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A first-order action for scalar-tensor theories of gravity is proposed. The Hamiltonian analysis of the

action gives the desired connection dynamical formalism, which was derived from the geometrical

dynamics by canonical transformations. It is shown that this connection formalism in the Jordan frame is

equivalent to the alternative connection formalism in the Einstein frame. Therefore, the action principle

underlying loop quantum scalar-tensor theories is recovered.
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I. INTRODUCTION

Modified gravity theories have recently received increased
attention in issues related to the ‘‘dark Universe’’ and non-
trivial tests on gravity beyond general relativity (GR). Since
1998, a series of independent astronomic observations
implied that our Universe is currently undergoing a period
of accelerated expansion [1]. This causes the ‘‘dark energy’’
problem in the framework of GR. It is thus reasonable to
consider the possibility that GR is not a valid theory of
gravity on a Galactic or cosmological scale. A simple and
typical modification of GR is the so-called fðRÞ theory of
gravity [2]. Besides fðRÞ theories, a well-known competing
relativistic theory of gravity was proposed by Brans and
Dicke in 1961 [3], which is apparently compatible with
Mach’s principle. To represent a varying ‘‘gravitational con-
stant,’’ a scalar field is nonminimally coupled to the metric in
the Brans-Dicke theory. To be compared with the observa-
tional results within the framework of a broad class of
theories, the Brans-Dicke theory was generalized by
Bergmann [4] and Wagoner [5] to general scalar-tensor
theories (STT). Scalar-tensor modifications of GR are also
popular in unification schemes such as string theory (see, e.g.,
Refs. [6–8]). Note that the metric fðRÞ theories and Palatini
fðRÞ theories are equivalent to the special kinds of STTwith
the coupling parameter ! ¼ 0 and ! ¼ � 3

2 , respectively

[2], while the original Brans-Dicke theory is the particular
case of constant ! and vanishing potential of �.

In the past two decades, a nonperturbative quantization
of GR, called loop quantum gravity (LQG), has matured
[9–12]. It is remarkable that both fðRÞ theories and STT can
be nonperturbatively quantized by extending the LQG
techniques [13–15]. Thus, LQG is extended tomore general
metric theories of gravity [16,17]. The background inde-
pendent quantization method relies on the key observations
that these theories can be cast into the connection dynami-
cal formulations with the structure group SUð2Þ. The
connection dynamical formulation of fðRÞ theories and
STT were obtained by canonical transformations from

their geometrical dynamics [13–15]. However, the action
principle for the above connection dynamics of either fðRÞ
theories or STT is still lacking, although the first-order
action for the connection dynamics in the Einstein frame
of STTwas proposed in Ref. [18]. The purpose of this paper
is to fill this gap. We will propose a first-order action for
general STT of gravity, which includes fðRÞ theories as
special cases. The connection dynamical formalism will be
derived from this action by Hamiltonian analysis. It turns
out that this connection dynamics is exactly the same as
that derived from the geometrical dynamics by canonical
transformations. Moreover, the equivalence between this
connection formalism in the Jordan frame and the alter-
native one in Einstein frame will be proved. Hence, loop
quantum STT, as well as loop quantum fðRÞ theories, have
their foundation of action principle.
Throughout the paper, we use the Latin alphabet a; b;

c; . . . , to represent abstract index notation of spacetime [19],
the capital Latin alphabet I; J; K; . . . , for internal Lorentzian
indices, and i; j; k; . . . , for internal SUð2Þ indics. The other
conventions are as follows. The internal Minkowski metric
is denoted by �IJ ¼ diagð�1; 1; 1; 1Þ. The Hodge dual of a
differential form FIJ is denoted by ?FIJ ¼ 1

2 �IJKLF
KL,

where �IJKL is the internal Livi-Civital symbol. The anti-
symmetry of a tensor AIJ is defined by A½IJ� ¼ AIJ � AJI.

II. EQUATIONS OF MOTION

In order to get the Lagrangian formalism of connection
dynamics of STT proposed in Ref. [15], let us first consider
the following first-order action on a four-dimensional
spacetime M,

S½e;!;�� ¼
Z
M
Ld4x

¼
Z
M

1

2

�
�eeaI e

b
J
��ab

IJ � 2eeaI e
b
J �!

IJ
a
�@b�

þ ee½aI e
b�
J
�@aðeIbecJ �@c�Þ

þ
�
3

2�
� Kð�Þ

�
e �@a� �@a�

� 2eVð�Þ þ eeaI e
b
J

1

�
? ��ab

IJ

�
d4x; (1)
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where e ¼ det ðeIaÞ is the determinant of the right-handed

cotetrad eIa, ��ab
IJ ¼ �@½a �!IJ

b� þ �!IK
½a �!b�K

J is the curvature

of the SLð2;CÞ spin connection �!IJ
a , Vð�Þ is the potential

of the scalar field � with � satisfying �> 0, Kð�Þ is an
arbitrary function of �, and � is an arbitrary real number.
The variation of action (1) with respect to �!IJ

a gives

� �Daðee½aI eb�J Þ þ
1

�
? �Daðee½aI eb�J Þ ¼ 0: (2)

Here the generalized derivative operator �Da is defined as

�Dae
I
b ¼ �@�e

I
b � ��c

abe
I
c þ �!IJ

a ebJ; (3)

where ��ab
c is a torsion-free affine connection. From

Eq. (2) we have (see Ref. [20] for details)

�D½aðeIb�Þ ¼ 0; (4)

which tells us that the spin connection �!IJ
a is compatible

with tetrad eIa. On the other hand, taking account of Eq. (4),
the variation of action (1) with respect to the tetrad eIa gives

�Gab ¼
�
K � 3

2�

��
ð �@a�Þ �@b�� 1

2
gabð �@c�Þ �@c�

�

þ �ra
�rb�� gab

�rc
�rc�� gabV; (5)

where Gab is the Einstein tensor of eIa and �ra is the
covariant derivative operator compatible with gab.

Finally, taking account of Eq. (4), the variation of action
(1) with respect to the scalar field � gives

Rþ2

�
K� 3

2�

�
�ra

�ra��
�
K� 3

2�

�0ð �@a�Þ �@a��2V 0 ¼0;

(6)

where a prime over a function represents a derivative with
respect to the argument �. We define a new function

!ð�Þ
�

:¼ Kð�Þ � 3

2�
: (7)

Then it is straightforward to transform Eqs. (5) and (6) into
the form in Ref. [15]. Hence, the first-order action (1) gives
exactly the equations of motion of STT.

III. HAMILTONIAN ANALYSIS

Let the spacetime M be topologically �� R for some
three-manifold �. One introduces a foliation of M and a
time-evolution vector field ta in it. ta can be decomposed
with respect to the unit normal vector na of � as

ta ¼ Nna þ Na; (8)

where N and Na are the lapse function and shift vector,
respectively. In the (3þ 1) decomposition of M, it is
convenient to make a gauge fixing nI :¼ naeaI ¼
ð1; 0; 0; 0Þ in the internal space [21]. In a coordinate system
adopted to the (3þ 1) decomposition, the Lagrangian
density in Eq. (1) reads

L ¼ 1

�
~Eb
j ð� _Kj
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bÞ �

1

�
~Eb
jK

j
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_�þ �Kj
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b E
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2

�
K � 3

2�

�
N ~Ea

i
~Ebið@a�Þ@b�

þ 1

�
N ~Ea

i
~Eb
j �

ij
kDa!

k0
b � NEVð�Þ; (9)

where a dot over a letter represents a derivative with
respect to the time coordinate, and we have defined

�Ki
a :¼ � �!io

a þ 1

2
Ei
an

c �@c�; (10)

�ab
k :¼ @½a!k

b� þ �klm!
l
a!

m
b ; (11)

�!i
a :¼ � 1

2
�ijk �!

jk
a ; (12)

and �Ki
t :¼ ta �Ki

a, �!
i
t :¼ ta �!i

a are the time component of �Ki
a

and �!i
a, E is the square root of the determinant of the

spatial metric qab :¼ gab þ nanb, Ea
I
:¼ qabe

b
I , !IJ

a :¼
qba �!

IJ
b Ki

a :¼ qba �Ki
b are the spatial components of eaI , �!IJ

a

and �Ki
a, respectively,Da is the spatial SOð1; 3Þ generalized

covariant derivative operator reduced from �Da and corre-
sponds to a SOð1; 3Þ-valued spatial connection one-form
!ij

a , @a is the flat derivative operator on� reduced from �@a,
N :¼ N=E is the densitized lapse scalar of weight�1, and
~Ea
i
:¼ EEa

i is the densitized spatial triad of weight 1.
Recall that the unique torsion-free SOð3Þ generalized

covariant derivative operator annihilating Ea
i is defined as

raE
b
i ¼ @aE

b
i þ �b

acE
b
i þ �ai

jEb
j ¼ 0; (13)

where �b
ac and �ai

j are, respectively, the Levi-Civita con-
nection and the spin connection on �. For convenience we
define
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�i
a :¼ � 1

2
�ijk�

jk
a : (14)

Let Ci
a :¼ !i

a � �i
a. We further define new variables:

�Mj
b
:¼ �Kj

b þ Cj
b; (15)

Qj
b
:¼ �Mj

b þ �j
b: (16)

Then by using the definitions of Eqs. (10) and (15), the
connection components !io

a can be rewritten as

!io
a ¼ 1

�

�
Mi

a � 1

�
Ci
a � 1

2
Ei
an

c �@c�

�
: (17)

Note that we have the identity

Eb
jRab

j ¼ 0; (18)

where the curvature Rab
j is defined as

Rab
j :¼ @½a�

j
b� þ �jlm�

l
a�

m
b : (19)

Note also that the two constraint equations with respect to

the Lagrangian multipliers �Kj
t and �!j

t are equivalent to

�jl
mCl

b
~Eb
m ¼ 0; (20)

�jl
mMl

b
~Eb
m ¼ 0: (21)

We will denote �j, �j as the corresponding Lagrangian
multipliers. Then the Lagrangian density (9) can be
expressed as

L ¼ 1

�
~Eb
j
_Qj
b �

1

�
~Eb
jM
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b
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k � 1
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2
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i
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2
N

�
1þ 1

�2�2

�
ðC2 � CijC

ijÞ � NEVð�Þ; (22)

where Cij :¼ Cai
~Ea
j and C :¼ �ijCij. Since the variation

of the action with respect to Cij gives

Cij ¼ 0; (23)

the Lagrangian density (22) can be reduced to

L¼ 1

�
~Eb
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�
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�
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2
N ~Ea

i
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k� 1

�2
�klmK

l
aK

m
b

�

þ K

2N
ð _��Na@a�Þ2�1

2

�
K� 3

2�

�
N ~Ea

i
~Ebið@a�Þ@b�

�N ~Ea
i
~Ebirarb��NEVð�Þ; (24)

where

Aj
b
:¼ �Kj

b þ �j
b: (25)

By Legendre transformation, the momentum conjugate to
the configuration variables Ai

a and � are defined, respec-
tively, as

�a
i
:¼ �L

� _Ai
a

¼ 1

�
~Ea
i ; (26)

� :¼ �L

� _�
¼ � 1

�
~Eb
jK

j
b þ

K

N
ð _�� Na@a�Þ: (27)

The fundamental Poisson brackets read

fAi
aðxÞ; ~Eb

j ðyÞg ¼ ��b
a�

i
j�

3ðx� yÞ; (28)

f�ðxÞ; �ðyÞg ¼ �3ðx� yÞ: (29)

It should be noted that the second-class constraints that
appeared in the Hamiltonian analysis have been solved by
the partial gauge fixing. In the case when K � 0, the
corresponding Hamiltonian reads

H ¼
Z

d3xð�iGi þ NaCa þ NCÞ; (30)

where the Gaussian, vector, and scalar constraints read,
respectively, as

Gj ¼ @b ~E
b
j þ �jl

mAl
b
~Eb
m; (31)

Ca ¼ ~Eb
jr½aK

j
b� þ �@a�; (32)

C ¼ �

2
~Ea
i
~Eb
j �

ij
k

�
Rab

k � 1

�2
�klmK

l
aK

m
b

�

þ ~Ea
i
~Ebirarb�þ 1

2

�
K � 3

2�

�
~Ea
i
~Ebið@a�Þ@b�

þ 1

2K

�
�þ 1

�
~Eb
jK

j
b

�
2 þ E2Vð�Þ: (33)

In the special case when K ¼ 0, it is easy to see from
Eq. (27) that there is a primary constraint
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S ¼ ��þ ~Eb
jK

j
b; (34)

which is called the conformal constraint in Ref. [15]. Thus,
the Hamiltonian becomes

H ¼
Z

d3xð�iGi þ NaCa þ NC0 þ �SÞ; (35)

where the scalar constraint reads

C0 ¼ �

2
~Ea
i
~Eb
j �

ij
k

�
Rab

k � 1

�2
�klmK

l
aK

m
b

�

þ ~Ea
i
~Ebirarb�� 3

4�
~Ea
i
~Ebið@a�Þ@b�þ E2Vð�Þ:

(36)

It is obvious that the above Hamiltonian formulations in
both cases coincide with those in Ref. [15].

On the other hand, as pointed out in Ref. [18], the first-
order action

S½e;!;�� ¼
Z �

1

2
�eeaI e

b
J

�
��ab

IJ þ 1

�
? ��ab

IJ

�

� 1

2
Kð�ÞeeIaebI ð �@a�Þ �@b�� eVð�Þ

�
d4x

(37)

can give a connection dynamics of STT in the Einstein
frame. We now show that the Hamiltonian formalism of
action (37) is equivalent to the one that we just derived
from action (1) because they are related to each other by a
canonical transformation. In the case when K � 0, the
Hamiltonian corresponding to action (37) is a linear com-
bination of first-class constraints as

H ¼
Z

d3xð�iĜi þ NaĈa þ N ĈÞ; (38)

where

Ĝi ¼ ��1D̂aÊ
a
i ; (39)

Ĉa ¼ Êb
i F̂ab

i þ �̂@a�; (40)

Ĉ¼���1 1

2�
�ijkÊ

a
i Ê

b
j ½F̂ab

k�ð�þ��1ÞR̂ab
k�

þKð�Þ
2�2

ÊaiÊb
i ð@a�Þ@b�þ �̂2

2Kð�ÞþV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð ~Eai ~Eb

i Þ
q

;

(41)

with

D̂aÊ
a
i :¼ @aÊ

a
i þ ��ij

kÂj
aÊ

a
k ; (42)

and F̂ab
i and R̂ab

i standing for the curvature of Âi
a and �̂i

a,
respectively, i.e.,

F̂ab
i ¼ @½aÂi

b� þ ��ijkÂ
j
aÂ

k
b; (43)

R̂ab
i ¼ @½a�̂

i
b� þ �ijk�̂

j
a�̂

k
b: (44)

Here �̂i
a is the SUð2Þ spin connection satisfying

D̂aÊ
b
i ¼ @aÊ

b
i þ �̂ac

bÊc
i � �̂ca

cÊb
i þ �ij

k�̂j
aÊ

b
k ¼ 0;

(45)

where �̂ab
c is the Christoffel connection determined by the

spatial metric

q̂ab ¼ ÊÊaiÊbi; (46)

with Ê :¼ 1= det ðÊa
i Þ. The fundamental Poisson brackets

are

fÂi
aðxÞ; Êb

j ðyÞg ¼ �b
a�

i
j�

3ðx� yÞ; (47)

f�ðxÞ; �̂ðyÞg ¼ �3ðx� yÞ: (48)

To do the canonical transformation, we first define

Ki
a :¼ �ðÂi

a � ��1�̂i
aÞ; (49)

~Ea
i
:¼ ��1Êa

i : (50)

Then we further define

� :¼ �̂� 1

�
Ki

a
~Ea
i ; (51)

Ai
a :¼ �i

a þ �Ki
a: (52)

Using Eqs. (47) and (48), we can get the Poisson brackets
between new variables as

fAi
aðxÞ; ~Eb

j ðyÞg ¼ ��b
a�

i
j�

3ðx� yÞ; (53)

f�ðxÞ; �ðyÞg ¼ �3ðx� yÞ; (54)

fAi
aðxÞ; Aj

bðyÞg ¼ 0 ¼ f ~Ea
i ðxÞ; ~Eb

j ðyÞg; (55)

f�ðxÞ; �ðyÞg ¼ 0 ¼ f�ðxÞ; �ðyÞg: (56)

Taking account of Eq. (7), the constraints (39)–(41) can be
written in terms of new variables, up to Gaussian con-
straint, as

Ĝi ¼ �ð@a ~Ea
i þ �ij

kAj
a ~Ea

kÞ; (57)

Ĉa ¼ ��1 ~Eb
i Fab

i þ �@a�; (58)
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c@c�Þ

þV
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where Fab
i :¼ @½aAi

b� þ �ijkA
j
aAk

b. It is obvious that these

constraints coincide with our results as well as those in
Ref. [15]. Similarly, it is easy to get the same conclusion in
the special case when K ¼ 0.

IV. CONCLUDING REMARKS

As candidate modified gravity theories, STT provide the
great possibility to account for the dark Universe and some
fundamental issues in physics. The nonperturbative loop
quantization of STT is based on their connection dynami-
cal formalism obtained in Hamiltonian formulation in
Ref. [15]. The achievement in this paper is to set up an
action principle for the connection dynamics of STT in the
Jordan frame. Since fðRÞ theories of gravity can be
regarded as the special kinds of STT, our action principle
is also valid for the connection dynamics of fðRÞ theories.
To get the action principle, we first show that the first-order

action (1) gives the right equations of motion for general
STT. Then a detailed Hamiltonian analysis is done to this
action. By a partial gauge fixing, the internal SLð2;CÞ
group of the theory is reduced to SUð2Þ, and the second-
class constraints are solved. Thus, we obtain a first-class
Hamiltonian system with a SUð2Þ connection as a configu-
ration variable. This Hamiltonian formalism is exactly the
same as the one in Ref. [15] derived from the geometrical
dynamics by canonical transformations.
On the other hand, the directly corresponding

Hamiltonian connection formulation of action (37) is in
the Einstein frame, while as shown in Ref. [15], the natural
connection formulation obtained by canonical transforma-
tions in Hamiltonian framework is in the Jordan frame.
However, we have shown that they are equivalent to each
other at the classical level. Nevertheless, the ambiguity,
whether one should start with the Jordan frame or Einstein
frame to quantize STT, still exits. Besides providing
the action principle for connection dynamics of STT,
actions (1) and (37) also lay the foundation of spinfoam
path-integral quantization of STT. We leave this issue for
future study.
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