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In the Aharony-Bergman-Jafferis-Maldacena model, we study the three-point function of two heavy

operators and an (ir)relevant one. Following the AdS/CFT correspondence, the structure constant in the

large ’t Hooft coupling limit can be factorized into two parts. One is the structure constant with a marginal

operator, which is fully determined by the physical quantities of heavy operators and gives rise to a result

that is consistent with the renormalization-group analysis. The other can be expressed as the universal

form depending only on the conformal dimension of an (ir)relevant operator. We also investigate the new

size effect of a circular string dual to a certain closed spin chain.
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I. INTRODUCTION

The application of the AdS/CFT correspondence to a
strongly interacting system is one of the active research
areas in theoretical physics. In order to understand the
duality in depth and the gauge theory in the strong-
coupling regime, we need to clarify the underlying struc-
ture of the AdS/CFT correspondence. A good example that
helps one to understand the AdS/CFT correspondence is
the four-dimensional N ¼ 4 super-Yang-Mills theory
dual to the string theory or supergravity in the AdS5 � S5

space-time, in which the conformal symmetry and the
integrability play a crucial role in figuring out the physics
of the strongly interacting system [1–6]. Recently,
such works have been generalized to other dimensions.
For example, in order to account for the worldvolume
theory of an M-brane, the three-dimensional N ¼ 8

Bagger-Lambert-Gustavsson model and the Aharony-

Bergman-Jafferis-Maldacena (ABJM) model for the

N ¼ 6 Chern-Simons gauge theory have been widely

investigated [7–11]. Moreover, it was shown that the

ABJM model has a dual gravity description in the

AdS4 � CP3 background and is integrable at least up to

the two-loop level [12], and in the SUð2Þ � SUð2Þ subsec-
tor even at the four-loop level [13]. In this paper, following

Refs. [14–21], we will further investigate the AdS/CFT

correspondence of the ABJM model by calculating the

three-point function with an (ir)relevant operator.
In the conformal field theory (CFT), if we know the two-

and three-point correlation functions, we can use them to
determine the higher-point functions. In general, the coor-
dinate dependence of two- and three-point functions is
unambiguously fixed by the global conformal symmetry,

hOAðxÞOBðyÞi ¼ �AB

jx� yj2� ;

hOAðxÞOBðyÞOCðzÞi ¼ aABC
jx� yj�Aþ�B��C jx� zj�Aþ�C��B jy� zj�Bþ�C��A

;
(1)

where �A and aABC are the conformal dimension and the
structure constant, respectively. Actually, since the struc-
ture constant is not constrained by the global conformal
symmetry, we should determine it by other means. In
particular, in the strong-coupling regime it is almost im-
possible to fix the structure constant except in those cases
in which it is determined by further symmetries [22].
Another exception is the case that includes a marginal
deformation caused by the Lagrangian density itself.
Since such a marginal deformation modifies the coupling

constant only, the structure constant can be determined by
a renormalization group (RG) analysis, even on the gauge
theory side [15].
In this paper, we will investigate the three-point function

with an (ir)relevant operator. Although the RG analysis
does not work anymore, the AdS/CFT correspondence can
give a clue about the three-point function in the large
’t Hooft coupling limit. On the string theory side, the
three-point function of two heavy operators and an
(ir)relevant one can be described by a leading interaction
between a solitonic string and a massive dilaton field
propagating on the AdS4 space. The string theory calcu-
lation shows that the resulting three-point function has the
coordinate dependence that is expected by the global
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conformal symmetry and its structure constant is closely
related to that with a marginal operator. Finally, we suggest
a new circular string dual to a closed spin chain. Its two-
and three-point functions show that the size effect of the
closed spin chain is suppressed linearly by ( �J1 � J1), while
the open spin chain has an exponentially suppressed finite-
size effect [6,10,20,23].

The rest of the paper is organized as follows. In Sec. II,
we briefly summarize the results of the RG analysis with a
marginal deformation [15]. In Sec. III, after evaluating
the three-point function of two heavy operators and an
(ir)relevant one, we show that the ratio between the structure
constants has a universal form independent of the details of
the heavy operator. Moreover, we find that the closed spin
chain can have a linearly suppressed size correction.
Finally, we finish our work with some concluding remarks.

II. MARGINAL DEFORMATION OF
THE CONFORMAL FIELD THEORY

Many authors have recently calculated the three-point
correlation functions of two heavy operatorsOH and a light
one OL in the AdS5 � S5 background by using the AdS/
CFT correspondence [14–16]. For an N-point function
with only two heavy operators, it can be rewritten in a
factorized form as a product of two- and three-point func-
tions in the large ’t Hooft coupling limit [17]. So it is
important to know the conformal dimensions of various
primary operators and the structure constants for under-
standing the CFT in the strong-coupling regime. However,
little is known about the structure constant except for
Bogomol’nyi-Prasad-Sommerfield operators, whereas the
conformal dimensions of heavy operators have been
widely studied [18]. The goal of this paper is to obtain
more insights about the structure constant.

Let us start with summarizing the known results.
Assuming a heavy operator OH with a conformal dimen-
sion �H, its two-point function is exactly determined by
the global conformal symmetry up to the normalization

hOHðxÞOHðyÞi ¼ 1

jx� yj2�H
; (2)

where we set the normalization constant to 1. Similar to the
two-point function, the global conformal symmetry also
fixes the coordinate dependence of the three-point function
with another operator OL,

hOHðxÞOHðyÞOLðzÞi ¼ aHHL

jx� yj2�H��L jx� zj�L jy� zj�L
;

(3)

where �L denotes the conformal dimension of OL. Note
that since the structure constant aHHL is not constrained by
the conformal symmetry, it should be determined by other
methods. If we take account of a marginal Lagrangian
density operator OL, we can determine the structure

constant through the RG analysis. For an Euclidean four-
dimensional CFT, the structure constant is associated with
the conformal dimension of the heavy operator [15],

�g2
@

@g2
�H ¼ 2�2aHHL; (4)

where g denotes a coupling constant and 2�2 corresponds
to the solid angle of S3. Since this relation should be
satisfied in all coupling regimes, we can test the AdS/
CFT correspondence in the strong-coupling limit. To do
so, we first must know the operator that corresponds to the
spectrum. Following the AdS/CFT correspondence, a
heavy operator usually corresponds to a solitonic string
moving in the dual geometry, whereas a light one is
matched with a supergravity mode. In particular, a mar-
ginal Lagrangian-density operator is dual to a massless
dilaton field. It was shown by many authors that solitonic
strings moving in the AdS5 � S5 background satisfy the
above relation [15,20].
One can easily generalize the relation (4) to the

d-dimensional CFT case,

�g2
@

@g2
�H ¼ 2�d=2

�ðd=2Þ aHHL; (5)

where the multiplication factor implies the solid angle of
Sd�1. In the string theory, there exists another interesting
superconformal theory—the so-called ABJM model—
which describes a three-dimensional N ¼ 6 Chern-
Simons theory [8]. Its dual is the supergravity theory in
the AdS4 � CP3 background. Since the ABJM model is
also conformal, one can easily expect that the ABJM
model also satisfies (5) in the form

�g2
@

@g2
�H ¼ 4�aHHL: (6)

In Ref. [19], various solitonic string solutions moving in
the AdS4 � CP3 background were investigated, and it was
shown that the RG analysis (6) is really working in the
ABJM model as expected.

III. THREE-POINT FUNCTION WITH
AN (IR)RELEVANT OPERATOR

In the three-point function of two heavy operators and a
marginal one, the structure constant can be exactly deter-
mined by the RG analysis on the CFT side. On the other
hand, the same result can also be reproduced on the gravity
side by evaluating the semiclassical partition function with
an interaction between a solitonic string and a dual super-
gravity mode. This result is one piece of evidence of the
AdS/CFT correspondence. Can we generalize such a cal-
culation to the more general cases? More specifically, what
is the three-point function with an (ir)relevant operator
instead of a marginal one? When evaluating the three-point
function with an (ir)relevant operator in the strong-coupling
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regime, the RG analysis and the perturbative calculation
are not valid. However, the AdS/CFT correspondence can
give the answer. In this section, we will discuss the three-
point functions of various combinations of two heavy
operators and an (ir)relevant one in the large ’t Hooft
coupling limit.

A. Point-like string in AdS4

Let us first consider a point particle propagating only on
the Euclidean AdS4 space, whose metric in the Poincare
patch reads

ds2 ¼ dz2 þ �ijdx
idxj

z2
; (7)

where z and xi correspond to the radial and boundary
coordinates, respectively. The worldline action of a particle
is given by the following Polyakov-type action:

SP ¼ 1

2

Z s=2

�s=2
d�

�
_xi _xi þ _z2

z2
�m2

�
; (8)

where the mass of the particlem is very large and s denotes
the modular parameter. The solution satisfying the equa-
tion of motion becomes

xð�Þ ¼ R tanh��þ x0; zð�Þ ¼ R

cosh��
: (9)

Under the boundary conditions

fxð�s=2Þ; zð�s=2Þg ¼ f0; �g and

fxðs=2Þ; zðs=2Þg ¼ fxf; �g;
(10)

and at an appropriate UV cutoff � (� ! 0), the parameters
are related to each other as

� � 2

s
log

xf
�

and xf � 2R � 2x0; (11)

where higher-order corrections are ignored. After regard-
ing the convolution with the relevant wave function
[14,15], the saddle point �s is given by

�s ¼ � 2i

m
log

xf
�
: (12)

At this saddle point, the semiclassical partition function
reduces to

eiSP ¼
�
�

xf

�
2�H

; with �H ¼ m; (13)

where �H corresponds to the energy of a massive particle.
Following the AdS/CFT correspondence, �H is reinter-
preted as the conformal dimension of the dual heavy
operator, and the semiclassical partition function is asso-
ciated with its two-point function.

In order to evaluate the three-point function with an
(ir)relevant operator, we first introduce a massive dilaton
field propagating on the AdS4 space. If its mass is denoted

by m� (� m), the conformal dimension of the dual light

operator O� is given by1

h ¼ 3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4m2

�

q
2

: (14)

Note that a dilaton field is allowed to have a negative mass
squared in the anti–de Sitter space, m2

� � � 9
4 , where the

lower limit corresponds to the Breitenlohner-Freedman
bound [24]. The operator dual to a dilaton with a negative
or positive mass is relevant or irrelevant, respectively. A
massless dilaton corresponds to the Lagrangian-density
operator OL studied in the previous section. The bulk-
boundary propagator of a massive dilaton in the AdS4
space is given by [25–27]

D�ðz; x; 0; yÞ ¼ �ðhÞ
�3=2�ðh� 3=2Þ

�
z

z2 þ ðx� yÞ2
�
h
; (15)

where a dilaton propagates from the boundary f0; yg to
the bulk fz; xg. Then, the three-point function can be
expressed by

hOHðxfÞOHð0ÞO�ðyÞi ¼ I

x2�H

f

; (16)

with

I ¼ i�ðhÞ
8�3=2�ðh� 3=2Þ

Z �s=2

��s=2
d�

�
_xi _xi þ _z2

z2
�m2

�

�
�

z

z2 þ ðx� yÞ2
�
h

¼ � m

2hþ2�

�ðh2Þ�ðhÞ
�ðhþ1

2 Þ�ðh� 3
2Þ

1

x�h
f jxf � yjhyh þ � � � ; (17)

where the solutions in Eq. (9) are used and the ellipsis
implies higher-order corrections in the large-�s limit. In
Eq. (16), I implies the interaction between a solitonic
string and a massive dilaton field.
Form� ¼ 0, the light operator is marginal and the three-

point function simply reduces to

hOHðxfÞOHð0ÞOLðyÞi¼� m

16�

1

x2�H�3
f jxf�yj3y3 ; (18)

which coincides with the result in Ref. [19]. Assuming that
�H ¼ m� ffiffiffi

g
p

[15], we can easily check that the structure

constant satisfies the result of the RG analysis (6),

�g2
@�H

@g2
¼ �m

4
¼ 4�aHHL: (19)

Form� � 0, the three-point function can be summarized to

1In Ref. [19], the three-point functions with marginal operators
with m� ¼ 0 have been considered.
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hOHðxfÞOHð0ÞO�ðyÞi ¼
aHH�

x2�H�h
f jxf � yjhyh ; (20)

with

aHH� ¼ � m

2hþ2�

�ðh2Þ�ðhÞ
�ðhþ1

2 Þ�ðh� 3
2Þ
; (21)

which shows the coordinate dependence expected by the
global conformal symmetry.

B. A circular string wrapped in �

Now, consider a solitonic string moving in the AdS4 �
S3 background, which is a subspace of the AdS4 � CP3

geometry dual to the ABJM model. Here, S3 represents the
diagonal subspace of CP3 [10,11],

ds2 ¼ 1

4
ðd�2 þ sin 2�d�2

1 þ cos 2�d�2
2Þ: (22)

Under the ansatz for a circular string extended in � with
rotations in �1 and �2,

� ¼ �; �1 ¼ !1�; �2 ¼ !2�; (23)

the Polyakov string action becomes

S ¼ T

2

Z s=2

�s=2
d�

Z 2�

0
d�

�
_xi _xi þ _z2

z2
� �02 þ sin 2� _�2

1

þ cos 2� _�2
2

�
; (24)

where the dot and the prime represent the derivatives with
respect to � and �, respectively. In Eq. (24), the first two
terms describe the motion of the string in the AdS4 space.
Since all solitonic strings studied in this paper behave like
a point particle in the AdS4 space, their solutions are also
given by Eq. (9). Note that the string tension T in the
AdS4 � CP3 space is associated with the ’t Hooft coupling
constant 	 [10],

T ¼
ffiffiffiffi
	

2

s
¼ 2g; (25)

where g is the coupling constant appearing in Sec. II.
Following Refs. [14,15], at the saddle point

�s ¼ 2
ffiffiffi
2

p

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ!2

1 þ!2
2

q log

�
xf
�

�
(26)

the semiclassical partition function becomes

eiS ¼
�
�

xf

�
2�H

; (27)

where the energy of a circular string �H reads

�H ¼ ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J21 þ J22 þ 2�2T2

q
(28)

in terms of the angular momenta

J1 ¼ �T!1 and J2 ¼ �T!2: (29)

If a dilaton field is massless, the RG analysis (6) expects
that the structure constant will be

4�aAAL ¼ �
ffiffiffi
2

p
�2T2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J21 þ J22 þ 2�2T2
q : (30)

On the string theory side, the result (30) can also be
reproduced from the three-point function with a general
light operator. The general form of the three-point function
with an (ir)relevant operator is given by

hOHð0ÞOHðxfÞO�ðyÞi ¼ I

x2�H

f

; (31)

with

I ¼ i�ðhÞ
4�3=2�ðh� 3=2Þ

Z �s=2

��s=2
d�

�
Z 2�

0
d�

�
_xi _xi þ _z2

z2
� �02 þ sin 2� _�2

1 þ cos 2� _�2
2

�

�
�

z

z2 þ ðx� yÞ2
�
h
: (32)

After integrating Eq. (32), the leading term of the three-
point function gives rise to

hOHð0ÞOHðxfÞO�ðyÞi

¼ � �T2

2h�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J21 þ J22 þ 2�2T2

q �ðh2Þ�ðhÞ
�ðhþ1

2 Þ�ðh� 3
2Þ

� 1

x2�H�h
f jxf � yjhyh : (33)

Its coordinate dependence is the exact form expected by
the CFT. For m� ¼ 0, the dual light operator becomes

marginal, h ¼ 3, and the three-point function reduces to

hOHð0ÞOHðxfÞOLðyÞi

¼ �
ffiffiffi
2

p
�T2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J21 þ J22 þ 2�2T2

q 1

x2�H�3
f jxf � yj3y3 ; (34)

where we can see that the structure constant perfectly
coincides with Eq. (30) derived by the RG analysis.
Comparing the above two structure constants yields the
following ratio:

aHH�

aHHL
¼ 1

2h�2

�ðh2Þ�ðhÞ
�ðhþ1

2 Þ�ðh� 3
2Þ
; (35)

in which the result shows a universal form in that it does
not contain any information about the heavy operator. This
implies that in the large ’t Hooft coupling limit the struc-
ture constant with an (ir)relevant operator can be factorized
into two parts. One is aHHL, which is determined by the
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details of the heavy operator, and the other depends on
the conformal dimension of the light operator only. In the
following sections, we will check this new feature of the
structure constant with more complicated solitonic strings.

C. A dyonic magnon

In this section, we will take into account a more non-
trivial solitonic string called a dyonic magnon. In the
AdS5 � S5 background dual to the N ¼ 4 super-Yang-
Mills theory, the three-point function of two dyonic
magnons and a marginal operator has been investigated
[15,18–20,23]. This work was also generalized to the
ABJM model [20]. Here, we will further study the three-
point function with an (ir)relevant operator and check the
universal behavior of the structure constant ratio.

A dyonic magnon corresponds to a bound state of mag-
nons in the spin-chain model, which can be described on
the string theory side by a solitonic string rotating on S3 �
CP3. The ansatz for a dyonic string is given by

�¼ �ðyÞ; �1 ¼ 
1�þ g1ðyÞ and �2 ¼ 
2�þ g2ðyÞ;
(36)

with

y ¼ a�þ b�: (37)

The rotational symmetries in �1 and �2 give rise to

g01 ¼
1

b2 � a2

�
a
1 � c1

sin 2�

�
;

g02 ¼
1

b2 � a2

�
a
2 � c2

cos 2�

�
;

(38)

where c1 and c2 are integration constants and the prime
means a derivative with respect to y. Here, we take b2 > a2

and c2 ¼ 0 to obtain a dyonic magnon solution [10,20].
Using the Virasoro constraints, the equation of motion for
� can be rewritten as the first-order differential equation

�02¼ b2ð
2
1�
2

2Þ
ðb2�a2Þ2sin2�

ðsin2�max� sin2�Þðsin2�� sin2�minÞ;
(39)

with

sin 2�max ¼ c1
a
1

; (40)

sin 2�min ¼ a
1c1
b2ð
2

1 � 
2
2Þ
: (41)

From now on, we concentrate on the infinite-size limit
(J1 ! 1), which can be accomplished by setting c1 ¼
a
1 ( sin �max ¼ 1). After the convolution, the semiclassi-
cal partition function is represented as

eiS ¼
�
�

xf

�
2�H

; (42)

with

�H ¼ J1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J22 þ 4T2sin 2 p

2

r
; (43)

which was evaluated at the saddle point

�s ¼ � 2i


1

log
xf
�
: (44)

In Eq. (43), Ji (i ¼ 1, 2) means the angular momentum in
the�i direction and p is the worldsheet momentum, which
can be reinterpreted in the target space as the angle differ-
ence of two ends of a string [10].
Following the method used in the previous sections, one

can finally find the following three-point function of two
dyonic magnons and an (ir)relevant operator:

hOHð0ÞOHðxfÞO�ðyÞi ¼
aHH�

x2�H�h
f jxf � yjhyh ; (45)

where the structure constant is given by

aHH�¼� T2sin2ðp=2Þ
2h�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J22þ4T2sin2ðp=2Þ

q �ðh2Þ�ðhÞ
�ðhþ1

2 Þ�ðh�3
2Þ
: (46)

For m� ¼ 0, it reduces to

aHHL ¼ � T2sin 2ðp=2Þ
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J22 þ 4T2sin 2ðp=2Þ

q ; (47)

and satisfies the RG analysis (6). Furthermore, the ratio of
the above structure constants shows the same universal
form as in Eq. (35).

D. A circular string wrapped in �1

The motivation of this section is not only to check the
universality mentioned before, but also to investigate a new
size effect of the closed spin chain. Usually, a circular
string corresponds to a closed spin chain in the dual CFT,
whereas a magnon is dual to an open spin chain. If the
magnon’s size J1 in Eq. (43) is large but finite, there is an
additional finite-size effect on the conformal dimension,
which is exponentially suppressed like e�J1 [20,23].
What is the size effect of the closed spin chain? In order

to answer this question, we think of another circular string
that is wrapped in �1 and rotating in �1 and �2. Then, the
appropriate ansatz is given by

�1 ¼ !1�þ w�; �2 ¼ !2� and � ¼ �0; (48)

where w is the winding number and 0 	 �< 2�. We
assume that the position of the string in � is fixed to �0
and that the two angular velocities!1 and!2 are finite. For
�0 ¼ �=2, the above ansatz reduces to one wrapping the
equator of S2. From the string action
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S¼ T

2

Z s=2

�s=2
d�

Z 2�

0
d�

�ð _xiÞ2�ðxi0Þ2þ _z2� z02

z2
þ _�2��02

þ sin2�ð _�2
1��02

1 Þþ cos2�ð _�2
2��02

2 Þ
�
; (49)

and after regarding the convolution contribution and set-

ting sin �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
, we find a saddle point at

�s ¼ 2

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw2 þ!2

1Þð1� �2Þ þ!2
2�

2
q log

xf
�
: (50)

At this point, the semiclassical partition function leads to

eiS ¼
�
�

xf

�
2�H

; (51)

with

�H¼2�T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J21

4�2T2ð1��2Þþð1��2Þw2þ J22
4�2T2�2

s
; (52)

where the two angular momenta are defined by

J1 ¼ 2�T!1ð1� �2Þ; J2 ¼ 2�T!2�
2: (53)

In order to understand the above result in more depth, we
first take account of the case � ¼ 0. In this case, S3 reduces
to S2 and the conformal dimension of a circular string is
given by

��H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�J21 þ 4�2T2w2

q
; (54)

where the bar symbol means a quantity defined on S2, like
�J1 
 2�T!1.
In the large ’t Hooft coupling limit (T � 1), �H and J1

are large (� T) but J2 is proportional to T�2. If we define

�J2 
 2�T!2, the conformal dimension in Eq. (52) can be
expanded near the equator of S2 (� � 1) to

�H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�J21 þ 4�2T2w2

q
þ �J22 � �J21 � 4�2T2w2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�J21 þ 4�2T2w2

q �2 þ � � � :

(55)

Here, the first term is nothing but the conformal dimension
of the circular string living on the equator of S2 and the
second is the leading size effect caused by the change of
the string length. Near the equator of S2, the string length l
can be expanded to

l ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
� 2�� ��2; (56)

where ��2 parametrizes the deviation of its string length
from that of a string wrapping around the equator.
Rewriting �2 in terms of J1 and �J1,

�2 ¼ �J1 � J1
�J1

; (57)

the conformal dimension of the circular string becomes

�H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�J21 þ 4�2T2w2 þ ð �J22 � �J21 � 4�2T2w2Þ �J1 � J1

�J1

s
:

(58)

In the dual closed-spin-chain picture, this shows that the
leading size effect on the conformal dimension is linearly
proportional to �J1 � J1, unlike the magnon case.
After some calculations, the three-point function with an

(ir)relevant operator finally becomes

hOHð0ÞOHðxfÞO�ðyÞi¼� �T2w2J1

2h�1 �J1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�J21þ4�2T2w2þð �J22� �J21�4�2T2w2Þ �J1�J1

�J1

q �ðh2Þ�ðhÞ
�ðhþ1

2 Þ�ðh� 3
2Þ

1

x2��h
f jxf�yjhyh : (59)

For m� ¼ 0, it simply reduces to the three-point function with a marginal operator with the following structure constant:

aHHL ¼ � �T2w2J1

2 �J1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�J21 þ 4�2T2w2 þ ð �J22 � �J21 � 4�2T2w2Þ �J1�J1

�J1

q ; (60)

which also satisfies the RG analysis (6). Furthermore, the universality in Eq. (35) is still preserved. For a small �, the
structure constant is also expanded to

aHHL � � �T2w2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�J21 þ 4�2T2w2

q þ �T2w2ð �J21 þ �J22 þ 4�2T2w2Þ
4ð �J21 þ 4�2T2w2Þ3=2

�J1 � J1
�J1

; (61)

in which the first term is the structure constant of a circular string living on the equator of S2 and the second term is the
leading size effect caused by the change of the string length.
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IV. CONCLUSIONS

In the strong-coupling regime, it is almost impossible to
calculate a general three-point function by using the tradi-
tional methods of quantum field theory. However, there are
several exceptions. If there is an additional symmetry, the
three-point function with its current operator can be deter-
mined by the Ward identity, even in the strong-coupling
regime [22]. Another possible example is the three-point
function with a marginal operator, more specifically a
Lagrangian-density operator. On the CFT side, the three-
point function of two heavy operators and a marginal one
can be evaluated by the RG analysis, which shows that the
structure constant aHHL is related to the derivative of
the conformal dimension of the heavy operator. Following
the AdS/CFT correspondence, we investigated the three-
point function of the ABJM model in the strong-coupling
regime and showed that the string calculation really leads
to a result that is consistent with the RG analysis.

In this paper, we further investigated the three-point
function with an (ir)relevant operator,

hOHð0ÞOHðxfÞO�i ¼
aHH�

x2��h
f jxf � yjhyh ; (62)

where the structure constant is given by

aHH� ¼ 1

2h�2

�ðh2Þ�ðhÞ
�ðhþ1

2 Þ�ðh� 3
2Þ
aHHL: (63)

This result shows that the coordinate dependence is exactly
of the form expected by the conformal symmetry.

Interestingly, the above structure constant is closely related
to that with a marginal operator and their ratio has a
universal feature that does not depend on the details of
the heavy operator. We have checked this universality with
the various heavy operators corresponding to solitonic
strings moving in the AdS4 � CP3 space. These results
can easily be generalized to the higher-dimensional cases
like the AdS5 � S5 background, in which the definition of
the string tension should be modified [10]. Finally, we
found a solitonic string dual to a certain closed spin chain
in the dual CFT and studied the new size effect of it. In the
large ’t Hooft coupling limit, the size effect of the closed
spin chain is suppressed linearly by ( �J1 � J1), while the
open spin chain described by a magnon has the exponential
suppression e�J1 .
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