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We set up the general formalism to model polytropic Newtonian stars with anisotropic pressure. We

obtain the corresponding Lane-Emden equation. A heuristic model based on an ansatz to obtain

anisotropic matter solutions from known solutions for isotropic matter is adopted to illustrate the effects

of the pressure anisotropy on the structure of the star. In particular, we calculate the Chandrasekhar mass

for a white dwarf. It is clearly displayed how the Chandrasekhar mass limit changes depending on the

anisotropy. Prospective astrophysical applications of the proposed approach are discussed.

DOI: 10.1103/PhysRevD.87.087303 PACS numbers: 97.10.Bt, 97.20.Rp, 97.10.Nf, 91.25.Th

I. INTRODUCTION

In the context of Newtonian gravity, polytropic
equations of state are particularly useful to describe a great
variety of situations (see Refs. [1–6] and references
therein), their great success stemming mainly from the
simplicity of the equation of state and the ensuing main
equation (Lane-Emden). Polytropes in the context of
general relativity have been considered in Refs. [7–15]
(and references therein). However, in this work, we restrict
the analysis to Newtonian polytropes.

The theory of polytropes is based on the polytropic
equation of state

P ¼ K�� ¼ K�1þ1=n; (1)

where P and � denote the isotropic pressure and the mass
(baryonic) density, respectively. Constants K, �, and n
are usually called the polytropic constant, polytropic
exponent, and polytropic index, respectively.

The polytropic equation of state may be used to model
two very different types of situations, namely:

(i) When the polytropic constant K is fixed and can be
calculated from natural constants. This is the case of
a completely degenerate gas in the nonrelativistic
(� ¼ 5=3; n ¼ 3=2) and relativistic limit (� ¼ 4=3;
n ¼ 3). Polytropes of this kind are particularly
useful to model compact objects such as white
dwarfs (WDs), and they lead in a rather simple
way to the Chandrasekhar mass limit.

(ii) When K is a free parameter, as, for example, in the
case of isothermal ideal gas, or in a completely
convective star. Models related to isothermal ideal
gas are relevant in the so-called Schönberg-
Chandrasekhar limit (see Ref. [4] for details).

Our motivation to extend polytropic stellar models to
cases in which the pressure anisotropy is allowed is based

on the fact that the local anisotropy of pressure may be
caused by a large variety of physical phenomena of the
kind we expect in compact objects (see Ref. [16] for an
extensive discussion on this point).
Indeed, the study of anisotropic (principal stresses

unequal) spherically symmetric fluids has a long and ven-
erable story. It started with Jeans [17], who studied the
anisotropy produced by anisotropic velocity distributions
in galaxies. The first mention of local anisotropy of pres-
sure in spherically symmetric selfgravitating fluids may be
found in the seminal paper by Lemaitre [18]. In page 63
of that paper, Lemaitre realizes that the stringent limit in
the compactness of a homogeneous relativistic sphere is
related to the isotropy of pressure, and therefore he pro-
poses to relax that condition. He considers the ‘‘limiting’’
case in which the radial pressure vanishes, but the tangen-
tial does not. However, interest in this subject started to
grow exponentially after the pioneering work of Bowers
and Liang [19]. For recent references on this subject, see
Refs. [20–24] (and references therein). An alternative
approach to anisotropy comes from kinetic theory using
the spherically symmetric Einstein-Vlasov equations, which
admits a very rich class of static solutions, none of them
isotropic (Ref. [25] and references therein). The advantages
or disadvantages of either approach are related to the specific
problem under consideration. As we shall see below, our
method links our models continually with the isotropic case
(see Sec. IV), thereby allowing us to bring out the influence
of anisotropy on the structure of the object. Evidently,
both approaches should give the same physical results.
Among all possible sources of anisotropy, there is one

particularly related to our endeavor in this manuscript,
namely the intense magnetic field observed in compact
objects such as white dwarfs, neutron stars, or magnetized
strange quark stars (see, for example, Refs. [26–30] and
references therein).
Indeed, it is a well-established fact that a magnetic

field acting on a Fermi gas produces pressure anisotropy
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(see Refs. [31–35] and references therein). In some way,
the magnetic field can be addressed as a fluid anisotropy.

Particularly appealing is the fact that magnetic fields
may severely affect the Chandrasekhar mass limit of a
white dwarf [36–38].

For all the reasons above, we intend in this paper to
develop the general formalism to describe polytropes in
the presence of pressure anisotropy.

For the sake of completeness, we shall first review very
briefly the theory of polytropes for a perfect (isotropic)
fluid. Next, we shall display the general formalism for
anisotropic fluids. In order to bring out the effects of
anisotropy on the structure of the star, we shall further
assume an ansatz allowing us to calculate the influence
of anisotropy on the Chandraskhar mass limit. Finally,
we shall conclude with some possible applications and
unanswered issues.

II. THE POLYTROPE FOR FLUIDS
WITH ISOTROPIC PRESSURE

Polytropes are assumed to be in hydrostatic equilibrium
(for deviations from this condition see Refs. [3,8]);
therefore, the two starting equations are the equation of
hydrostatic equilibrium

dP

dr
¼ � d�

dr
� (2)

and the Poisson equation (in spherical coordinates)

1

r2
d

dr

�
r2

d�

dr

�
¼ 4�G�; (3)

with � and G denoting the Newtonian gravitational
potential and the gravitational constant, respectively.

Combining the two equations above with Eq. (1), one
obtains after some simple calculations the well-known
Lane-Emden equation (for � � 1):

d2!

dz2
þ 2

z

d!

dz
þ!n ¼ 0; (4)

with

r ¼ z

A
; (5)

A2 ¼ 4�G�ðn�1Þ=n
c

Kðnþ 1Þ ; (6)

!n ¼ �

�c

; (7)

where the subscript c indicates that the quantity is
evaluated at the center, and the following boundary
conditions apply:

d!

dz
ðz ¼ 0Þ ¼ 0; !ðz ¼ 0Þ ¼ 1:

The boundary surface of the sphere is defined by
z ¼ zn, such that !ðznÞ ¼ 0. As is well known, bounded

configurations exist only for n < 5, and analytical solu-
tions may be found for n ¼ 0, 1, and 5.
In the case � ¼ 1, which corresponds to an isothermal

ideal gas, the ensuing Lane-Emden equation reads

d2!

dz2
þ 2

z

d!

dz
¼ e�!; (8)

where now

r ¼ z

A
; (9)

A2 ¼ 4�G�c

K
; (10)

! ¼ �

K
; (11)

and the following boundary conditions apply:

d!

dz
ðz ¼ 0Þ ¼ 0; !ðz ¼ 0Þ ¼ 0:

We shall next generalize the scheme above to the case
when the pressure is no longer isotropic.

III. THE POLYTROPE FORANISOTROPIC FLUIDS

If we allow the principal stresses to be unequal, then the
hydrostatic equilibrium equation reads

dPr

dr
¼ �d�

dr
�þ 2

r
ðP? � PrÞ; (12)

where Pr and P? denote the radial and tangential
pressures, respectively. This is the Newtonian limit
of the generalized Tolman-Opphenheimer-Volkoff equa-
tion for anisotropic matter. We recall that the Tolman-
Opphenheimer-Volkoff equation is a consequence of
Einstein equations and Bianchi identities, or equivalently,
it comes directly from the vanishing of the covariant
divergence of the energy momentum tensor. If spherical
symmetry is assumed, then necessarily the nonradial
stresses are equal: P� ¼ P� ¼ P?, the only freedom being

in this case that Pr � P?. Indeed, spherical symmetry
supposes enough freedom to rotate Cartesian axes in
order to guarantee Px ¼ Py ¼ P? and Pz ¼ Pr � P?.
Of course, if one does not assume spherical symmetry,
then in principle all three main stresses may be different.
For the Poisson equation, of course, we get the same

expression [Eq. (3)], as both are under spherical symmetry.
We shall next assume a polytropic equation [Eq. (1)] for

the radial pressure Pr. Then, using Eqs. (12) and (3), we
may write

d�

dr
¼ ��K���2 d�

dr
þ 2

r

�

�
; (13)

where � � P? � Pr.
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For the case � � 1, we can formally integrate the
equation above between any interior r and the surface of
radius r ¼ r� ¼ constant, which gives us

� ¼ FðrÞ � Kðnþ 1Þ�1=n; (14)

which can be written as

� ¼
� ð�� FÞ
�Kðnþ 1Þ

�
n
; (15)

where

FðrÞ ¼ 2
Z r

r�

�

r�
dr: (16)

Introducing the variables

z � �r; (17)

�2 � 4�G

ðnþ 1ÞnKn ½�ð�c � FcÞ�n�1 (18)

and

w �
�
�

�c

�
1=n ¼ �� F

�c � Fc

; (19)

where as before, the subscript c indicates that the quantity
is evaluated at r ¼ 0, the extended Lane-Emden equation
can be written as

d2X

dz2
þ 2

z

dX

dz
þ ðX� YÞn ¼ 0; (20)

where

X ¼ wþ Y (21)

and

Y ¼ F

�c � Fc

: (22)

For the isothermal case which corresponds to � ¼ 1,
Eq. (13) becomes

d�

dr
¼ �K��1 d�

dr
þ 2�

r�
; (23)

which after integration yields

� ¼ �ce
ðF��Þ=K; (24)

where the potential was set to zero at r ¼ 0 and F is defined
by Eq. (16) (with the inferior limit set to r ¼ 0, of course).

Then the corresponding Lane-Emden equation becomes

d2X

dz2
þ 2

z

dX

dz
¼ e�w; (25)

with

z ¼ �r; (26)

�2 ¼ 4�G�c

K
; (27)

X ¼ F

K
þ w ¼ �

K
: (28)

It is obvious that in order to proceed further with the
modeling of the compact object [i.e., in order to integrate
Eq. (20) or (25)], we need to prescribe the specific anisot-
ropy of the problem (�). Such information, of course,
depends on the specific physical problem under considera-
tion. Here we shall not follow that direction; instead, we
shall assume an ansatz already used in the modeling of
relativistic anisotropic stars [39,40], whose main virtue
(besides its simplicity) is the fact that the obtained models
are continuously connected with the isotropic case.

IV. MODELING ANISOTROPIC POLYTROPES

In order to obtain specific models, we shall here adopt the
nonrelativistic version of the heuristic procedure used in
Ref. [39], which allows to obtain solutions for anisotropic
matter from known solutions for isotropic matter; that is,

� ¼ CfðrÞ�rN; (29)

where C is a parameter which measures the anisotropy; the
function f and the number N are to be specific for each
model. Following that procedure, the ansatz

frN�1 ¼ d�

dr
; (30)

leads to

F ¼ 2C�: (31)

Thus, Eq. (20) can be easily reduced to

d2w

dz2
þ 2

z

dw

dz
þ hwn ¼ 0; (32)

where h ¼ 1� 2C. For simplicity, we assume h to be
constant throughout the sphere, which of course does not
imply the constancy of either pressure. Observe that
Eq. (32) is the same as the Fowler equation [41] when �0 ¼
�h and ! ¼ 0 in the notation of Ref. [42] [see Eq. (2.2) in
this last reference]. However, it should be noticed that
Eq. (20) is more general than the Fowler-Emden equation.
Now, we proceed to integrate numerically with the

boundary conditions

wð0Þ ¼ 1;
dw

dz
ð0Þ ¼ 0;

with n ¼ 3, which represents a relativistic WD.
Figure 1 displays the dimensionless variable w as a

function of the dimensionless variable z for different
values of h. Figure 2 shows the Chandrasekhar mass ratio
(with respect to the isotropic mass MCh)

M

MCh

¼ z23ðdw=dzÞz3
½z23ðdw=dzÞz3�h¼1

(33)

as a function of the anisotropy parameter h.
Following the same ansatz for the heuristic model in the

case � ¼ 1, the Lane-Emden equation becomes
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d2w

dz2
þ 2

z

dw

dz
¼ he�w; (34)

where

� ¼ K

h
w; (35)

and from Eq. (24) we get

� ¼ �ce
�h�=K: (36)

Equation (34) has to be integrated with the following
central conditions:

wð0Þ ¼ 0;
dw

dz
ð0Þ ¼ 0:

Figure 3 displays the solution for different values of h. As
for polytropes with n � 5, the isothermal sphere consists
of an ideal gas which has infinite radius.

It is remarkable, although not general, to observe the
invariance of scale of Eqs. (32) and (34). In fact, if we
redefine the dimensionless spatial variable

� ¼ ffiffiffi
h

p
z; (37)

we recover the ‘‘isotropic’’ Lane-Emden equation, with all
the special cases or analytic solutions for n ¼ 0, 1, 5.
Doing so, it is easy to see where the surface is for any h
from a calculation for h ¼ 1. This became obvious when
we considered the asymptotic expansion near z ¼ 0
(for � � 1), rendering

w ¼ 1� 1

6
�2 þ n

120
�4 þ � � � : (38)

Thus, calculations in terms of � lead to an invariant MCh.
But physically, the Chadrasekhar mass can clearly be
stretched (or shrunk) with the anisotropy h. The same
rescaling [Eq. (37)] works for Eq. (34) with a different
expansion near � ¼ 0.

V. CONCLUSIONS

We have established the general framework for model-
ing polytropes in the presence of anisotropic pressure. As
mentioned in the Introduction, we undertook this task
motivated by the conspicuous presence of such an anisot-
ropy in compact objects and its influence on their structure.
We also obtained some specific models based on a

heuristic ansatz used many years ago to handle the anisot-
ropy of pressure. The main purpose of that modeling was to
bring out, in an explicit way, the influence of local anisot-
ropy in such an important problem as the Chandrasekhar
mass limit. We do not know if the inferred super-
Chandrasekhar white dwarfs from collected data [43–48]
are the result of anisotropy as considered here. But this
interesting matter and the physical conditions for real stars
deserve more attention elsewhere.
We have also shown (under the same ansatz) how

the � ¼ 1 case is affected by anisotropy; this might be of
interest in the discussion of the Schönberg-Chandrasekhar
limit.
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FIG. 1. w as a function of z for n ¼ 3 (WD) and h ¼ 0:5
(dashed line, upper); h ¼ 1:0 (solid line); h ¼ 1:5 (short-dashed
line, lower).
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FIG. 3. w as a function of z for � ¼ 1 (isothermal gas) and
h ¼ 0:5 (dashed line, lower); h ¼ 1:0 (solid line); h ¼ 1:5
(dot-dashed line, upper).
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Of course, for the modeling of specific astrophysical
objects, full information about the anisotropy (�) has to
be provided.

When the approach to anisotropy comes from kinetic
theory by means of the Vlasov-Poisson system, other
equations such as Emden-Fowler can be derived from the
generalized polytrope equation (see Ref. [49] and referen-
ces therein). All this is within the context of Newtonian
gravity and spherical symmetry.

Finally, we want to stress that all we have done
here requires spherical symmetry, at least as an ap-
proximation. It is possible that this symmetry can be

broken by a strong magnetic field, rendering the dis-
tribution anisotropic and nonspherical [31]. In such a
case, of course, the method presented here does not
apply.

ACKNOWLEDGMENTS

W.B. wishes to thank the Departamento de Fı́sica
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