
Nature of the vorticity in the Gödel spacetime
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The physical meaning of the vorticity of the matter content in Gödel spacetime is analyzed in some

detail. As we shall see, unlike the situation in general stationary axially symmetric spacetimes (Lewis-

Papapetrou), the vorticity in Gödel spacetime is not associated to a circular flow of superenergy on the

plane orthogonal to the vorticity vector. This fact might be at the origin of the strange behavior of

gyroscopes in such spacetime. The analysis emerging from the tilted version of Gödel spacetime supports

further this point of view. In order to tell apart the two situations (with and without circular flow

of superenergy), we introduce two different definitions of vorticity, related to the presence (absence) of

such a flow.

DOI: 10.1103/PhysRevD.87.087503 PACS numbers: 04.40.�b, 04.40.Nr, 98.80.�k

I. INTRODUCTION

The Gödel spacetime [1] is a stationary solution of the
Einstein equations with nonvanishing cosmological con-
stant (�), whose matter content for comoving observers

consists of dust with constant density � ¼ � �
4� ¼ const.

In this latter expression, the appearing constant represents
the only parameter of the solution.

It is well known that in such spacetime (for comoving
observers) the congruence defined by the four velocity
vector is geodesic, shear-free, and expansion-free but its
vorticity is nonvanishing, i.e., matter rotates with respect to
the compass of inertia (see for example Refs. [2–7]).

Among the properties of the Gödel spacetime, there are
three particularly intriguing, namely:

� It admits closed timelike curves.
� The energy-momentum tensor of this spacetime is

exactly the same as the Einstein static universe [2].
� The (coordinate) angular velocity of particles moving

on circular geodesics, as well as the precession of
gyroscopes moving on circular geodesics, are inde-
pendent on the parameter measuring the deviation of
the space from flatness [4].

The fact that the precession of a gyroscope moving on a
geodesic circle is unaffected by the specific value of the
parameter of the solution is quite strange. Indeed such a
parameter appears (as it should be) in the expression for the
curvature invariant. Therefore the rate of precession would
be independent on the magnitude of deviation from
flatness, implying that it would be the same as in the flat
spacetime limit!

For general axially symmetric stationary spacetimes
(Lewis-Papapetrou) [8] different parameters of the solution
entering into the curvature invariants do affect the preces-
sion of gyroscopes moving on closed curves.
As we shall see below, such a strange behavior may be

related to another property of the vorticity in Gödel space-
time, namely, it is not associated to a flow of superenergy on
the plane orthogonal to the vorticity vector, as is the case for
stationary spacetimes of the Lewis-Papapetrou type [9].
To differentiate both situations we shall introduce the

concepts of ‘‘dynamical vorticity’’ and ‘‘kinematical vor-
ticity’’ to refer to situations where there is or there is not,
respectively, superenergy flow on the plane orthogonal to
the vorticity vector.
Finally, we shall consider the tilted version of Gödel

spacetime, in this case there are additional terms for the
vorticity, however there is not a component of superenergy
on the plane orthogonal to the vorticity vector.
All these results are briefly summarized and commented

in the last section.

II. THE GÖDEL SPACETIME

We shall closely follow (with slight changes) the nota-
tion in Ref. [4], thus for the line element we have (relativ-
istic units, G ¼ c ¼ 1 are used throughout the paper)

ds2 ¼ �4R2
n
ðdtþ ffiffiffi

2
p

S2d�Þ2

� ½dr2 þ ðS2 þ S4Þd�2 þ dz2�
o
; (1)

where S � sinh r, R is a constant, and we number coor-
dinates x0 ¼ t, x1 ¼ r, x2 ¼ �, x3 ¼ z.
Such a metric satisfies Einstein equations with cosmo-

logical constant and

Tab ¼ �vavb: (2)
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For a comoving observer

va ¼
�
1

2R
; 0; 0; 0

�
; (3)

and the following identity holds:

� ¼ 1

8�R2
¼ � �

4�
: (4)

For the congruence defined by (3) the expansion
scalar, the four-acceleration and the shear tensor vanish,
however the vorticity does not. Indeed, one obtains for the
vorticity vector

!i ¼ 1

2
�ijklvm;nv

lgjmgkn ¼
�
0; 0; 0;

ffiffiffi
2

p �
; (5)

or

!i ¼
�
0; 0; 0;

1

2R2
ffiffiffi
2

p
�
; (6)

producing

!2 ¼ !i!
i ¼ 1

2R2
; (7)

where �ijkl is the Levi-Civita tensor.

It is remarkable that even though R appears in the
expression for !, it does not affect the precession of a
gyroscope moving along a circular geodesic. Indeed the
change of orientation of such a gyroscope with respect to
the original Gödel lattice is (see Ref. [4] for details)

�� ¼ 2�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinh 22r

p
: (8)

It should be stressed that R nor does affect the precession
with respect to a second gyroscope fixed in the original
Gödel lattice [4].

The above result becomes more intriguing if we observe
that for the Riemann invariant we obtain

I ¼ RijklRmnrsg
imgjngkrgls ¼ 3

R4
; (9)

clearly indicating that the parameter Rmeasures deviations
from flatness.

Thus expression (8) determines the value for the pre-
cession of the gyroscope independently on the magnitude
of the curvature of the spacetime. This situation clearly
differs from the case of the Kerr spacetime.

In order to delve deeper into this point, it will be useful
to calculate the super-Poynting vector [10–13], defined by

Pi ¼ �jiklv
jðYmnZ

kn � XmnZ
nkÞglm; (10)

where Yij (the electric part of the Riemann tensor), Zij

(the magnetic part of the Riemann tensor), and Xij are

defined by

Yij ¼ Rikjlv
kvl ¼

0 0 0 0

0 2 0 0

0 0 2sinh 2rcosh 2r 0

0 0 0 0

2
666664

3
777775; (11)

Zij ¼ R�
jkilv

kvl ¼ 0; (12)

Xij ¼ �R�
ikjlv

kvl ¼ 0; (13)

with

R�
ijkl ¼

1

2
�mnklRijpsg

pmgsn; (14)

�R�
ijkl ¼

1

2
�ijmnR

�
psklg

mpgns: (15)

From the above it is obvious that Pi ¼ 0. It should be
observed that the three tensors Y, Z, X may also be
obtained from the Weyl tensor, and from them another
super-Poynting vector can be obtained. In vacuum both
expressions coincide of course, but in matter they differ.
However, it is a simple matter to check that the magnetic
part of the Weyl tensor vanishes too, and therefore so does
the ensuing super-Poynting vector.
Now, the interest of the above result stems from the fact

that for stationary (Lewis-Papapetrou) spacetimes (e.g.,
Kerr) the association of vorticity (and its resulting effects)
and the existence of a circular flow of superenergy on the
plane orthogonal to the vorticity vector has been estab-
lished (see Ref. [9] for details).
The facts exhibited above suggest the existence of two

‘‘kinds’’ of vorticity. On the one hand, we have a vorticity
always associated to the existence of a circular flow of
superenergy on the plane orthogonal to the vorticity vector
and affecting the precession of a gyroscope in a way that is
dependent on the essential parameters of the metric de-
scribing the spacetime under consideration (by essential
we mean those parameters that cannot be removed by any
coordinate transformation, and enter into the expression of
curvature invariants). We shall call this kind of vorticity
‘‘dynamical vorticity,’’one example of which is provided
by the Kerr metric.
On the other hand we shall refer to kinematical vorticity,

whenever the latter neither is associated to a circular flow
of superenergy on the plane orthogonal to the vorticity
vector, nor is the precession of a gyroscope affected by
the essential parameters of the metric. The Gödel space-
time provide a good example of this kind of vorticity.
In order to delve deeper into this issue, we shall next

consider the tilted version of the Gödel spacetime.

III. TILTED GÖDEL SPACETIME

As is well known there exists in general relativity a
certain degree of arbitrariness in the choice of the four
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velocity vector in terms of which the energy-momentum
tensor is split, which leads to a variety of different physical
interpretations of the source of a given spacetime. Such
arbitrariness is in its turn related to the choice of
the congruence of observers (see Refs. [14–24] and refer-
ences therein).

The description of the Gödel spacetime given in the
previous section corresponds to the congruence of observ-
ers at rest with respect to the dust distribution. In order to
obtain the tilted version, of the Gödel spacetime given by
(1), we have to obtain the tilted congruence. For doing that
we have to perform a Lorentz boost from the locally
comoving Minkowskian frame (associated to v�) to the
locally Minkowskian frame with respect to which any fluid
element has velocity u in the r direction. For simplicity we
shall consider a boost only in the ‘‘radial’’ direction and u
to be a function of t and r alone.

Then, the corresponding tilted congruence is character-
ized by the four-velocity vector,

~va ¼
�

1

2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p ;
u

2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p ; 0; 0

�
; (16)

from which all the kinematical quantities can be calcu-
lated. They will not be displayed here since we shall not
use them. Suffice it to say that now the fluid is nongeodesic,
shearing, expanding (it is worth noticing that shearing and
expanding versions of the Gödel spacetime may also be
obtained by perturbation [6]) and the vorticity vector and
vorticity scalar read

~!i ¼
�
0; 0; 0;� 1

4
ffiffiffi
2

p _u sinh r� 2 cosh r

R2ð1� u2Þ cosh r
�
; (17)

~!2 ¼ ð _u sinh r� 2 cosh rÞ2
8R2ð1� u2Þ2cosh 2r

; (18)

exhibiting the contribution of the tilting velocity to the
vorticity and reducing to (6) and (7) in the nontilted case
(overdot denotes derivative with respect to t).
For the tilted observer the matter distribution is no

longer dust but a dissipative anisotropic fluid, whose
energy momentum tensor is

Tij ¼ ~�~vi~vj þ Phij þ�ij þ ~qi~vj þ ~qj~vi; (19)

where ~�, P,�ij, ~qi denote the energy density, the isotropic

pressure, the anisotropic pressure tensor, and the heat flux
vector, respectively. From the Einstein equations it follows
that (we omit the expression for �ij since it is quite

cumbersome and we do not need it here)

~� ¼ 1

R2ð1� u2Þ ; (20)

P ¼ 1

3

u2

R2ð1� u2Þ ; (21)

~qi ¼
�
� u2

2R3ð1� u2Þ3=2 ;�
u

2R3ð1� u2Þ3=2 ; 0; 0
�
: (22)

Next, the calculations of ðX; Y; ZÞ tensors yields

~Yij ¼ Rikjl~v
k~vl ¼

2u2

1�u2
�2u
1�u2

2
ffiffi
2

p
u2sinh 2r
1�u2

0

� 2u
1�u2

2
1�u2

� 2
ffiffi
2

p
usinh 2r
1�u2

0

2
ffiffi
2

p
u2sinh 2r
1�u2

� 2
ffiffi
2

p
usinh 2r
1�u2

2sinh 2rðcosh 2rþ3u2cosh 2r�2u2Þ
1�u2

0

0 0 0 0

2
66666664

3
77777775
; (23)

~Zij ¼ R�
jkilv

kvl ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 � 4u sinh r cosh r
1�u2

0

2
666664

3
777775; (24)

~Xij ¼ �R�
ikjlv

kvl ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2ð1þu2Þ
1�u2

2
666664

3
777775: (25)

From the above expressions the super-Poynting vector
calculated for the tilted congruence produces

~Pi ¼
�
� ð1þ u2Þu2
2R5ð1� u2Þ5=2 ;�

ð1þ u2Þu
2R5ð1� u2Þ5=2 ; 0; 0

�
: (26)

Observe that now the super-Poynting vector does not
vanish, however it has only ‘‘radial’’ component (besides
the timelike component) and therefore there is no circular
flow on the plane orthogonal to the vorticity vector. In fact
such nonvanishing super-Poynting vector is related to the
‘‘radial’’ heat flux vector, as it happens in the spherically
symmetric case (see Ref. [25] for a discussion on this
point). It is also worth mentioning that even though the
magnetic part of the Weyl tensor does not vanish for the
tilted congruence, the ensuing super-Poynting vector does.
Thus, the extra terms appearing in the vorticity of the tilted
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congruence (following the terminology introduced in the
previous section) are also of ‘‘kinematical’’ nature.

IV. SUMMARY

We have established that the vorticity in the Gödel
spacetime is not related to the presence of a circular flow
of superenergy on the plane orthogonal to the vorticity
vector. The absence of such a flow, which is always present
in Lewis-Papapetrou stationary metrics, together with the
fact that the curvature does not affect the precession of a
gyroscope in the Gödel spacetime, suggests that there are
two different classes of vorticity. We call ‘‘dynamical’’
vorticity, the rotation of the lattice relative to the compass
of inertia, that is always accompanied of a circular flow of
superenergy on the plane orthogonal to the vorticity vector.
When such a flow is absent we talk about ‘‘kinematical’’
vorticity. This is the case of the vorticity in the Gödel
spacetime.

Next we analyzed the tilted version of the Gödel space-
time. In this case some extra terms appear in the vorticity of
the tilted congruence and the super-Poynting vector (con-
structed from the Riemann tensor) is not vanishing.
However, such a vector has no components on the plane
orthogonal to the vorticity vector and the radial nonvanish-
ing component is related to the heat flux observed by the

tilted observer. In other words such a vorticity is also
‘‘kinematical.’’ It is worth mentioning that this is also the
case for the tilted Szekeres spacetime. Indeed, in the stan-
dard (nontilted version) [26,27], the congruence defined by
the four-velocity has vanishing vorticity, whereas the tilted
observers detect vorticity in the congruence of fluid world
lines [24]. However, neither in this case there is a compo-
nent of the super-Poynting vector on the plane orthogonal to
the vorticity vector and the nonvanishing radial component
is associated to the heat flux vector detected by the tilted
observer. Thus, the vorticity observed by tilted observers in
Szekeres spacetime is also kinematical.
We conclude with the following comment: As we men-

tioned in the Introduction, the Gödel spacetime admits
closed timelike curves, whereas other spacetimes with
vorticity, do not. Thus, the question arises about the pos-
sibility that closed timelike curves are specifically associ-
ated to ‘‘kinematical vorticity.’’Although we do not answer
here to the above question, we believe that this issue
deserves further attention.
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