
Shifted orbifold models with magnetic flux

Yukihiro Fujimoto,1,* Tatsuo Kobayashi,2,† Takashi Miura,1,‡ Kenji Nishiwaki,3,§ and Makoto Sakamoto1,k
1Department of Physics, Kobe University, Kobe 657-8501, Japan
2Department of Physics, Kyoto University, Kyoto 606-8502, Japan

3Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute, Allahabad 211 019, India
(Received 7 March 2013; published 8 April 2013)

We propose a mechanism to obtain the generation of matter in the standard model. We start

from the analysis of the T2=ZN shifted orbifold with magnetic flux, which imposes a ZN symmetry

on torus. We also consider several orbifolds such as ðT2 � T2Þ=ZN , ðT2 � T2 � T2Þ=ðZN � ZN0 Þ and

ðT2 � T2 � T2Þ=ðZN � ZN0 � ZN00 Þ. On such orbifolds, we study the behavior of fermions in two different

means—the operator formalism and the explicit analysis of wave functions. For an interesting result, it is

found that the number of zero-mode fermions is related to N of the ZN symmetry. In other words, the

generation of matter relates to the type of orbifolds. Moreover, we find that shifted orbifold models are

severely restricted from realizing three generations. For example, the three-generation model on the type

of M4 � ðT2 � T2Þ=ZN is unique. One can also construct other types of three-generation orbifold models

with rich flavor structure. Those results may bring us a realistic model with desired Yukawa structure.
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I. INTRODUCTION

Extra-dimensional field theories play an important role
in particle physics and cosmology. In particular, string-
derived higher-dimensional models would be interesting.

A key issue is how to realize a four-dimensional chiral
theory through a certain type of compactification, when we
start with a higher-dimensional theory. For example, the
toroidal compactification is simple, but it does not lead to a
four-dimensional chiral theory without any gauge back-
ground. More complicated geometrical backgrounds such
as Calabi-Yau compactifications can lead to a four-
dimensional chiral theory. In general, it is difficult to solve
zero-mode equations analytically on Calabi-Yau mani-
folds, although topological discussions are applicable.

Torus compactifications with magnetic fluxes are quite
interesting extra-dimensional backgrounds [1,2].1 Chiral
massless spectra in a four-dimensional theory can be real-
ized. One can solve zero-mode equations analytically and
their zero-mode profiles are nontrivially quasilocalized.
Furthermore, such supersymmetric Yang-Mills models on
the torus with magnetic fluxes can be derived from the
superstring theory with D-branes [4]. Also, the general
form of wave functions and the spectra have been derived
in arbitrary n-dimensional torus with magnetic flux [5].

The number of zero modes is determined by the magni-
tude of the magnetic flux. Thus, one can realize the three
generations of chiral matter fields by choosing a proper

pattern of magnetic fluxes.2 In addition, nontrivial profiles
of quasilocalized zero modes can lead to hierarchically
small couplings when they are localized far away from
each other, although their couplings would be of Oð1Þ for
zero modes localized near places. Thus, these models are
phenomenologically quite interesting. Indeed, several
studies have been carried out for various phenomenologi-
cal aspects such as explicit model building and computa-
tions of four-dimensional low-energy effective field
theories, e.g., Yukawa couplings [2], realization of quark/
lepton masses and their mixing angles [8], higher order
couplings [9], flavor symmetries [10–12], massive modes
[13], etc. (See also Refs. [14–17].)
The orbifold compactifiction with magnetic flux is also

interesting [18,19].3 The (twisted) orbifold is constructed
by dividing the torus by a discrete rotation [21]. On the Z2

orbifold with magnetic flux, zero-mode wave functions are
classified into even and odd functions under the Z2 reflec-
tion. Either Z2 even or odd zero modes are projected out
exclusively by the orbifold projection. Then, we can obtain
that the number of generations differs from one in the
simple toroidal compactification with the same magnetic
flux. Hence, the flavor structure becomes rich.
In this paper, we study another type of orbifolds with

magnetic flux. Instead of the discrete rotation, we divide
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1See for string magnetized D-brane models [3] and references

therein.

2On the other hand, there have been some bottom-up ap-
proaches realizing the three generations of chiral matter fields,
which are called the extra-dimensional models. For example, an
attempt is to derive the three generations of chiral matter fields
on the basis of the relation between gauge symmetry and
boundary conditions on four-dimensional spacetime added to
S1=Z2 twisted orbifold [6]. Another one is to derive the three
generations of chiral matter fields through the geometry of extra
dimension with point interactions instead of magnetic flux [7].

3See also for heterotic models on magnetized orbifolds [20].
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the simple toroidal compactification with magnetic flux by
some discrete shift symmetries such as ZN , i.e., the shifted
orbifold.4 We can classify zero-mode wave functions by
their behaviors under the shift symmetry and project out
some of them. Then, we derive a new type of models
and flavor structures. In particular, we consider T2=ZN ,
ðT2�T2Þ=ZN , ðT2 � T2Þ=ZN � T2, ðT2 � T2 � T2Þ=
ðZN � ZN0 Þ, and ðT2�T2�T2Þ=ðZN�ZN0 �ZN00 Þ shifted
orbifolds. Then, we study the number of zero modes and
their wave functions on the above shifted orbifolds with
magnetic fluxes. For an interesting result, it is found that
the number of zero-mode fermions is related toN of the ZN

symmetry. In other words, the generation of matter relates
to the type of orbifolds. Moreover, we find that shifted
orbifold models are, in general, severely restricted from
realizing three generations. For example, the three-
generation model on the type of M4 � ðT2 � T2Þ=ZN is
unique. One can also construct other types of three-
generation orbifold models with rich flavor structure.
Those results may bring us a realistic model with desired
Yukawa structure.

This paper is organized as follows. In Sec. II, we study
the shifted orbifold with magnetic fluxes in the operator
formalism. In Sec. III, we study zero-mode wave functions
of spinor fields and flavor structure. Section IV is devoted
to the conclusion and discussion. In Appendix A, we
discuss the general form of ZN shifted orbifold and basis
transformation. In Appendix B, we discuss the degeneracy
of spectrum on ðT2 � T2 � T2Þ=ðZN � ZN0 � ZN00 Þ. In
Appendix C, we discuss Wilson line phases and the re-
definition of fields under the existence of magnetic flux.

II. OPERATOR FORMALISM ON SHIFTED
ORBIFOLD WITH MAGNETIC FLUX

First of all, we introduce a homogeneous magnetic flux
along a Uð1Þ gauge group, which may be a subgroup in
some non-Abelian gauge group, and concentrate only on
the Uð1Þ gauge theory. In this section, we consider the
quantum mechanical system of the Uð1Þ gauge theory on
some shifted orbifold with homogeneous magnetic flux.
The shifted orbifold is defined by orbifolding with some
discrete symmetries on the torus, as we will see below. For
the analysis, we make use of a technique of operator
formalism, in which it is easy to understand the number
of degeneracy compared with the analysis with the wave
functions. We first investigate the quantum mechanical
system with a homogeneous magnetic field on T2=ZN

and show that the energy spectrum of this system has
degeneracy due to the magnetic flux, which is well known
as the Landau levels. In this case, however, there is no
reason to restrict the number of degeneracy. After that, we

also investigate the system on ðT2 � T2Þ=ZN . Differently
from T2=ZN , we obtain the remarkable result that the
number of degeneracy is restricted to a multiple of N.
This result implies that the three-generation structure could
be derived from some higher-dimensional gauge theory. We
also discuss the extension of this idea to ðT2�T2�T2Þ=
ðZN�ZN0 Þ as well as ðT2�T2�T2Þ=ðZN�ZN0 �ZN00 Þ in
the latter half of this section.

A. T2=ZN shifted orbifold

1. Operator formalism on T2

Let us start from an analysis of a quantum mechanical
system in a homogeneous magnetic field on T2. We define
the vector notation on T2 as y � ðy1; y2ÞT. The Schrödinger
equation and the Hamiltonian we consider are written as

Hc ðyÞ ¼ Ec ðyÞ; H ¼ ð�irþ qAðyÞÞ2; (1)

where r � ð@y1 ; @y2ÞT, q is a Uð1Þ charge, and AðyÞ pro-
vides a homogeneous magnetic field on T2 as

AðyÞ ¼ � 1

2
�yþ 2�

q
a (2)

or in the component

AiðyÞ ¼ � 1

2

X2
j¼1

�ijyj þ 2�

q
ai; ði ¼ 1; 2Þ: (3)

Here, a is a Wilson line phase which is composed of real
constants. We emphasize that only the antisymmetric part
of � is physical, and the symmetric part depends on a
choice of gauge. We will take a suitable gauge as we will
see later. Introducing a two-dimensional lattice,

� ¼
�X2
a¼1

nauajna 2 Z
�
; (4)

we define the two-dimensional torus as T2 ¼ R2=�. Here
u1 and u2 are the basis vectors of torus. In other words, T2

is defined with the identification

y � yþ X2
a¼1

naua: (5)

For the Schrödinger equation to be compatible with this
condition, the wave function c ðyÞ has to satisfy the pseu-
doperiodic boundary conditions,

c ðyþ uaÞ ¼ eiqy
T�ua=2c ðyÞ for a ¼ 1; 2: (6)

Here we made a constant phase appearing at the right-hand
side of this equation absorbed into a. Now, we require
that the wave function must be single-valued on the torus.
The requirement leads to the magnetic flux quantization
condition,

quTaBub ¼ 2�Qab; (7)

4For example, the shifted orbifolds have been studied within
the framework of the heterotic string theory [22–24] and also in
the context of the torus-orbifold equivalence [25,26].
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where B � 1
2 ð���TÞ, which corresponds to a homoge-

neous magnetic field, and Qab ¼ �Qba 2 Z.
To move on the operator formalism, we introduce a

momentum operator as p � �ir, which is canonically
conjugate to y. This operator satisfies the canonical com-
mutation relations,

½yj; pk� ¼ i�jk; the others ¼ 0; ðj; k ¼ 1; 2Þ: (8)

We rewrite the wave function c ðyÞ in the language of the
operator formalism as c ðyÞ ¼ hyjc i and then the system is
rewritten by

Ĥjc i ¼ Ejc i; Ĥ ¼
�
p̂� q

2
�ŷþ 2�a

�
2 � p̂02:

(9)

This is restricted by the constraint conditions,

eiT̂a jc i¼ jc i; T̂a¼uTa

�
p̂�q

2
�Tŷ

�
; ða¼1;2Þ: (10)

These conditions come from the pseudoperiodic boundary
conditions (6), and we have taken the suitable gauge in

which the additional term in T̂a vanishes, i.e., u
T
a�ua ¼ 0.

To investigate the eigenstates of this system and their
energy eigenvalues, it is convenient to define new variables
under a canonical transformation. Then we introduce the
new variables,

Ŷ�
ffiffiffi
2

p
!

p̂0
2; P̂� ffiffiffi

2
p

p̂0
1;

~̂Y�� 1

2�M
T̂2; ~̂P� T̂1;

(11)

where ! � 2qB12 ¼ 2qb=ju1 � u2j5 and M � Q12. They
satisfy the canonical commutation relations, i.e.,

½Ŷ; P̂� ¼ i; ½ ~̂Y; ~̂P� ¼ i; the others ¼ 0: (12)

The transformation fyi; pi; i ¼ 1; 2g � fY; P; ~Y; ~Pg is a ca-
nonical one since it preserves the canonical commutation
relations. Moreover, under the new variables, the system
can be reformulated into an effectively one-dimensional
harmonic oscillator,

Ĥ ¼ 1

2
P̂2 þ!2

2
Ŷ2; (13)

with the two constraint conditions

ei
~̂Pjc i ¼ jc i; e�i2�M ~̂Yjc i ¼ jc i: (14)

These two constraint conditions are, however, independent
of the energy spectrum of the harmonic oscillator because

Ĥ is constructed only from Ŷ and P̂ but not from ~̂Y and ~̂P.
The constraint conditions (14) lead to the coordinate quan-
tization as below. We take the coordinate representation j~yi
which diagonalizes the operator ~̂Y as

e�2�iM ~̂Yj~yi ¼ e�2�iM~yj~yi: (15)

Making e�i2�M ~̂Y operate on eia
~̂Pj~yiða 2 RÞ and using

Eq. (12), we can obtain the condition

eia
~̂Pj~yi ¼ j~y� ai: (16)

From Eqs. (14) and (16), we can obtain the periodic
condition,

j~y� 1i ¼ j~yi; (17)

with the coordinate quantization condition,

~y ¼ j

M
; ðj ¼ 0; 1; 2; . . . ; jMj � 1Þ: (18)

A schematic figure of the quantization condition is repre-
sented in Fig. 1. These results imply that the eigenstates of

Ĥ and their energy eigenvalues are given by

Ĥ

��������n; jM
�
T2

¼ En

��������n; jM
�
T2
; En ¼ !

�
nþ 1

2

�
;

(19)

where n ¼ 0; 1; 2; . . . and j ¼ 0; 1; 2; . . . ; jMj � 1. Thus,
there is jMj-fold degeneracy at each energy level in this
system, i.e.,

the number of degeneracy ¼ jMj: (20)

Note that En corresponds to eigenvalues of the two-
dimensional Laplace operator with magnetic flux (1), i.e.,
the mass squares of scalar fields m2

n ¼ !ðnþ 1=2Þ. The
spinor and two-dimensional vector have mass spectra as
m2

n ¼ !n and m2
n ¼ !ðn� 1=2Þ, respectively [2,13].

2. ZN shifted orbifolding

From here, we investigate the quantum system on T2=ZN

shifted orbifold, which is defined as the identification

ZN: y� yþ 1

N
u1; (21)

whereN is some positive integer. We should comment here
that Eq. (21) is not the general form in the ZN shifted

FIG. 1. Schematic figure of the quantization of ~y ¼ j=jMj.

5The b is the magnitude of magnetic flux and b ¼ R
T2 F as

Eq. (73).
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orbifolding, but we can always transform the general form
into a special one such as Eq. (21) without any loss of
generality. We show the details in Appendix A. This iden-
tification can be translated into the requirement for physi-
cal states on T2=ZN in the operator formalism as6

Û ZN
jc iT2=ZN

¼ jc iT2=ZN
; ÛZN

� eiT̂1=N; (22)

where ÛZN
is the operator that shifts the coordinate y by

1
N u1, as in Eq. (21). The ZN shift operator has to be

consistent with the torus identification (10) and leads to
the consistency conditions

Û ZN
eiT̂a ¼ eiT̂aÛZN

; ða ¼ 1; 2Þ: (23)

From these conditions, we can obtain

M

N
2 Z: (24)

In other words, we can write

M ¼ tN; (25)

where t is some integer. We can understand briefly what
this result means physically. Since the ZN shifted orbifold-
ing reduces the fundamental region A of T2 to A=N, the
magnetic flux quantization requires that M has to be a
multiple of N.

Then we define the physical states on T2=ZN as

��������n; jM
�
T2=ZN

� 1ffiffiffiffi
N

p XN�1

‘¼0

ðÛZN
Þ�‘

��������n; jM
�
T2

¼ 1ffiffiffiffi
N

p XN�1

‘¼0

��������n;jþ‘t

M

�
T2
; (26)

where jþ ‘t is identical with an element of the set of j

modulo jMj. Here we used the fact that ÛZN
operate on the

states on T2, i.e.,

ðÛZN
Þ�1

��������n; jM
�
T2
¼
��������n; jMþ 1

N

�
T2
¼
��������n;jþ t

M

�
T2
: (27)

Finally, we mention the number of degeneracy in this
system, which is given by

the number of degeneracy ¼ jMj
N

¼ jtj: (28)

We notice that we cannot obtain any constraint for the
number of degeneracy on T2=ZN .

B. ðT2 � T2Þ=ZN shifted orbifold

In this subsection, using the analysis in Sec. II A, we
analyze the quantum mechanics on ðT2 � T2Þ=ZN shifted
orbifold with a homogeneous magnetic field. The exten-
sion of the previous analysis is straightforward, but the
result is nontrivial. In this case, the number of degeneracy
is restricted to a multiple of N.

1. Operator formalism on T2 � T2

Let us start from a Hamiltonian of the quantum system
on T2 � T2 with a homogeneous magnetic field, which is
given by

H ¼ X2
g¼1

ð�irðgÞ þ qAðgÞðyðgÞÞÞ2; (29)

where

A ðgÞðyðgÞÞ¼�1

2
�ðgÞyðgÞþ2�

q
aðgÞ; ðg¼1;2Þ: (30)

Here we introduced an index g to be a label of each torus.
The two two-dimensional tori T2 � T2 are defined as

T2 � T2 ¼ R=�ð1Þ � R=�ð2Þ; (31)

where

�ðgÞ ¼
�X2
a¼1

nðgÞa uðgÞa jnðgÞa 2 Z
�
; ðg ¼ 1; 2Þ: (32)

In other words, T2 � T2 can be defined with the
identifications,

y ðgÞ � yðgÞ þ X2
a¼1

nðgÞa uðgÞa : (33)

On each torus, the wave function c ðyð1Þ; yð2ÞÞ has to
satisfy the pseudoperiodic boundary conditions,

c ðyð1Þ þ uð1Þa ; yð2ÞÞ ¼ eiqðyð1ÞÞT�ð1Þuð1Þa =2c ðyð1Þ; yð2ÞÞ;
c ðyð1Þ; yð2Þ þ uð2Þa Þ ¼ eiqðyð2ÞÞT�ð2Þuð2Þa =2c ðyð1Þ; yð2ÞÞ;

(34)

for the Schrödinger equation to be compatible with Eq. (33).
The requirement that the wave function is single-valued
on each torus leads to the magnetic flux quantization
conditions,

quðgÞTa BðgÞuðgÞb ¼ 2�QðgÞ
ab ; (35)

where BðgÞ � 1
2 ð�ðgÞ ��ðgÞTÞ and QðgÞ

ab ¼ �QðgÞ
ba 2 Z.

Here we introduce momentum operators as pðgÞ �
�irðgÞ, which are canonically conjugate to yðgÞ. These
operators satisfy the canonical commutation relations

½yðgÞj ; pðg0Þ
k � ¼ i�gg0�jk; the others ¼ 0; (36)

where g, g0 ¼ 1, 2 and j, k ¼ 1, 2. In the same way as
the previous subsection, the pseudoperiodic boundary
conditions (34) can be regarded as the constraint conditions
for the physical states in the operator formalism. The
system is rewritten by

6We note that there is always a ZN-phase ambiguity to

put e2�i�=Nð� 2 ZÞ in the definition of ÛZN
. Here we assume

e2�i�=N ¼ 1 because it does not affect the analysis below. For
the same reason, we will apply this assumption to the cases of
other orbifolds.
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Ĥjc i¼Ejc i;

Ĥ¼X2
g¼1

�
p̂ðgÞ �q

2
�ðgÞŷðgÞþ2�aðgÞ

�
2�X2

g¼1

ðp̂0ðgÞÞ2;

(37)

with the constraint conditions

eiT̂
ðgÞ
a jc i¼ jc i; T̂ðgÞ

a ¼uðgÞTa

�
p̂ðgÞ�q

2
�ðgÞTŷðgÞ

�
; (38)

where a ¼ 1, 2 and g ¼ 1, 2. In the above, we chose the

gauge as uðgÞTa �ðgÞuðgÞa ¼ 0. Under the system, we consider
the canonical transformation,

ŶðgÞ �
ffiffiffi
2

p

!ðgÞ p̂
0ðgÞ
2 ; P̂ðgÞ � ffiffiffi

2
p

p̂0ðgÞ
1 ;

~̂Y
ðgÞ � � 1

2�MðgÞ T̂
ðgÞ
2 ; ~̂P

ðgÞ � T̂ðgÞ
1 ;

(39)

where!ðgÞ �2qBðgÞ
12 ¼2qbðgÞ=juðgÞ1 �uðgÞ2 j andMðgÞ �QðgÞ

12 .

These new variables satisfy the relations

½ŶðgÞ;P̂ðg0Þ�¼ i�gg0 ; ½ ~̂YðgÞ
; ~̂P

ðg0Þ�¼ i�gg0 ; the others¼0:

(40)

Then, we can rewrite the Hamiltonian as

Ĥ ¼ X2
g¼1

�
1

2
ðP̂ðgÞÞ2 þ ð!ðgÞÞ2

2
ðŶðgÞÞ2

	
; (41)

with the constraints

ei
~̂P
ðgÞ jc i¼ jc i; e�i2�MðgÞ ~̂YðgÞ jc i¼ jc i ðg¼1;2Þ: (42)

In a way similar to the previous subsection, Ĥ is con-

structed only from P̂ðgÞ and ŶðgÞ, so that the constraint
conditions (42) do not affect the energy spectrum of the

system. Ĥ is just the sum of the two one-dimensional
harmonic oscillators, which implies that the energy eigen-

values of Ĥ are given by

Enð1Þnð2Þ ¼
X2
g¼1

!ðgÞ
�
nðgÞþ1

2

�
; ðnðgÞ ¼0;1;2; . . .Þ: (43)

Furthermore, the constraint conditions (42) lead to the

quantization on the coordinates ~yðgÞ,

~y ðgÞ ¼ jg

MðgÞ ; ðjg ¼ 0; 1; 2; . . . ; jMðgÞj � 1Þ; (44)

where ~yðgÞ is an eigenvalue of ~̂Y
ðgÞ

with the identification

~yðgÞ � ~yðgÞ þ 1. Thus the eigenstates of this system are

described by not only nð1Þ and nð2Þ but also j1 and j2 as��������nð1Þ; nð2Þ; j1

Mð1Þ ;
j2

Mð2Þ

�
T2�T2

: (45)

Since the eigenvalues of the Hamiltonian are independent

of the value jg, there is jMð1ÞMð2Þj-fold degeneracy at each

energy level, i.e.,

the number of degeneracy ¼ jMð1ÞMð2Þj: (46)

2. ZN shifted orbifolding

From here, we investigate the quantum system on
ðT2 � T2Þ=ZN shifted orbifold, which is defined by the
identification

ZN: ðyð1Þ; yð2ÞÞ �
�
yð1Þ þ d

N
uð1Þ1 ; yð2Þ þ 1

N
uð2Þ1

�
; (47)

where each of N and d is some integer and d is relatively
prime withN. As we mentioned in the previous subsection,
Eq. (47) is not the general form in the ZN shifted orbifold-
ing. However, we can always transform the general form
into a special one such as Eq. (47) without any loss of
generality. We discuss it in Appendix A. This identification
can be translated into the requirement for physical states in
the operator formalism as

ÛZN
jc iðT2�T2Þ=ZN

¼jc iðT2�T2Þ=ZN
; ÛZN

�eiðdT̂
ð1Þ
1
þT̂ð2Þ

1
Þ=N:

(48)

Since the ZN shift operator has to be compatible with
Eq. (38), we obtain the consistency conditions

ÛZN
eiT̂

ðgÞ
a ¼ eiT̂

ðgÞ
a ÛZN

; ða ¼ 1; 2;g ¼ 1; 2Þ: (49)

These conditions lead to

dMð1Þ

N
;

Mð2Þ

N
2 Z; (50)

which imply that both Mð1Þ and Mð2Þ must be multiples of
N, i.e.,

Mð1Þ ¼ t1N; Mð2Þ ¼ t2N; (51)

where each of t1 and t2 is some integer. The physical states
on ðT2 � T2Þ=ZN , which are nothing but ZN-invariant
states, can be constructed as��������nð1Þ;nð2Þ; j1

Mð1Þ ;
j2

Mð2Þ

�
ðT2�T2Þ=ZN

� 1ffiffiffiffi
N

p XN�1

‘¼0

ðÛZN
Þ�‘

��������nð1Þ;nð2Þ; j1

Mð1Þ ;
j2

Mð2Þ

�
T2�T2

¼ 1ffiffiffiffi
N

p XN�1

‘¼0

��������nð1Þ;nð2Þ;j1þ‘dt1

Mð1Þ ;
j2þ‘t2

Mð2Þ

�
T2�T2

; (52)

where each of j1 þ ‘dt1 and j2 þ ‘t2 is identical with an

element of the set of jg modulo jMðgÞj. Moreover, we can

obtain the result that the number of degeneracy in this
system is a multiple of N, i.e.,

the number of degeneracy ¼jMð1ÞMð2Þj
N

¼jt1t2jN: (53)

We would like to note that the number of zero-mode
fermions for ðT2 � T2Þ=ZN is given by a multiple of N,
while it can be an arbitrary integer for T2=ZN . This result
leads to an important conclusion—that there is only one
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possibility for deriving the three generations of matter, i.e.,

ðN;Mð1Þ;Mð2ÞÞ ¼ ð3; 3; 3Þ on ðT2 � T2Þ=ZN . Moreover, in
a case of ðT2 � T2Þ=ZN � T2, we obtain only one condi-
tion delivering the three generations of matter such as

ðN;Mð1Þ;Mð2Þ;Mð3ÞÞ ¼ ð3; 3; 3; 1Þ. We will show that these
results coincide with that of the analysis with wave func-
tions in Sec. III.

C. ðT2 � T2 � T2Þ=ðZN � ZN0Þ shifted orbifold

We can also apply the previous results to the system on
ðT2 � T2 � T2Þ=ðZN � ZN0 Þ shifted orbifold. As in the
previous model, the number of degeneracy is also restricted
in this case and can produce threefold degeneracy. We
do not present the analysis by the quantum system
on T2 � T2 � T2 in detail because it is just a simple
extension of the previous one. The energy spectrum of
the system on T2 � T2 � T2 is labeled by three quantum

numbers, nð1Þ, nð2Þ and nð3Þ, and is given by

Enð1Þnð2Þnð3Þ ¼
X3
g¼1

!ðgÞ
�
nðgÞþ1

2

�
; ðnðgÞ ¼0;1;2; . . .Þ; (54)

which is constructed of the three one-dimensional har-
monic oscillators. Then the physical states compatible

with Eq. (54) are labeled by not only nðgÞ but also the
quantum numbers jg, which come from the constraint

conditions in each torus, i.e.,��������nð1Þ; nð2Þ; nð3Þ; j1

Mð1Þ ;
j2

Mð2Þ ;
j3

Mð3Þ

�
T2�T2�T2

; (55)

where jg ¼ 0; 1; 2; . . . ; jMðgÞj � 1.

Nextwe analyze the quantumsystemon ðT2 � T2 � T2Þ=
ðZN � ZN0 Þ. We define the ZN and ZN0 shifted orbifoldings
as the identifications,

ZN: ðyð1Þ; yð2Þ; yð3ÞÞ �
�
yð1Þ þ d

N
uð1Þ1 ; yð2Þ þ 1

N
uð2Þ1 ; yð3Þ

�
;

ZN0 : ðyð1Þ; yð2Þ; yð3ÞÞ �
�
yð1Þ; yð2Þ þ 1

N0 ðs1uð2Þ1 þ s2u
ð2Þ
2 Þ;

yð3Þ þ d0

N0 u
ð3Þ
1

�
; (56)

where each of N, N0, d, and d0 is some positive integer and
each of s1 and s2 is some integer. Here we require that dðd0Þ
is relatively prime with NðN0Þ, and when we define s0 as the
greatest common divisor (gcd) of s1 and s2, the gcd of s

0 and
d0 is relatively prime with N0. As in Appendix A, we can
always transform the general forms of theZN andZN0 shifted
orbifoldings into special ones such as Eq. (56) without any
loss of generality. In the operator formalism, we define the
operators generating the identifications (56) as

Û ZN
� eiðdT̂

ð1Þ
1
þT̂ð2Þ

1
Þ=N; (57)

Û ZN0 � ei�s1s2M
ð2Þ=N0

eiðs1T̂
ð2Þ
1
þs2T̂

ð2Þ
2
þd0T̂ð3Þ

1
Þ=N0

: (58)

We note that the phase factor ei�s1s2M
ð2Þ=N0

in Eq. (58) is

necessary to be consistent with ðÛZN0 ÞN0 ¼ 1. The identifi-

cations (56) lead to the requirement for physical states on
ðT2 � T2 � T2Þ=ðZN � ZN0 Þ as
ÛZN

jc iðT2�T2�T2Þ=ðZN�ZN0 Þ ¼ jc iðT2�T2�T2Þ=ðZN�ZN0 Þ;

ÛZN0 jc iðT2�T2�T2Þ=ðZN�ZN0 Þ ¼ jc iðT2�T2�T2Þ=ðZN�ZN0 Þ:
(59)

Since these conditions have to be compatible with the torus
conditions,

eiT̂
ðgÞ
a jc i¼ jc i; T̂ðgÞ

a ¼uðgÞTa

�
p̂ðgÞ�q

2
�ðgÞTŷðgÞ

�
; (60)

where g ¼ 1, 2, 3 and a ¼ 1, 2, we obtain the consistency
conditions,

ÛZN
eiT̂

ðgÞ
a ¼ eiT̂

ðgÞ
a ÛZN

; ÛZN0e
iT̂ðgÞ

a ¼ eiT̂
ðgÞ
a ÛZN0 : (61)

Moreover, the compatibility between the ZN and ZN0 shift
operators leads to the extra consistency condition,

ÛZN
ÛZN0 ¼ ÛZN0 ÛZN

: (62)

From Eq. (61), we obtain the conditions

Mð1Þ ¼ t1N; Mð2Þ ¼ t2
NN0

d2
; Mð3Þ ¼ t03N

0; (63)

where each of t1, t2, and t
0
3 is some integer and d2 is the gcd

of N and N0. From Eq. (62), we obtain the additional con-
straint,

s2M
ð2Þ

NN0 2 Z: (64)

Using Eq. (63), we can rewrite this constraint as

s2t2
d2

2 Z: (65)

When we define the gcd of s2 and d2 as �,
7 we obtain

s2 ¼ ~s2�; d2 ¼ ~d�; t2 ¼ ~t2 ~d; (66)

where each of ~s2 and~t2 is some integer and ~d is somepositive
integer. In the case of ðT2�T2�T2Þ=ðZN�ZN0 Þ, the formof

Mð2Þ, which is compatible with the consistency conditions,
can be rewritten as

Mð2Þ ¼ ~t2
NN0

�
: (67)

The physical states on ðT2 � T2 � T2Þ=ðZN � ZN0 Þ,
which are nothing but ZN- and ZN0-invariant states, can
be constructed as

7In the case of s2 ¼ 0, we define the gcd of 0 and d2 as d2.
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��������nð1Þ; nð2Þ; nð3Þ; j1

Mð1Þ ;
j2

Mð2Þ ;
j3

Mð3Þ

�
ðT2�T2�T2Þ=ðZN�ZN0 Þ

� N
XN�1

‘¼0

ðÛZN
Þ�‘

XN0�1

‘0¼0

ðUZN0 Þ�‘0
��������nð1Þ; nð2Þ; nð3Þ; j1

Mð1Þ ;
j2

Mð2Þ ;
j3

Mð3Þ

�
T2�T2�T2

¼ N
XN�1

‘¼0

XN0�1

‘0¼0

ei�‘
0s2ð2j2�ðN0�‘0Þs1t02Þ=N0

��������nð1Þ; nð2Þ; nð3Þ; j1 þ ‘dt1

Mð1Þ ;
j2 þ ‘t02 þ ‘0s1t002

Mð2Þ ;
j3 þ ‘0d0t03

Mð3Þ

�
T2�T2�T2

; (68)

where N is the normalization factor, t02 � ~t2N
0=� and

t002 � ~t2N=�.
Then we obtain the result that the number of degeneracy

in this system is given by

the number of degeneracy

¼ jMð1ÞMð2ÞMð3Þj
NN0 ¼ jt1~t2t03j

NN0

�
; (69)

which is a multiple of NN0=�. Hence, as a conclusion
similar to ðT2 � T2Þ=ZN , we would like to note that
the number of zero-mode fermions for ðT2�T2�T2Þ=
ðZN�ZN0 Þ is given by a multiple of N and N0. This result
leads to an important conclusion—that there is only one
possibility to derive the three generations of matter, i.e.,

ðN;N0;Mð1Þ;Mð2Þ;Mð3ÞÞ¼ ð3;3;3;3;3Þ on ðT2�T2�T2Þ=
ðZN�ZN0 Þ. We will show that this result coincides with
that of the analysis with wave functions.

In a similar way, we can consider the case of
ðT2 � T2 � T2Þ=ðZN � ZN0 � ZN00 Þ. For example, we as-
sume three discrete symmetries as

ZN: ðyð1Þ; yð2Þ; yð3ÞÞ �
�
yð1Þ þ 1

N
; yð2Þ þ 1

N
; yð3Þ

�
;

ZN0 : ðyð1Þ; yð2Þ; yð3ÞÞ �
�
yð1Þ; yð2Þ þ 1

N0 ; y
ð3Þ þ 1

N0

�
;

ZN00 : ðyð1Þ; yð2Þ; yð3ÞÞ �
�
yð1Þ þ 1

N00 ; y
ð2Þ; yð3Þ þ 1

N00

�
;

(70)

where each ofN,N0, andN00 is some integer. Then we obtain
the result that thenumber of degeneracy in this system is given
by (see Appendix B)

the number of degeneracy ¼ jMð1ÞMð2ÞMð3Þj
NN0N00

¼ jt1t2t3jNN0N00

d1d2d3
; (71)

where d1 is the gcd of N and N0, d2 is the gcd of N0 and N00,
and d3 is the gcd of N00 and N. We would also like to note
that there are only two possibilities to derive the three

generations of matter, i.e., ðN;N0; N00;Mð1Þ;Mð2Þ;Mð3ÞÞ ¼
ð3; 9; 3; 3; 9; 9Þ; ð3; 9; 9; 9; 9; 9Þ, up to the permutation of pa-
rameters for themagnitude of fluxes and the shift symmetries.
We will also show that this result coincides with that of the
analysis with wave functions.

III. WAVE FUNCTION ON SHIFTED ORBIFOLD
WITH MAGNETIC FLUX

In Sec. II, we considered the fields on shifted orbifolds
with magnetic flux by the operator formalism. Here we
reconsider it by analyzing wave functions explicitly be-
cause it is necessary to calculate some physical quantities,
e.g., Yukawa couplings and higher-order couplings [2,9].
We will see below that the results of the analysis with wave
functions coincide with results by the operator formalism.

A. Review of the Uð1Þ gauge theory on T2

1. Magnetic flux quantization

First, we review the Uð1Þ gauge theory on the
two-dimensional torus with magnetic flux.8 Here, it is
convenient to use the complex coordinate z ¼ y1 þ iy2,
�z ¼ y1 � iy2 instead of the vector notation y ¼ ðy1; y2ÞT in
order to write wave functions explicitly. They satisfy the
identification z� zþ 1� zþ �ð� 2 C; Im� > 0Þ on T2.9

Similarly, we make use of the complex basis for the vector
potential as

Az ¼ 1

2
ðAy1 � iAy2Þ; A�z ¼ 1

2
ðAy1 þ iAy2Þ: (72)

For the nonzero magnetic flux b on T2, we can write that
b ¼ R

T2 F by the field strength

F ¼ ib

2Im�
dz ^ d�z: (73)

For F ¼ dA, the vector potential A can be written as

Aðz; �zÞ ¼ b

2Im�
Im½ð�zþ �aÞdz� � Azðz; �zÞdzþ A�zðz; �zÞd�z;

(74)

where að2 CÞ is a Wilson line phase. From Eq. (74), we
obtain

8This subsection is based on Ref. [2].
9For convenience, we choose ð1; �Þ as two circumferences of

the two-dimensional torus.
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Aðzþ 1; �zþ 1Þ ¼ Aðz; �zÞ þ b

2Im�
Imdz

� Aðz; �zÞ þ d�1ðz; �zÞ;
Aðzþ �; �zþ ��Þ ¼ Aðz; �zÞ þ b

2Im�
Imð ��dzÞ

� Aðz; �zÞ þ d�2ðz; �zÞ; (75)

where10

�1ðz; �zÞ ¼ b

2Im�
Imðzþ aÞ;

�2ðz; �zÞ ¼ b

2Im�
Imð ��ðzþ aÞÞ:

(76)

Moreover, let us consider a field �ðz; �zÞ with the Uð1Þ
charge q on T2. We require the Lagrangian density L to
be single-valued as

LðAðz; �zÞ;�ðz; �zÞÞ ¼ LðAðzþ 1; �zþ 1Þ;�ðzþ 1; �zþ 1ÞÞ
¼ LðAðzþ �; �zþ ��Þ;�ðzþ �; �zþ ��ÞÞ:

(77)

Then this field �ðz; �zÞ should satisfy the pseudoperiodic
boundary conditions,

�ðzþ 1; �zþ 1Þ ¼ eiq�1ðz;�zÞ�ðz; �zÞ;
�ðzþ �; �zþ ��Þ ¼ eiq�2ðz;�zÞ�ðz; �zÞ:

(78)

From these, the consistency of the contractible loops, e.g.,
z ! zþ 1 ! zþ 1þ � ! zþ � ! z, requires the mag-
netic flux quantization condition,

qb

2�
� M 2 Z: (79)

2. Zero-mode solutions of a fermion

Here we consider zero-mode solutions of a fermion
c ðz; �zÞ on T2 withmagnetic flux, which satisfy the equationX

a¼z;�z

�að@a � iqAaÞc ðz; �zÞ ¼ 0; (80)

where

@z ¼ 1

2
ð@y1 � i@y2Þ; @�z ¼ 1

2
ð@y1 þ i@y2Þ;

�z ¼ �1 þ i�2 ¼ �1 þ i�2 ¼ 0 2

0 0

 !
;

��z ¼ �1 � i�2 ¼ �1 � i�2 ¼ 0 0

2 0

 !
:

(81)

Then we can write c ðz; �zÞ as a two-component spinor,

c ðz; �zÞ ¼ cþðz; �zÞ
c�ðz; �zÞ

 !
; (82)

and Eq. (80) can be decomposed as�
@�z þ �M

2Im�
ðzþ aÞ

�
cþðz; �zÞ ¼ 0;�

@z � �M

2Im�
ð�zþ �aÞ

�
c�ðz; �zÞ ¼ 0:

(83)

The fields c�ðz; �zÞ should obey the conditions (78), i.e.,

c�ðzþ 1; �zþ 1Þ ¼ eiq�1ðz;�zÞc�ðz; �zÞ;
c�ðzþ �; �zþ ��Þ ¼ eiq�2ðz;�zÞc�ðz; �zÞ:

(84)

From Eqs. (83) and (84), we find that for M> 0ðM< 0Þ
only cþðc�Þ has solutions. Their zero-mode wave
functions are given by

c j
þðz; �zÞ ¼ N ei�MðzþaÞImðzþaÞ

Im�

� #
j
M

0

" #
ðMðzþ aÞ;M�Þ for M> 0; (85)

c j�ðz; �zÞ ¼ N ei�Mð�zþ �aÞImð�zþ �aÞ
Im��

� #
j
M

0

" #
ðMð�zþ �aÞ;M ��Þ for M< 0; (86)

where j ¼ 0; 1; . . . ; jMj � 1 and N is the normalization
factor. Here the # function is defined by

#
a
b

� 	
ð�; �Þ ¼ X

l2Z

ei�ðaþlÞ2�e2�iðaþlÞð�þbÞ; (87)

with the properties

#
a

b

" #
ð�þ n; �Þ ¼ e2�ian#

a

b

" #
ð�; �Þ;

#
a

b

" #
ð�þ n�; �Þ ¼ e�i�n2��2�inð�þbÞ#

a

b

" #
ð�; �Þ;

(88)

where a and b are real numbers, � and � are complex
numbers, and Im� > 0.

B. Uð1Þ gauge theory on T2=ZN

Next, we investigate the Uð1Þ gauge theory on
T2=ZN with magnetic flux, in which the ZN shifted orbi-
folding satisfies the identification z� zþ emn

N ðemn
N �

ðmþ n�Þ=N;m; n 2 ZÞ. Here we consider a general ZN

shift emn
N for convenience of practical computations,

although we could take, say, ðm; nÞ ¼ ð1; 0Þ without any
loss of generality as in Eq. (21). From Eq. (74), we obtain

10For b � 0, the general functions of �1ðz; �zÞ and �2ðz; �zÞ can
be written as �1ðz; �zÞ ¼ b

2Im� Imðzþ aÞ þ �	1

q , �2ðz; �zÞ ¼
b

2Im� Imð ��ðzþ aÞÞ þ �	2

q , where 	1 and 	2 are real numbers.

We can always make 	i absorbed into the Wilson line phase a by
the redefinition of fields. (See Appendix C.)
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Aðzþ emn
N ; �zþ �emn

N Þ ¼ Aðz; �zÞ þ �M

qIm�
Imð �emn

N dzÞ
� Aðz; �zÞ þ d�Nðz; �zÞ: (89)

Then we define the physical state �ðz; �zÞ which is consis-
tent with Eqs. (78) and (89) as

�ðzþ emn
N ; �zþ �emn

N Þ ¼ eiq�Nðz;�zÞ�ðz; �zÞ; (90)

�Nðz; �zÞ ¼ m

N
�1ðz; �zÞ þ n

N
�2ðz; �zÞ þ �	N

q
; (91)

where 	N is some real number and is determined below.
For Eq. (90) to be consistent with Eq. (78), we find the
relation

eiqN�Nðz; �zÞ ¼ eiqðm�1ðz;�zÞþn�2ðz;�zÞÞei�mnM: (92)

It follows that 	N can be determined as 	N ¼ mnM=N.
Then the consistency of the contractible loops, e.g.,
z ! zþ 1 ! zþ 1þ emn

N ! zþ 1þ �þ emn
N ! zþ �þ

emn
N ! zþ emn

N ! z, requires additional conditions
such as11

mM

N
;

nM

N
2 Z: (93)

Since N has to be relatively prime with the gcd of m and n
for emn

N to represent a ZN shift symmetry, the conditions
(93) lead to the magnetic flux quantization condition,

M ¼ tN; (94)

where t is some integer. We note that this result agrees
with Eq. (25), even though in Sec. II A 2, the magnetic flux
quantization condition was derived for a special case
of the identification (21), which may correspond to
ðm; nÞ ¼ ð1; 0Þ.

Furthermore, we consider zero-mode fermions c j
�ðz; �zÞ.

It follows from Eqs. (85) and (86) that c j
�ðz; �zÞ satisfy the

equations,

c j
�ðzþ ‘emn

N ; �zþ ‘ �emn
N Þ

¼ eiq‘�Nðz;�zÞei�‘mð2j�ðN�‘ÞntÞ=Nc jþ‘nt
� ðz; �zÞ; (95)

where ‘ is any integer and �Nðzþ emn
N ; �zþ �emn

N Þ ¼
�Nðz; �zÞ. Since c j

�ðz; �zÞ do not, in general, satisfy the
physical state condition (90) on T2=ZN , we may need to
take appropriate linear combinations of them. For example,
when ðm; nÞ ¼ ð0; 1Þ, we obtain

c j
�
�
zþ �‘

N
; �zþ ��‘

N

�
¼ eiq‘�Nðz;�zÞc jþ‘t

� ðz; �zÞ; (96)

so the physical states �j
�ðz; �zÞ are given by

�j
�ðz; �zÞ ¼

1ffiffiffiffi
N

p XN�1

‘¼0

e�iq‘�NðzÞc j
�
�
zþ �‘

N
; �zþ ��‘

N

�

¼ 1ffiffiffiffi
N

p XN�1

‘¼0

c jþ‘t
� ðz; �zÞ; (97)

where j ¼ 0; 1; . . . ; jtj � 1. We can check that these

�j
�ðz; �zÞ indeed satisfy Eq. (90). When ðm; nÞ ¼ ð1; 0Þ,

we obtain

c j
�
�
zþ ‘

N
; �zþ ‘

N

�
¼ eiq‘�Nðz;�zÞe2�ij‘=Nc j

�ðz; �zÞ; (98)

so the physical states �j
�ðz; �zÞ are given by

�j
�ðz; �zÞ ¼

1

N

XN�1

‘¼0

e�iq‘�Nðz;�zÞc j
�
�
zþ ‘

N
; �zþ ‘

N

�

¼ 1

N

XN�1

‘¼0

e2�ij‘=Nc j
�ðz; �zÞ

¼
�
c j

�ðz; �zÞ ðj � 0modNÞ
0 ðj 6�0modNÞ: (99)

We can check that these �j
�ðz; �zÞ satisfy Eq. (90).

For a general ZN shift emn
N , we can obtain the physical

states �j
�ðz; �zÞ, which satisfy Eq. (90), as

�j
�ðz; �zÞ ¼ N 0 XN�1

‘¼0

e�iq‘�Nðz;�zÞc j
�ðzþ ‘emn

N ; �zþ ‘ �emn
N Þ

¼ N 0 XN�1

‘¼0

ei�‘mð2j�ðN�‘ÞntÞ=Nc jþ‘nt
� ðz; �zÞ; (100)

where N 0 is the normalization factor. We note that we
cannot obtain any constraint on the number of zero-mode
fermions, i.e., the generation of matter in the standard
model, because the number of degeneracy t is a free
parameter.
Here, we comment briefly on couplings on T2=ZN . On

the two-dimensional torus, a generic L-point coupling
Cjð1Þ...jðLÞ in a four-dimensional low-energy effective field
theory is given by the overlap integral of zero-mode
functions [2,9],

Cjð1Þ...jðLÞ ¼ cjð1Þ...jðLÞ
Z
T2
d2zc jð1Þ . . . c jðLÞ ; (101)

where cjð1Þ...jðLÞ denotes the coupling in a higher-
dimensional field theory. Similarly, on the orbifold

T2=ZN , a generic L-point coupling C
jð1Þ...jðLÞ
orbifold is given as

C
jð1Þ...jðLÞ
orbifold ¼ cjð1Þ...jðLÞ

Z
T2=ZN

d2z�jð1Þ . . . �jðLÞ : (102)

Since the zero-mode wave functions �j are written by
linear combinations of c j, as shown in Eq. (100), the

coupling C
jð1Þ...jðLÞ
orbifold is written by a proper linear combination

11Actually, we find the consistency conditions ei�MðmNþn
NÞ ¼

e�i�MðmNþn
NÞ ¼ ei�MðmN�n

NÞ ¼ e�i�MðmN�n
NÞ, which lead to Eq. (93).

SHIFTED ORBIFOLD MODELS WITH MAGNETIC FLUX PHYSICAL REVIEW D 87, 086001 (2013)

086001-9



of Cjð1Þ...jðLÞ . Its extension to other orbifolds such as
ðT2 � T2Þ=ZN , ðT2 � T2 � T2Þ=ðZN � ZN0 Þ, and ðT2 �
T2 � T2Þ=ðZN � ZN0 � ZN00 Þ is also straightforward.

Although we have constructed the ZN-invariant wave

functions �j
�ðz; �zÞ as in Eq. (100), it is also worthwhile to

consider wave functions �
ðz; �zÞ with a ZN charge 
,
which is defined as

�
ðzþ emn
N ; �zþ �emn

N Þ ¼ !
eiq�Nðz;�zÞ�
ðz; �zÞ; (103)

where 
 is some integer and ! � e2�i=N . Then, in a way

similar to Eq. (100), the wave functions �j
�;
ðz; �zÞ satisfy-

ing Eq. (103) can be constructed from c j
�ðz; �zÞ and are

given by

�j
�;
ðz; �zÞ

¼N 0 XN�1

‘¼0

!�‘
e�iq‘�Nðz;�zÞc j
�ðzþ ‘emn

N ; �zþ ‘ �emn
N Þ

¼N 0 XN�1

‘¼0

ei�‘mð2j�ðN�‘ÞntÞ=Ne�2�i‘
=Nc jþ‘nt
� ðz; �zÞ:

(104)

C. Uð1Þ gauge theory on ðT2 � T2Þ=ZN

In a similar way, we consider the Uð1Þ gauge theory on

ðT2 � T2Þ=ZN with magnetic flux. Let us define zð1Þ and
zð2Þ as the complex coordinates for each torus with the

identifications zðgÞ � zðgÞ þ 1� zðgÞ þ �ðgÞ. When there

are nonzero magnetic fluxes bð1Þ and bð2Þ on T2 � T2, we

can write that bðgÞ ¼ R
T2ðgÞ FðgÞ by the field strengths,

FðgÞ ¼ ibðgÞ

2Im�ðgÞ
dzðgÞ ^ d�zðgÞ; ðg ¼ 1; 2Þ: (105)

For FðgÞ ¼ dAðgÞ, the vector potentials AðgÞ can be
written as12

AðgÞðzðgÞÞ ¼ bðgÞ

2Im�ðgÞ
Im½ð�zðgÞ þ �aðgÞÞdzðgÞ�

� AðgÞ
zðgÞ ðzðgÞÞdzðgÞ þ AðgÞ

�zðgÞ ðzðgÞÞd�zðgÞ; (106)

where aðgÞð2 CÞ are Wilson line phases. From Eq. (106),
we obtain

AðgÞðzðgÞ þ 1Þ ¼ AðgÞðzðgÞÞ þ bðgÞ

2Im�ðgÞ
ImdzðgÞ

� AðgÞðzðgÞÞ þ d�ðgÞ
1 ðzðgÞÞ;

AðgÞðzðgÞ þ �ðgÞÞ ¼ AðgÞðzðgÞÞ þ bðgÞ

2Im�ðgÞ
Imð ��ðgÞdzðgÞÞ

� AðgÞðzðgÞÞ þ d�ðgÞ
2 ðzðgÞÞ; (107)

where

�ðgÞ
1 ðzðgÞÞ ¼ bðgÞ

2Im�ðgÞ
ImðzðgÞ þ aðgÞÞ;

�ðgÞ
2 ðzðgÞÞ ¼ bðgÞ

2Im�ðgÞ
Imð ��ðgÞðzðgÞ þ aðgÞÞÞ:

(108)

Let us next consider a field �ðzð1Þ; zð2ÞÞ with the Uð1Þ
charge q on T2 � T2. For the Lagrangian density to be
single-valued on T2 � T2, we require that the field

�ðzð1Þ; zð2ÞÞ satisfies the pseudoperiodic boundary
conditions,

�ðzð1Þ þ 1; zð2ÞÞ ¼ eiq�
ð1Þ
1
ðzð1ÞÞ�ðzð1Þ; zð2ÞÞ;

�ðzð1Þ þ �ð1Þ; zð2ÞÞ ¼ eiq�
ð1Þ
2
ðzð1ÞÞ�ðzð1Þ; zð2ÞÞ;

�ðzð1Þ; zð2Þ þ 1Þ ¼ eiq�
ð2Þ
1
ðzð2ÞÞ�ðzð1Þ; zð2ÞÞ;

�ðzð1Þ; zð2Þ þ �ð2ÞÞ ¼ eiq�
ð2Þ
2
ðzð2ÞÞ�ðzð1Þ; zð2ÞÞ:

(109)

The compatibility of the conditions (109) with any con-
tractible loops requires the magnetic flux quantization
conditions,

qbð1Þ

2�
� Mð1Þ;

qbð2Þ

2�
� Mð2Þ 2 Z: (110)

Moreover, we consider ðT2 � T2Þ=ZN to impose a
ZN shift symmetry on T2 � T2 with the additional identi-

fication ðzð1Þ; zð2ÞÞ � ðzð1Þ þ em1n1
N ; zð2Þ þ em2n2

N Þ. For the
Lagrangian density to be single-valued on ðT2 � T2Þ=ZN,

we define �ðzð1Þ; zð2ÞÞ following Eq. (109) as

�ðzð1Þ þ em1n1
N ; zð2Þ þ em2n2

N Þ
¼ eiqð�

ð1Þ
N ðzð1ÞÞþ�ð2Þ

N ðzð2ÞÞÞ�ðzð1Þ; zð2ÞÞ; (111)

�ðgÞ
N ðzðgÞÞ ¼ mg

N
�ðgÞ
1 ðzðgÞÞ þ ng

N
�ðgÞ
2 ðzðgÞÞ þ �	ðgÞ

N

q
; (112)

where 	ðgÞ
N are some real numbers. For Eq. (111) to be

consistent with Eq. (109), we find the relation

eiqNð�ð1Þ
N ðzð1ÞÞþ�ð2Þ

N ðzð2ÞÞÞ ¼ Y
g¼1;2

eiqðmg�
ðgÞ
1
ðzðgÞÞþng�

ðgÞ
2
ðzðgÞÞÞ

� ei�mgngM
ðgÞ
; (113)

which determines the values of 	ðgÞ
N to be 	ðgÞ

N ¼
mgngM

ðgÞ=N. Then the consistency of the contractible

loops requires the additional magnetic flux quantization
conditions,

m1M
ð1Þ

N
;

n1M
ð1Þ

N
;

m2M
ð2Þ

N
;

n2M
ð2Þ

N
2 Z:

(114)

In the same way as T2=ZN, each of MðgÞ turns out to be a
multiple of N, i.e.,12From here we omit �zðgÞ such as AðgÞðzðgÞÞ,�ðzðgÞÞ, and c ðzðgÞÞ.
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Mð1Þ ¼ t1N; Mð2Þ ¼ t2N; (115)

where each of t1 and t2 is some integer. We note that this
result also agrees with Eq. (51) and the number of degen-
eracy is given by Eq. (53).

Next, we consider zero-mode solutions of a fermion

c ðzð1Þ; zð2ÞÞ on ðT2 � T2Þ=ZN, which satisfies the equation

X2
g¼1

X
a¼zðgÞ;�zðgÞ

�að@a � iqAðgÞ
a Þc ðzð1Þ; zð2ÞÞ ¼ 0; (116)

where

�zð1Þ ¼ 0 2

0 0

 !
� �0; ��zð1Þ ¼ 0 0

2 0

 !
� �0;

�zð2Þ ¼ �3 � 0 2

0 0

 !
; ��zð2Þ ¼ �3 � 0 0

2 0

 !
:

(117)

Then we can write c ðzð1Þ; zð2ÞÞ as a four-component spinor,

c ðzð1Þ; zð2ÞÞ ¼ c j1þðzð1ÞÞ
c j1�ðzð1ÞÞ

 !
� c j2þðzð2ÞÞ

c j2�ðzð2ÞÞ

 !

� ðc J
P ðzð1Þ; zð2ÞÞÞ; (118)

where P � ð�;�Þ, ð�;	Þ, and J � ðj1; j2Þ. For the same

reason as T2, depending on Mð1Þ + 0 and Mð2Þ + 0, only
one of c P is well defined, while the others cannot be
normalizable.

Furthermore, the zero-mode fermions c J
P ðzð1Þ; zð2ÞÞ are

constructed of c
jg
�ðzðgÞÞ on each torus, and from Eqs. (85)

and (86), c
jg
�ðzðgÞÞ satisfy the equations

c
jg
�ðzðgÞþ‘e

mgng
N Þ

¼eiq‘�
ðgÞ
N ðzðgÞÞei�‘mgð2jg�ðN�‘ÞngtgÞ=Nc jgþ‘ngtg

� ðzðgÞÞ; (119)

where ‘ is any integer and �ðgÞ
N ðzðgÞ þ e

mgng
N Þ ¼ �ðgÞ

N ðzðgÞÞ.
Then, since c J

P ðzð1Þ; zð2ÞÞ do not, in general, satisfy the

physical state condition (111) on ðT2 � T2Þ=ZN , we may
need to take appropriate linear combinations of them in

order to obtain the physical states �J
P ðzð1Þ; zð2ÞÞ. For ex-

ample, when ðm1; n1; m2; n2Þ ¼ ð0; 1; 0; 1Þ, the physical

states �J
P ðzð1Þ; zð2ÞÞ are given by

�J
P ðzð1Þ; zð2ÞÞ ¼

1ffiffiffiffi
N

p XN�1

‘¼0

c Jþ‘T
P ðzð1Þ; zð2ÞÞ; (120)

where J þ ‘T � ðj1 þ ‘t1; j2 þ ‘t2Þ and the number of

degeneracy of �J
P ðzð1Þ; zð2ÞÞ is jt1t2jN. When ðm1; n1;

m2; n2Þ ¼ ð1; 0; 1; 0Þ, the physical states �J
P ðzð1Þ; zð2ÞÞ are

given by

�J
P ðzð1Þ; zð2ÞÞ ¼

1

N

XN�1

‘¼0

e2�i‘ðj1þj2Þ=Nc J
P ðzð1Þ; zð2ÞÞ

¼
�
c J

P ðzð1Þ; zð2ÞÞ ððj1 þ j2Þ � 0modNÞ
0 ððj1 þ j2Þ 6�0modNÞ;

(121)

where the number of degeneracy of�J
P ðzð1Þ; zð2ÞÞ is jt1t2jN.

In the same way, for a general ZN shift e
mgng
N , the

physical states �J
P ðzð1Þ; zð2ÞÞ, which satisfy Eq. (111), are

given by

�J
P ðzð1Þ;zð2ÞÞ

¼N 0 XN�1

‘¼0

Y
g¼1;2

ei�‘mgð2jg�ðN�‘ÞngtgÞ=Nc
Jþ‘Tn1n2

P ðzð1Þ;zð2ÞÞ;

(122)

where N 0 is the normalization factor and J þ ‘Tn1n2 �ðj1 þ ‘n1t1; j2 þ ‘n2t2Þ.
We would like to notice that the number of zero-mode

fermions for ðT2 � T2Þ=ZN is given by a multiple of N,
while it can be an arbitrary integer for T2=ZN . This result
coincides with that of the operator formalism and leads to
an important conclusion that there is only one possibility
to derive the three generations of matter, i.e.,

ðN;Mð1Þ;Mð2ÞÞ ¼ ð3; 3; 3Þ on ðT2 � T2Þ=ZN . Moreover, in
a case of ðT2 � T2Þ=ZN � T2, we obtain only one condi-
tion delivering the three generations of matter such as

ðN;Mð1Þ;Mð2Þ;Mð3ÞÞ ¼ ð3; 3; 3; 1Þ.
Furthermore, it is also worthwhile to consider wave

functions �
ðzð1Þ; zð2ÞÞ with a ZN charge 
, which is de-
fined by

�
ðzð1Þ þ em1n1
N ; zð2Þ þ em2n2

N Þ
¼ !
eiqð�

ð1Þ
N ðzð1ÞÞþ�ð2Þ

N ðzð2ÞÞÞ�
ðzð1Þ; zð2ÞÞ; (123)

where 
 is some integer and ! � e2�i=N . Then the wave

functions �J
P ;
ðzð1Þ; zð2ÞÞ satisfying Eq. (123) can be con-

structed from c
jg
�ðzðgÞÞ and are given by

�J
P ;
ðzð1Þ; zð2ÞÞ

¼ N 0 XN�1

‘¼0

Y
g¼1;2

ei�‘mgð2jg�ðN�‘ÞngtgÞ=Ne�2�i‘
=N

� c
Jþ‘Tn1n2

P ðzð1Þ; zð2ÞÞ: (124)

D. Uð1Þ gauge theory on ðT2 � T2 � T2Þ=ðZN � ZN0Þ
In a way similar to the case of ðT2 � T2Þ=ZN , we con-

sider the Uð1Þ gauge theory on ðT2�T2�T2Þ=ðZN�ZN0 Þ
with magnetic flux. Here we leave out the full analysis and
discuss some points. We impose the ZN shift symmetry on
the first and second tori, which relates the first torus with
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the second one as ðzð1Þ; zð2Þ; zð3ÞÞ � ðzð1Þ þ em1n1
N ; zð2Þ þ

em2n2
N ; zð3ÞÞ. On the other hand, we impose the ZN0 shift
symmetry on the second and third tori, which relates the

second torus with the third one as ðzð1Þ; zð2Þ; zð3ÞÞ �
ðzð1Þ; zð2Þ þ e

m0
2n

0
2

N0 ; zð3Þ þ e
m0

3n
0
3

N0 Þ. In this case, for the

Lagrangian density to be single-valued, the pseudoperiodic

boundary conditions of the physical states �ðzð1Þ; zð2Þ; zð3ÞÞ
with the Uð1Þ charge q are given by

�ðzð1Þ þ em1n1
N ; zð2Þ þ em2n2

N ; zð3ÞÞ
¼ eiqð�

ð1Þ
N ðzð1ÞÞþ�ð2Þ

N ðzð2ÞÞÞ�ðzð1Þ; zð2Þ; zð3ÞÞ; (125)

�ðgÞ
N ðzðgÞÞ ¼ mg

N
�ðgÞ
1 ðzðgÞÞ þ ng

N
�ðgÞ
2 ðzðgÞÞ þ �	ðgÞ

N

q
; (126)

�ðzð1Þ; zð2Þ þ e
m0

2n
0
2

N0 ; zð3Þ þ e
m0

3n
0
3

N0 Þ
¼ e

iqð�ð2Þ
N0 ðzð2ÞÞþ�ð3Þ

N0 ðzð3ÞÞÞ�ðzð1Þ; zð2Þ; zð3ÞÞ; (127)

�ðg0Þ
N0 ðzðg0ÞÞ ¼

m0
g0

N0 �
0ðg0Þ
1 ðzðg0ÞÞ þ n0g0

N0 �
0ðg0Þ
2 ðzðg0ÞÞ þ �	0ðg0Þ

N0

q
;

(128)

with the relations

eiqNð�ð1Þ
N ðzð1ÞÞþ�ð2Þ

N ðzð2ÞÞÞ ¼ Y
g¼1;2

eiqðmg�
ðgÞ
1
ðzðgÞÞþng�

ðgÞ
2
ðzðgÞÞÞ

� ei�mgngM
ðgÞ
; (129)

e
iqN0ð�ð2Þ

N0 ðzð2ÞÞþ�ð3Þ
N0 ðzð3ÞÞÞ ¼ Y

g0¼2;3

e
iqðm0

g0�
0ðg0 Þ
1

ðzðg0 ÞÞþn0
g0�

0ðg0Þ
2

ðzðg0 ÞÞÞ

� e
i�m0

g0n
0
g0M

ðg0Þ
; (130)

where g ¼ 1, 2, g0 ¼ 2, 3, 	ðgÞ
N ¼ mgngM

ðgÞ=N, and

	0ðg0Þ
N0 ¼ m0

g0n
0
g0M

ðg0Þ=N0. Then the consistency of the con-

tractible loops requires the magnetic flux quantization
conditions,

mgM
ðgÞ

N
;

ngM
ðgÞ

N
;

m0
g0M

ðg0Þ

N0 ;
n0g0M

ðg0Þ

N0 2 Z:

(131)

From these conditions, each of Mð1Þ, Mð2Þ, and Mð3Þ turns
out to be a multiple of N and/or N0, i.e.,

Mð1Þ ¼ t1N; Mð2Þ ¼ t2N ¼ t02N0; Mð3Þ ¼ t03N0;
(132)

where each of tg and t0g0 is some integer. Defining d as the

gcd of N and N0, we obtain N � ~nd and N0 � ~n0d, where
each of ~n and ~n0 is some positive integer and ~n is relatively
prime with ~n0. Since t2N ¼ t02N0, we obtain the relation

t2~n ¼ t02~n
0. When j~tj is defined as the gcd of t2 and t02, we

can rewrite t1 and t2 as t2 ¼ ~n0~t and t02 ¼ ~n~t , respectively.
Namely, we obtain

Mð2Þ ¼ ~t
NN0

d
: (133)

If ~d is defined as the gcd of ~t and d, we obtain the same
equation as Eq. (67),

Mð2Þ ¼ ~t2
NN0

�
; (134)

where each of ~t2 and � is some positive integer, ~t ¼ ~t2 ~d and

d ¼ �~d. We note that this result also agrees with Eq. (67)
and the number of degeneracy is given by Eq. (69).
In a way similar to the case of ðT2 � T2Þ=ZN , we also

consider zero-mode solutions of a fermion c ðzð1Þ; zð2Þ; zð3ÞÞ
on ðT2 � T2 � T2Þ=ðZN � ZN0 Þ, which satisfies the
equation

X3
g¼1

X
a¼zðgÞ;�zðgÞ

�að@a � iqAðgÞ
a Þc ðzð1Þ; zð2Þ; zð3ÞÞ ¼ 0; (135)

where

�zð1Þ ¼ 0 2

0 0

 !
� �0 � �0;

��zð1Þ ¼ 0 0

2 0

 !
� �0 � �0;

�zð2Þ ¼ �3 � 0 2

0 0

 !
� �0;

��zð2Þ ¼ �3 � 0 0

2 0

 !
� �0;

�zð3Þ ¼ �3 � �3 � 0 2

0 0

 !
;

��zð3Þ ¼ �3 � �3 � 0 0

2 0

 !
:

(136)

Then we can write c ðz1; z2; z3Þ as an eight-component
spinor,

c ðzð1Þ;zð2Þ;zð3ÞÞ¼ c j1þðzð1ÞÞ
c j1�ðzð1ÞÞ

 !
� c j2þðzð2ÞÞ

c j2�ðzð2ÞÞ

 !
� c j3þðzð3ÞÞ

c j3�ðzð3ÞÞ

 !

�ðc J
P ðzð1Þ;zð2Þ;zð3ÞÞÞ; (137)

where P � ð�;�;�Þ, ð�;�;	Þ, ð�;	;�Þ,ð	;�;�Þ,
and J � ðj1; j2; j3Þ. For the same reason as T2, depending

on Mð1Þ + 0, Mð2Þ + 0 and Mð3Þ + 0, only one of eight
fields of c P is well defined, while the others cannot be
normalizable.
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Moreover, the zero-mode fermions c J
P ðzð1Þ; zð2Þ; zð2ÞÞ are

also constructed of c
jg
�ðzðgÞÞ on each torus, and from

Eqs. (85) and (86), c
jg
�ðzðgÞÞ satisfy Eq. (119). Then, since

c J
P ðzð1Þ; zð2Þ; zð3ÞÞ do not, in general, satisfy the physical

state conditions (125) and (127) on ðT2 � T2 � T2Þ=
ðZN � ZN0 Þ, we may need to take appropriate linear com-
binations of them in order to obtain the physical states

�J
P ðzð1Þ; zð2Þ; zð3ÞÞ. Thus, the physical states are given by

�J
P ðzð1Þ; zð2Þ; zð3ÞÞ ¼ N 0 XN�1

‘¼0

Y
g¼1;2

ei�‘mgð2jg�ðN�‘ÞngtgÞ=N
XN0�1

‘0¼0

Y
g0¼2;3

e
i�‘0m0

g0 ð2jg0�ðN0�‘0Þn0
g0 t

0
g0 Þ=N0

c
Jþ‘Tn1n2

þ‘0T0
n0
2
n0
3

P ðzð1Þ; zð2Þ; zð3ÞÞ;

(138)

where N 0 is the normalization factor, Tn1n2 �ðn1t1; n2t2; 0Þ and T0
n02n

0
3
� ð0; n02t02; n03t03Þ.

As a conclusion similar to ðT2 � T2Þ=ZN , we would
like to note that the number of zero-mode fermions for
ðT2 � T2 � T2Þ=ðZN � ZN0 Þ is given by a multiple of N
and N0. This result leads to an important conclusion—that
there is only one possibility to derive the three generations

of matter, i.e., ðN;N0;Mð1Þ;Mð2Þ;Mð3ÞÞ ¼ ð3; 3; 3; 3; 3Þ on
ðT2 � T2 � T2Þ=ðZN � ZN0 Þ. Furthermore, we consider the
case of ðT2 � T2 � T2Þ=ðZN � ZN0 � ZN00 Þ, which also im-
poses the additional ZN00 shift symmetry on the first and

third tori, which relates the first torus with the third one as

ðzð1Þ; zð2Þ; zð3ÞÞ � ðzð1Þ þ e
m00

1
n00
1

N00 ; zð2Þ; zð3Þ þ e
m00

3
n00
3

N00 Þ. Then, we
obtain an important conclusion that there are only
two possibilities for deriving the three generations of

matter, i.e., ðN;N0; N00;Mð1Þ;Mð2Þ;Mð3ÞÞ ¼ ð3; 9; 3; 3; 9; 9Þ;
ð3; 9; 9; 9; 9; 9Þ, up to the permutation of parameters for the
magnitude of fluxes and the shift symmetries. (See
Appendix B.) These results coincide with that of the
operator formalism.
In the same way, the wave functions with ZN and ZN0

charges, 
 and 
0, are given by

�J
P

0 ðzð1Þ; zð2Þ; zð3ÞÞ ¼ N 0 XN�1

‘¼0

Y
g¼1;2

ei�‘mgð2jg�ðN�‘ÞngtgÞ=Ne�2�i‘
=N

� XN0�1

‘0¼0

Y
g0¼2;3

e
i�‘0m0

g0 ð2jb�ðN0�‘0Þn0
g0 t

0
g0 Þ=N0

e�2�i‘0
0=N0
c

Jþ‘Tn1n2
þ‘0T0

n0
2
n0
3

P ðzð1Þ; zð2Þ; zð3ÞÞ; (139)

where each of 
 and 
0 is some integer.

E. Flavor structure

Here we study the flavor structure in shifted orbifold models with magnetic fluxes. First we give a brief review on the
torus models [10]. As seen in Sec. III A, ifM> 0, the number of zero modes is equal toM on T2, and those wave functions

are written by c j
þ (j ¼ 0; . . . ;M� 1) in Eq. (85). Each mode has the ZM charge j, which corresponds to the quantized

coordinate or momentum in terms of ~̂Y and ~̂P. Such ZM transformation is represented on

ð c j Þ ¼

c 0

c 1

..

.

cM�1

0
BBBBBB@

1
CCCCCCA (140)

by

Z ¼

1

�

�2

. .
.

�M�1

0
BBBBBBBBB@

1
CCCCCCCCCA
; (141)

where � ¼ e2�i=M. They also have another symmetry under the cyclic permutation,
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c j ! c jþ1; (142)

where cM ¼ c 0. This cyclic permutation ZðCÞ
M is repre-

sented on the multiplet (140) by

C ¼

0 1 0 � � � 0

0 0 1 � � � 0

. .
.

0 0 0 � � � 1

1 0 0 � � � 0

0
BBBBBBBBB@

1
CCCCCCCCCA
: (143)

These generators, Z and C, are not commutable but satisfy
the following algebraic relation,13

CZ ¼ �ZC: (144)

Hence, the flavor symmetry including Z and C is a non-
Abelian symmetry. Its diagonal elements are written by
ZmðZ0Þn with m, n ¼ 0; . . . ;M� 1, where

Z0 ¼
�

. .
.

�

0
BB@

1
CCA (145)

on the multiplet (140). Then, this flavor symmetry would
correspond to ðZM � Z0

MÞ 2ZðCÞ
M on T2 (see for review on

non-Abelian discrete flavor symmetries [28]).14

Suppose that each of three tori has the magnetic flux

corresponding toMðgÞ (g ¼ 1, 2, 3), whereMðgÞ > 0. Then,

there areMðgÞ zero modes on the gth torus. Their symmetry

is the direct product of
Q3

g¼1ðZMðgÞ � Z0
MðgÞ Þ 2ZðCÞ

MðgÞ . In order

to realize the three-generation models, we choose the

magnetic fluxes as ðMð1Þ;Mð2Þ;Mð3ÞÞ ¼ ð3; 1; 1Þ or their
permutations. In this model, only one torus, e.g., the first

torus for ðMð1Þ;Mð2Þ;Mð3ÞÞ ¼ ð3; 1; 1Þ is important to the
flavor structure. That is, the three generations of fermions
are quasilocalized at places different from each other on
the first torus, while those sit at the same places on the
other tori. Thus, the zero-mode profiles on the first torus are
important to realize the mass ratios between three gener-
ations, while the zero-mode profiles on the other tori are
relevant to the overall strength of Yukawa couplings. This

model has the flavor symmetry ðZ3 � Z0
3Þ 2ZðCÞ

3 isomorphic

to �ð27Þ.
It would be obvious that the T2=ZN model has a flavor

structure similar to the above. However, the ðT2 � T2Þ=ZN

model as well as the ðT2 � T2Þ=ZN � T2 model has a
different flavor structure. As an illustrating model, we
consider the ðT2 � T2Þ=Z3 model, which leads to the three

generations by choosing Mð1Þ ¼ Mð2Þ ¼ 3. Before the

Z3 shifted orbifolding, there appear the three zero modes

c jgðzðgÞÞ with g ¼ 1, 2 and jg ¼ 0, 1, 2 on each torus, and

a total of nine zero modes. They have the flavor symmetry

ðZ3 � Z0
3Þ 2ZðCÞ

3 on each torus, and the total symmetry is

their direct product.
By Z3 shift orbifolding with ðm1; n1; m2; n2Þ ¼

ð1; 0; 1; 0Þ corresponding to Eq. (121), only the three zero

modes c jðzð1ÞÞ � c 3�jðzð2ÞÞ with j ¼ 0, 1, 2 remain, but

the others c j1ðzð1ÞÞ � c j2ðzð2ÞÞ with j1 þ j2 � 0 (mod 3)
are projected out. Through orbifolding, the ZMð1Þ¼3 and

ZMð2Þ¼3 symmetries (141) on the first and second tori,

respectively, are broken into the diagonal Z3 one. The other

symmetries such as Z0
MðgÞ and Z

ðCÞ
MðgÞ are also broken into the

diagonal ones. Then, the flavor symmetry �ð27Þ � �ð27Þ
is broken into the diagonal one�ð27Þ. The flavor symmetry
itself is the same as one in the three-generation model on
T2 � T2 � T2 without shifted orbifolding. However, in the
three-generation model on ðT2 � T2Þ=Z3, the zero-mode
profiles of the three generations are localized at places
different from each other on both the first and second
tori. That is, both tori are relevant to the flavor structure
and mass ratios depend on geometrical aspects of both tori
such as complex structure moduli.
We have studied quite simple models so far.

Furthermore, the flavor structure of shifted orbifold models
can become richer in slightly extended models. Suppose
that there is an additionalUð1Þ gauge symmetry. We do not
introduce the magnetic flux background for the additional
Uð1Þ, but we embed Z3 shift orbifolding into this additional
Uð1Þ. That is, the fermion with the additional Uð1Þ charge
q0, which is an integer, has the phase e2�iq

0=3. In this case,
the zero modes, c jðz1Þ � c 3�jðz2Þ with j ¼ 0, 1, 2, do not
survive in the above model, but the zero modes, c jðz1Þ �
c 3�jþkðz2Þ with j ¼ 0, 1, 2 and k ¼ �q0, survive through
the Z3 shift orbifolding. The surviving number, i.e., 3, does
not change, but the combinations of surviving wave func-
tions depend on the Uð1Þ charge q0. Hence, the flavor
structure becomes rich. For example, when this charge q0
corresponds to the hypercharge, the three generations of
quarks and leptons have quite an interesting flavor struc-
ture. We will study such model building and its flavor
structure elsewhere.

IV. CONCLUSIONS

We have studied the Uð1Þ gauge theory on some shifted
orbifolds with magnetic flux and proposed a mechanism to
obtain the generation of matter in the standard model. On
the space, we consider the behavior of fermions in two
different means. One is the operator formalism for the
quantum mechanical system and the other is the wave
functions for the field theory. The operator formalism turns
out to be useful to analyze the general structure of the
spectrum. On the other hand, the wave function approach
becomes important for computing the four-dimensional

13The symmetry, which is called the magnetic translational
group, has been discussed in Refs. [5,27].
14Similar flavor symmetries are obtained, e.g., within the
framework of heterotic orbifold models [29].
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Yukawa coupling of phenomenological models on the
shifted orbifolds that we consider in this paper. We inves-
tigated the relations between the magnetic fluxes and the
number of degeneracy of zero-mode fermions in both
approaches and showed the results to be consistent with
each other.

Then we found that the number of degeneracy of zero-
mode fermions is related to N of ZN , that is, the geometry
of space such as ðT2 � T2Þ=ZN . Actually, while there
existed no constraint for the degeneracy of zero-mode
fermions on T2=ZN , we obtained the constraint on the
degeneracy of zero-mode fermions on ðT2 � T2Þ=ZN;
that is to say, the number of degeneracy of zero-mode
fermions is always a multiple of N.

This result is phenomenologically very important,
because we have a unique choice of ðN;M1;M2Þ ¼
ð3; 3; 3Þ if we want to construct a model deriving the three
generations of matter on M4 � ðT2 � T2Þ=ZN with the

magnetic fluxes ðMð1Þ;Mð2ÞÞ. In a similar way, we found
some candidates for the models to derive the three gener-
ations of matter in cases of ðT2 � T2 � T2Þ=ðZN � ZN0 Þ
and ðT2 � T2 � T2Þ=ðZN � ZN0 � ZN00 Þ. In the case
of ðT2 � T2 � T2Þ=ðZN � ZN0 Þ, the candidate to derive

the three generations of matter is that ðN;N0;Mð1Þ;
Mð2Þ;Mð3ÞÞ¼ ð3;3;3;3;3Þ. In the case of ðT2�T2�T2Þ=
ðZN�ZN0 �ZN00 Þ, the candidates to derive the three gen-

erations of matter are that ðN;N0;N00;Mð1Þ;Mð2Þ;Mð3ÞÞ¼
ð3;9;3;3;9;9Þ;ð3;9;9;9;9;9Þ up to the permutation of
parameters for the magnitude of fluxes and the shift sym-
metries. Thus, we may conclude that a very restricted class
of shifted orbifold models can produce the three genera-
tions of matter, in general.

We comment on the difference between the shifted
orbifold and the twisted orbifold. On the twisted orbifold,
there are fixed points. Thus, there is the degree of freedom
to put localized matter fields on the fixed points in the
twisted orbifold models with magnetic fluxes. There is no
such a degree of freedom in the shifted orbifold models,
because there is no fixed point. Hence, the spectrum of the
shifted orbifold models is completely determined by the
shift and magnetic fluxes.

For the three-generation models, the torus models with-
out shifted orbifolding and the shifted orbifold models
would lead to the same flavor symmetry, i.e., �ð27Þ.
However, while only one of the tori is relevant to the flavor
structure in the former, two or three tori are important to
the flavor structure in the latter. These behaviors would
lead to phenomenologically interesting aspects. We would
study realistic model building and its phenomenological
aspects elsewhere.

Our approach is a field-theoretical one. However, our
model building, shifted orbifold with magnetic fluxes may
be embedded into heterotic string or type II string theory.
Such a study would be quite important, but it is beyond our
scope.
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APPENDIX A: ZN SHIFTED ORBIFOLDING AND
BASIS TRANSFORMATION

In this Appendix, we discuss the general form of ZN

shifted orbifold and its transformation into the simple form
using a basis transformation of the torus bases. We can
define the T2=ZN shifted orbifold as the general identifi-
cation,

ZN: y� yþ 1

N
ðr1u1 þ r2u2Þ; (A1)

where N is some positive integer, and the gcd of the
integers r1 and r2, say r, is relatively prime with N.
However, a choice of lattice bases ðu1; u2Þ is not unique,
and we can take another lattice base ðu01; u02Þ using a
matrix U 2 SLð2;ZÞ as

u01
u02

� �
¼ U

u1
u2

� �
; (A2)

and a suitable choice of a new basis leads to the simple
shifted orbifold form like Eq. (21). Sincewe assumed that r
is the gcd of r1 and r2, both of them can be expressed as

r1 ¼ 	r; r2 ¼ �r; (A3)

where each of 	 and � is some integer. Since 	 and � are
relatively prime with each other, there exist some integers
� and � such that

	�� �� ¼ 1 for 9�; 9� 2 Z: (A4)

Constructing the SLð2;ZÞ matrix

U ¼ 	 �
� �

� �
; (A5)

we can take a new basis,

u01
u02

� �
¼ U

u1
u2

� �
; (A6)

in which the shifted orbifold (A1) is written as

ZN: y� yþ r

N
u01: (A7)

Since r and N are relatively prime with each other, they
satisfy
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pr� qN ¼ 1 for 9p; 9q 2 Z: (A8)

Using the above integer p, we can define the new
identification as

Z0
N: y� yþ pr

N
u1 � yþ 1

N
u1; (A9)

up to the torus identification.
In a similar way, we can define the ðT2 � T2Þ=ZN shifted

orbifold as the general identification

ZN: ðyð1Þ; yð2ÞÞ �
�
yð1Þ þ 1

N
ðr11uð1Þ1 þ r12u

ð1Þ
2 Þ; yð2Þ

þ 1

N
ðr21uð2Þ1 þ r22u

ð2Þ
2 Þ
�
; (A10)

where N is some positive integer, each of rgjðg; j ¼ 1; 2Þ is
some integer, and rðgÞ, which are defined as the gcd of rg1
and rg2; are relatively prime with N. Changing the lattice

bases like Eq. (A7), we can rewrite this identification as

ZN: ðyð1Þ; yð2ÞÞ �
�
yð1Þ þ rð1Þ

N
uð1Þ1 ; yð2Þ þ rð2Þ

N
uð2Þ1

�
: (A11)

We have to note that each of rðgÞ is relatively prime with
N, i.e.,

pgr
ðgÞ � qgN ¼ 1 for 9pg;

9qg 2 Z: (A12)

Using p2, we can put rð2Þ to 1 and define the new identi-
fication as

Z0
N: ðyð1Þ; yð2ÞÞ �

�
yð1Þ þ d

N
uð1Þ1 ; yð2Þ þ 1

N
uð2Þ1

�
; (A13)

where

d � p2r
ð1Þ > 0: (A14)

The above Z0
N shifted orbifolding is nothing but Eq. (47).

In the case of ðT2 � T2 � T2Þ=ðZN � ZN0 Þ, the situation
is a little bit different. For the ZN shifted orbifold, we can
apply the same argument which leads us to the simple
shifted orbifold,

ZN: ðyð1Þ; yð2Þ; yð3ÞÞ �
�
yð1Þ þ d

N
uð1Þ1 ; yð2Þ þ 1

N
uð2Þ1 ; yð3Þ

�
;

(A15)

where each of N and d is some positive integer and d is
relatively prime with N. However, for the ZN0 shifted
orbifold, we cannot apply the same argument at the same
time since we are unable to execute a basis transformation
for the second torus anymore. Because we already exe-
cuted a basis transformation for the second torus to sim-
plify the ZN shifted orbifold, we thus have to assume the
general form when we consider the ZN0 shifted orbifold.
However, for the third torus, we can still execute a basis
transformation which means that the ZN0 shifted orbifold is
given by

ZN0 : ðyð1Þ; yð2Þ; yð3ÞÞ �
�
yð1Þ; yð2Þ þ 1

N0 ðs1uð2Þ1 þ s2u
ð2Þ
2 Þ; yð3Þ

þ d0

N0 u
ð3Þ
1

�
; (A16)

where each of N0 and d0 is some positive integer and each
of s1 and s2 is some integer. When we define s0 as the gcd
of s1 and s2, the gcd of s

0 and d0 is relatively prime withN0.

APPENDIX B: THE DEGENERACYOF SPECTRUM
ON ðT2 � T2 � T2Þ=ðZN � ZN0 � ZN00Þ

We here discuss the degeneracy of the spectrum on
ðT2 � T2 � T2Þ=ðZN � ZN0 � ZN00 Þ shifted orbifold with
the identifications (70). We define N, N0 and N00 as

N � l1d12d13d123; N0 � l2d12d23d123;

N00 � l3d13d23d123; (B1)

where any pair of l1, l2, and l3 are relatively prime with
each other, d123 is the gcd ofN,N0, andN00, d12 is relatively
prime with each of l1, l2, and d123, d23 is relatively prime
with each of l2, l3, and d123, and d13 is relatively primewith
each of l1, l3, and d123. Since d1 is the gcd of N and N0, d2
is the gcd of N0 and N00, and d3 is the gcd of N00 and N, we
can rewrite d1, d2, and d3 as d1 ¼ d13d123, d2 ¼ d12d123,
and d3 ¼ d23d123, respectively. The magnitude of flux on
each torus turns out to be of the form

Mð1Þ ¼ t1l1l3d13d12d23d123;

Mð2Þ ¼ t2l1l2d13d12d23d123;

Mð3Þ ¼ t3l2l3d13d12d23d123;

(B2)

where each of t1, t2, and t3 is some integer. Then it follows
that the number of degeneracy is given by

jMð1ÞMð2ÞMð3Þj
NN0N00 ¼ jt1t2t3jNN0N00

d1d2d3
; (B3)

which is the result of Eq. (71). When we want to
construct ðT2 � T2 � T2Þ=ðZN � ZN0 � ZN00 Þ shifted
orbifold models with the three generations, there are only
two possibilities up to the permutation of parameters
for the magnitude of fluxes and the shift symmetries.

One is ðN;N0; N00;Mð1Þ;Mð2Þ;Mð3ÞÞ ¼ ð3; 9; 3; 3; 9; 9Þ on
t1 ¼ t2 ¼ t3 ¼ 1, l1 ¼ l3 ¼ d12 ¼ d13 ¼ d23 ¼ 1, and

l2 ¼ d123 ¼ 3. The other is ðN;N0; N00;Mð1Þ;Mð2Þ;Mð3ÞÞ ¼
ð3; 9; 9; 9; 9; 9Þ on t1 ¼ t2 ¼ t3 ¼ 1, l1 ¼ l2 ¼ l3 ¼ d12 ¼
d13 ¼ 1, and d23 ¼ d123 ¼ 3.

APPENDIX C: REDEFINITION OF FIELDS
AND �i PARAMETERS

We consider the relation between the redefinition of
fields Aðz; �zÞ and �ðz; �zÞ and 	ið2 RÞ parameters in
�iðz; �zÞ, which are given by
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�1ðz; �zÞ ¼ b

2Im�
Imðzþ aÞ þ �	1

q
;

�2ðz; �zÞ ¼ b

2Im�
Imð ��ðzþ aÞÞ þ �	2

q
:

(C1)

Let us redefine �ðz; �zÞ in Eq. (78), which has the Uð1Þ
charge q, by

�ðz; �zÞ � eiqReð ��zÞ ~�ðz; �zÞ; (C2)

where � is any complex number. With this the redefinition,
the covariant derivatives for � can be written by

ð@z � iqAzÞ�ðz; �zÞ ¼ eiqReð ��zÞð@z � iq ~AzÞ ~�ðz; �zÞ;
ð@�z � iqA�zÞ�ðz; �zÞ ¼ eiqReð ��zÞð@�z � iq ~A�zÞ ~�ðz; �zÞ:

(C3)

Here we defined ~Az and ~A�z as ~Az � Az � ��=2 and ~A�z �
A�z � �=2, respectively. Then the Wilson line phases of ~A
are given by ~a � a� �Im�=b.

We notice that under the transformation � ! ~� and

A ! ~A, the Lagrangian density L is invariant, i.e.,

LðA;�Þ ¼ Lð ~A; ~�Þ. Defining ~�i as

~�1ðz; �zÞ � �1ðz; �zÞ � Re�;

~�2ðz; �zÞ � �2ðz; �zÞ � Reð ���Þ;
(C4)

we can check that ~A and ~� with ~�i satisfy

~Aðzþ 1; �zþ 1Þ ¼ ~Aðz; �zÞ þ d~�1ðz; �zÞ;
~Aðzþ �; �zþ ��Þ ¼ ~Aðz; �zÞ þ d~�2ðz; �zÞ;
~�ðzþ 1; �zþ 1Þ ¼ eiq~�1ðz;�zÞ ~�ðz; �zÞ;
~�ðzþ �; �zþ ��Þ ¼ eiq~�2ðz;�zÞ ~�ðz; �zÞ:

(C5)

If we take � to satisfy �	1 � qRe� ¼ 0 and �	2 �
qReð ���Þ ¼ 0, we obtain ~a ¼ a� i�ð	1 ��þ 	2Þ=qb.
Thus, since we can take any �, we can always make
	i absorbed into the Wilson line phase a by the redefini-
tion of fields. This result can be applied in the multitorus
case.
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