ½Að�þ �þ 1; �þ �Þ � Að�þ �þ 1; 1þ �Þ�1; (9b)

where the parameter � has been introduced. The function Að1; 1Þ and the bracketed terms in Eq. (9b) read

Að1; 1Þ ¼ �2ð�Þ�ð1� �Þ
�ð2�Þ ; (10a)

ð�þ �Þ½��1 ¼ �ð��Þ
�ð�þ �Þ

�ð�� �Þ�ð1þ 2�Þ
�ð1þ �Þ�ð�� 2�Þ

�
�ð1� �Þ�ð1þ �Þ�ð�þ 2�Þ�ð�� 2�Þ
�ð1� 2�Þ�ð1þ 2�Þ�ð�þ �Þ�ð�� �Þ � 1

�
2
: (10b)

At this point it is convenient to use the following product expansion of the Gamma function:

�ðxþ "Þ ¼ �ðxÞ exp
�X1
k¼1

c ðk�1ÞðxÞ"
k

k!

�
; c ðxÞ ¼ c ð0ÞðxÞ ¼ �0ðxÞ

�ðxÞ ; c ðkÞðxÞ ¼ dk

dxk
c ðxÞ; (11)

where c ðkÞ is the polygamma function of order k. From Eq. (11), the following relation is obtained:

�ðxþ "Þ�ðx� "Þ ¼ �2ðxÞ exp
�
2
X1
m¼1

c ð2m�1ÞðxÞ "2m

ð2mÞ!
�
: (12)

Making use of Eq. (12) in the bracket of Eq. (10b) yields

½��2 ¼ exp

�
2
X1
m¼1

ð22m � 1Þ½c ð2m�1Þð�Þ � c ð2m�1Þð1Þ� �2m

ð2mÞ!
�
¼ 3�2½c 0ð�Þ � c 0ð1Þ�3 þ Oð�4Þ: (13)

Substituting back Eq. (13) in (10) and performing the remaining � expansion yields

where, in the last step, Eq. (9) has been used and � sent to
zero. Substituting the final result of Eq. (14) in Eq. (8) and
using Eq. (2), we obtain the advertised result [3,12] for the
coefficient function:

Ið�Þ ¼ 3
�ð�Þ�ð1� �Þ

�ð2�Þ ½c 0ð�Þ � c 0ð1Þ�; (15)

where c 0ðxÞ is the trigamma function. In the even-
dimensional case (� ! 1 or D ! 4) the well-known
result, Ið1Þ ¼ 6�ð3Þ, is obtained. On the other hand, in
the odd-dimensional case (� ! 1=2 or D ! 3), which is
one of the cases of interest to Refs. [12,17], the result reads
Ið1=2Þ ¼ 6��ð2Þ.

IV. APPLICATION

We now focus on the computation of radiative
corrections to the polarization operator ���ðqÞ ¼

�ðq2Þðg��q2 � q�q�Þ in reduced quantum electrodynam-
ics [15] (RQEDd	;de). The latter describes the interaction of

a photon field living in d	 dimensions with a fermion field

living in a reduced space-time of de dimensions (de � d	).

Within dimensional regularization, the computation of

Feynman integrals in such a reduced theory can be carried

out by introducing two epsilon parameters, "	 and "e, such

that d	 ¼ 4� 2"	 and de ¼ 4� 2"e � 2"	, respectively.

In Ref. [17] the corrections up to two loops (see Fig. 2

where the corresponding diagrams were displayed) were

computed for an arbitrary RQEDd	;de using the general

result of Ref. [2] for Ið�Þ. The resulting expression is rather
cumbersome. Here, we focus on the case of RQED4;de . In

the limit "	 ! 0 and using Eq. (15) we obtain the follow-

ing simpler and more explicit formulas (see definitions in

Ref. [17]):
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2�2aðq2Þ¼d
e4�ð�Þ�2ð1þ"	Þ

ð4�Þ3þ��2"	ðq2Þ1��þ2"	

16�ð1þ�Þ�ð1��Þ
�ð3þ2�Þ

�
�2

�
1

"	
þ �c þ 2

1þ2�

�
þ3�

2
�2þ 2

1þ�
þOð"	Þ

�
; (16a)

�2bðq2Þ¼d
e4�ð�Þ�2ð1þ"	Þ

ð4�Þ3þ��2"	ðq2Þ1��þ2"	

16�ð1þ�Þ�ð1��Þ
�ð3þ2�Þ

�
��2

�
1

"	
þ �c þ 2

1þ2�

�
þ�

2
�1

2
� 3

2�

� 1

1þ�
þ3

2
�ð1þ�Þ½c 0ð�Þ�c 0ð1Þ�þOð"	Þ

�
; (16b)

where �¼1�"e and �c¼3c ð2�Þ�2c ð�Þþ2c ð1��Þ�3c ð1Þ. The one-loop and total two-loop contributions therefore
read

�1ðq2Þ ¼ �d
e2�ð�Þ

ð4�Þ1þ�ðq2Þ1��

�ð1þ �Þ�ð1� �Þ
ð1þ 2�Þ�ð2�Þ ; (17a)

�2ðq2Þ ¼ d
e4�ð�Þ

ð4�Þ3þ�ðq2Þ1��

16�ð1þ �Þ�ð1� �Þ
�ð3þ 2�Þ C1ð�Þ; (17b)

C1ð�Þ ¼ 2�� 5

2
� 3

2�
þ 1

1þ �
þ 3

2
�ð1þ �Þ½c 0ð�Þ � c 0ð1Þ�: (17c)

From Eq. (17) we see that �1ðq2Þ and �2ðq2Þ are finite as long as � � 1. We can then replace e2 by 4�� in (17) which
yields

�2ðq2Þ ¼ � �

��ð1þ �ÞC1ð�Þ�1ðq2Þ: (18)

It should be noted that these results cannot be used for QED4 which can be reached from a general RQEDd	;de (see
Ref. [17]) by first fixing "e ¼ 0 and then taking the limit "	 ! 0. The results (17) are singular in the limit � ! 1 but this
limit corresponds to "	 ¼ 0 and "e ! 0, which does not lead to QED4.

The total, up to two loops, gauge-field self-energy in RQED4;de ("	 ¼ 0 and arbitrary "e) may then bewritten as

�ðq2Þ ¼ �1ðq2Þð1þ �Cð�Þ þ Oð�2ÞÞ;
Cð�Þ ¼ � 1

��ð1þ �ÞC1ð�Þ ¼ � 1

2�

�
3½c 0ð�þ 2Þ � c 0ð1Þ� þ 4

1þ �
þ 1

ð1þ �Þ2
�
:

(19)

For � ¼ 1=2, i.e., in the case of RQED4;3 ("	 ¼ 0 and
"e ¼ 1=2) which corresponds to an ultrarelativistic model
of graphene [18] (a 2-brane), we reproduce the basic result
of Refs. [17,19]:

C1ð1=2Þ ¼ 9�2 � 92

24
; Cð1=2Þ ¼ 92� 9�2

18�
: (20)

This coefficient is small, Cð1=2Þ � 0:056, in qualitative
agreement with some results obtained in the nonrelativistic
limit [22] (see however Ref. [23]) as well as experimental
results [24] where Cð1=2Þ corresponds to an interaction

correction coefficient to the optical conductivity of un-
doped graphene.
As a next step of our future investigations we would like

to evaluate the fermion self-energy of general RQEDd	;de

in the ultrarelativistic limit.
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