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We derive an exact unified formula for all condensates (quark and monopole) in the hybrid r vacua in

N ¼ 2 supersymmetric QCD slightly deformed by a�A2 term. The gauge group is assumed to be UðNÞ
and the number of the quark flavors Nf subject to the condition N <Nf < 2N. In the r vacua, r quarks and

N � r� 1 monopoles from nonoverlapping subgroups of UðNÞ develop vacuum expectation values

(r < N). We then briefly review possible dynamical regimes (confinement, screening, and ‘‘instead of

confinement’’) in the hybrid r vacua in �-deformed N ¼ 2 supersymmetric QCD (the small-� limit).
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I. INTRODUCTION

The main goal of this paper is to derive a unified formula
for the quark and monopole vacuum condensates in an
arbitrary r vacuum in N ¼ 2 supersymmetric QCD
(SQCD) in terms of the roots of the Seiberg-Witten curve
[1]. Following Seiberg and Witten, we deform N ¼ 2
SQCD by a small mass term � for the adjoint field. We
will show that all the condensates reduce to effective
parameters �P,

�P ¼ �2
ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeP � eþN ÞðeP � e�N Þ

q
; (1.1)

where the subscript P ¼ 1; . . . ; N � 1 marks the appropri-
ate condensates (quark or monopole), e1; e2; . . . ; eN�1 are
the double roots of the Seiberg-Witten curve corresponding
to the quark and monopole condensation, and e�N are two
unpaired roots present in any r < N vacuum in the case
of the �TrA2 perturbation. If P lies in the interval ½1; r�,
Eq. (1.1) describes the quark vacuum expectation values
(VEVs) [2], while for rþ 1 � P � N � 1 it gives the
monopole VEVs.

For generic values of the quark masses, the theories
we discuss support Bogomol’nyi-Prasad-Sommerfield-
saturated non-Abelian magnetic strings [3–6]. These strings
confine monopoles. The tensions of these strings are [7,8]

TP ¼ 2�j�Pj; P ¼ 1; . . . ; r: (1.2)

For rþ 1 � P � N � 1 the same expression gives the
tensions of the Abelian electric strings, which confine
quarks. The value of the Pth condensate is �P=2 (see below
for a more precise definition).

Let us briefly outline our basic model (a more detailed
description and all relevant notation can be found in
our previous original publications [5,8] and the review
papers [7]).

The gauge group of N ¼ 2 SQCD under consideration
is UðNÞ. We introduce Nf quark flavors (N <Nf < 2N)

endowed with mass terms and then perturbN ¼ 2 SQCD
by a small mass term �A2 for the adjoint matter (part of
the N ¼ 2 gauge supermultiplet).

At generic quark masses, this theory has a number of
isolated vacua in which r flavors of (s)quarks condense,
r � N (the so-called r vacua). The r ¼ N vacuum, with the
maximal possible number of condensed quarks, was
studied more than others (for a review, see Ref. [7]).
Non-Abelian flux tubes (strings) confining monopoles
were shown to exist [3–6] in this vacuum; see
Refs. [7,9,10] for extensive reviews. Massless r vacua
with r < N were studied in Refs. [11,12] in the SUðNÞ
version of the theory.1

Extensions to UðNÞ were discussed recently for the
r > Nf=2 and, in particular, r ¼ N � 1 and r ¼ N cases

[2,13,14]. Confinement of monopoles at weak coupling
was demonstrated to survive in the strong coupling regime
at small values of the quark VEVs given by �=2��m
where m is a typical quark mass. The latter was described
in terms of the so-called r duality and was found to be an
‘‘instead-of-confinement’’ phase: the screened quarks de-
cay into monopole-antimonopole pairs with the monopoles
confined by non-Abelian strings. One of the results of
Ref. [2] was the expression for the quark condensates in
the low-energy theory in terms of the roots of the Seiberg-
Witten curve; see Eq. (1.1). In this paper we continue this
line of research and consider the monopole r ¼ 0 as well as
hybrid r vacua with r quarks and ðN � r� 1Þ monopoles
[from the orthogonal subgroups of UðNÞ] condensing.2

Equation (1.1) proves to be valid for all condensates in
all vacua. Although our derivation will be carried out in
particular examples, the assertion is universal.
The paper is organized as follows. In Sec. II we discuss

the r-vacuum structure and review Eq. (1.1) for r > Nf=2.

1If quark mass terms vanish, certain r vacua coalesce, and the
Higgs branches develop from the common roots. The r < N
vacua correspond to roots of the nonbaryonic Higgs branches,
while the r ¼ N vacuum corresponds to a root of the baryonic
Higgs branch in the SUðNÞ theory [11]. We consider nonvanish-
ing, nondegenerate quark masses.

2A certain aspect of the large-� limit was not quite adequately
treated in Ref. [2]. This will be corrected in a separate publica-
tion. In the present paper, we limit ourselves to the small-� limit.
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In Sec. III we present a detailed analysis of the monopole
(r ¼ 0) vacuum and derive Eq. (1.1) in this case. As a
byproduct we observe that Eq. (1.1) reproduces the famous
sine formula for the string tensions [15] in the limit of large
quark masses, for which the theory under consideration
reduces to pure gauge theory.3 Section IV is devoted to the
hybrid r vacua with r < Nf=2. Equation (1.1) for the quark

and monopole condensates is derived in certain examples.
Finally, Sec. VA presents an overall picture of confinement
and screening in the hybrid r vacua. In Sec. V we also
summarize various phases exhibiting themselves in differ-
ent r vacua. The appendix contains details pertinent to the
VEVs calculation in a hybrid vacuum.

II. �-DEFORMED SQCD: VACUUM STRUCTURE

A. The model

In the absence of deformation, the model under consid-
eration is N ¼ 2 SQCD with Nf massive quark hyper-

multiplets. We assume that Nf > N but Nf < 2N where N

refers to the gauge group, UðNÞ. The latter inequality
ensures our theory to be asymptotically free. In addition,
we will introduce a small mass term �A2 for the adjoint
matter breaking N ¼ 2 supersymmetry down to N ¼ 1.

The field content is as follows. In addition to the SUðNÞ
and U(1)N ¼ 2 gauge supermultiplets, we haveNf quark

multiplets consisting of the complex scalar fields qkA and
~qAk (squarks) and their fermion superpartners—all in the
fundamental representation of the SUðNÞ gauge group.
Here k ¼ 1; . . . ; N is the color index, while A is the flavor
index, A ¼ 1; . . . ; Nf. We will treat qkA and ~qAk as rectan-

gular matrices with N rows and Nf columns.

The superpotential of the undeformed theory is

WN¼2¼
ffiffiffi
2

p XNf

A¼1

�
1

2
~qAAqA

þ ~qAAaTaqAþmA~qAq
A

�
; (2.1)

whereA andAa are chiralN ¼1 superfields, theN ¼2
superpartners of the gauge bosons, while mA are the quark
mass terms. Then we add a single trace deformation

W br ¼ �Tr�2; (2.2)

where

� ¼ 1

2
Aþ TaAa; (2.3)

and Ta stand for the SUðNÞ generators. Generally speak-
ing, Eq. (2.2) breaks4 N ¼ 2 supersymmetry down to
N ¼ 1. We assume the deformation (2.2) to be weak,

j�j � �; (2.4)

where � is the scale of the N ¼ 2 theory. Thus, we
consider the theory close to its N ¼ 2 limit.

B. Vacua

The number of isolated r ¼ N vacua is

N r¼N ¼ CN
Nf

¼ Nf!

N!ðNf � NÞ! : (2.5)

This is the maximal number of quark fields that can de-
velop VEVs; see Ref. [7]. All gauge bosons are completely
Higgsed, and the theory is in the color-flavor locking phase
(assuming quark masses to be close to each other). The
quark VEVs are determined by �P’s (P ¼ 1; . . . ; N) of the
order of �mP. For large values of �, the theory is at weak
coupling and can be studied semiclassically. In particular,
non-Abelian strings that confine monopoles are known to
exist [3–6].
If we reduce �, the theory undergoes a crossover tran-

sition from a weak to strong coupling regime, described in
terms of a weakly coupled infrared-free dual theory [13]
with the Uð ~NÞ gauge group and Nf light quarklike dyon

flavors, ~N ¼ Nf � N. The dyon condensation leads to

confinement of monopoles too. The quarks and gauge
bosons of the original theory are in the instead-of-
confinement phase [2,13].
The number of the r vacua5 with r < N is [12]

N r<N ¼ XN�1

r¼0

ðN � rÞCr
Nf

¼ XN�1

r¼0

ðN � rÞ Nf!

r!ðNf � rÞ! ;

(2.6)

representing the number of choices one can pick up r
condensing quarks out ofNf quarks times the Witten index

in the classically unbroken SUðN � rÞ pure gauge theory.
Consider a particular vacuum in which the first r quarks

develop VEVs. We denote it as (1; . . . ; r). Quasiclassically,
at large masses, the adjoint scalar VEVs are

h�i � � 1ffiffiffi
2

p diag½m1; . . . ; mr; 0; . . . ; 0�; (2.7)

where the last ðN � rÞ entries classically vanish. In quan-
tum theory the vanishing entries become of the order of �,
generally speaking. The classically unbroken UðN � rÞ
gauge sector gets Higgsed through the Seiberg-Witten
mechanism [1], first down to Uð1ÞN�r and then almost
completely by condensation of ðN � r� 1Þ monopoles.
A single U(1) factor remains unbroken, as the monopoles
are charged with respect to the Cartan generators of the
SUðN � rÞ group.

3For a related discussion, see Ref. [16].
4For small � and equal quark masses, Eq. (2.2) reduces to the

Fayet-Iliopoulos F term [17], which does not break N ¼ 2
supersymmetry; see Refs. [8,18,19].

5Our definition of r refers to the large quark mass domain. In
fact, effectively, r depends on the quark masses; see Ref. [20].
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The presence of the unbroken Uð1Þunbr symmetry makes
the r < N vacua qualitatively different from the r ¼ N
vacuum: the latter has no massless gauge bosons.
According to Ref. [21], these sets of vacua belong to two
different ‘‘branches.’’

The low-energy theory in the r vacuum has the gauge
group

U ðrÞ � Uð1ÞN�r; (2.8)

with Nf quark flavors charged under the UðrÞ factor and
ðN � r� 1Þ monopoles charged under the U(1) factors.

C. r > Nf=2

For r > Nf=2 and large �, the SUðrÞ non-Abelian quark

sector is at weak coupling since it is asymptotically free.6

The action of this theory is presented in Ref. [2] for a
particular example, the r ¼ N � 1 vacuum. The quark
condensates can be read off from the superpotentials,
Eqs. (2.1) and (2.2) using Eq. (2.7). They are

hqkAi ¼ h �~qkAi ¼ 1ffiffiffi
2

p
ffiffiffiffiffi
�1

p
. . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . .
ffiffiffiffiffi
�r

p
0 . . . 0

0
BB@

1
CCA;

k ¼ 1; . . . ; r; A ¼ 1; . . . ; Nf: (2.9)

The first r parameters � in the quasiclassical approxima-
tion are

�P � 2�mP; P ¼ 1; . . . ; r: (2.10)

In quantum theory the parameters �P determining the
quark condensates are connected with the roots of the
Seiberg-Witten curve [2,8,14], which in the theory at
hand takes the form [11]

y2 ¼ YN
P¼1

ðx��PÞ2 � 4

�
�ffiffiffi
2

p
�
2N�Nf YNf

A¼1

�
xþmAffiffiffi

2
p

�
: (2.11)

Here �P are gauge invariant parameters on the Coulomb
branch. Semiclassically,

� � diag½�1; . . . ; �N�: (2.12)

In the r < N vacuum [more exactly, in the (1; . . . ; r)
vacuum], we have

�P � �mPffiffiffi
2

p ; P ¼ 1; . . . ; r;

�P ��N¼2; P ¼ rþ 1; . . . ; N
(2.13)

in the large mA limit; see Eq. (2.7).
To identify the r < N vacuum in terms of the curve

(2.11), it is necessary to find such values of �P that ensure
the Seiberg-Witten curve to haveN � 1 double roots, with r
parameters �P determined by the quark masses in the
semiclassical limit; see Eq. (2.13). The aboveN � 1 double

roots will be associated with the r condensed quarks and
ðN � r� 1Þ condensed monopoles—altogether N � 1
condensed states.
In contrast, in the r ¼ N vacuum, the maximal possible

number of condensed states (quarks) in the UðNÞ theory is
N. As was mentioned, this difference is related to the
unbroken Uð1Þunbr gauge group in the r < N vacua [21].
In the classically unbroken (after the quark condensation)
UðN � rÞ gauge group, N � r� 1 monopoles condense at
a quantum level, breaking the non-Abelian SUðN � rÞ
subgroup. One U(1) factor remains unbroken because the
monopoles are not coupled to this U(1).
Thus, in the r < N vacua with the quadratic defor-

mation superpotential (2.2), the Seiberg-Witten curve
factorizes [22],

y2 ¼ Yr
P¼1

ðx� ePÞ2
YN�1

K¼rþ1

ðx� eKÞ2ðx� eþN Þðx� e�N Þ:

(2.14)

The first r double roots in the large mass limit are given by

the mass parameters,
ffiffiffi
2

p
eP � �mP, P ¼ 1; . . . ; r. Other

ðN � r� 1Þ double roots associated with light monopoles
are much smaller and determined by �. The last two roots
are also much smaller.
For the single-trace deformation superpotential (2.2), the

sum of the unpaired roots vanishes [22],

eþN þ e�N ¼ 0: (2.15)

The root eþN determines the value of the gaugino
condensate [21].
Now, Eq. (1.1) was derived in one of our previous papers

[2] for the case of the quark condensate, namely, for
P ¼ 1; . . . ; r.
In the remainder of this paper, we demonstrate that the

monopole condensates in the monopole vacuum (r ¼ 0) or
hybrid r vacua are also determined by the same formula
with the replacement of the quark double roots by the
monopole double roots, so that the subscript P in Eq. (1.1)
can run over monopole double roots P ¼ ðrþ 1Þ; . . . ;
ðN � 1Þ too. Thus, Eq. (1.1) is very general and determines
VEVs of any condensed field independently of its nature.

III. r ¼ 0: THE MONOPOLE VACUUM

In this section we consider the monopole vacuum with
r ¼ 0 and show that the monopole condensates are still
given by Eq. (1.1). Then, we demonstrate that for the above
monopole vacuum (in the limit of large quark masses, i.e.,
when the theory at hand reduces to pure gauge theory),
Eq. (1.1) gives the famous sine formula for the monopole
VEVs and, hence, the electric string tensions [15].

A. Monopole VEVs

Consider the simplest example: the r ¼ 0 vacuum in
U(2) SQCD with Nf quark flavors. It is a straightforward6The opposite case r < Nf=2 is discussed in Sec. IV.
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generalization of the SU(2) theory studied in Refs. [1,23].
The low-energy gauge group isUð1Þ � Uð1Þwhere the first
U(1) factor is associated with, say, the �3 generator of
SU(2). In this case the light matter sector consists of one
monopole singletM and ~M charged with respect to the first
U(1) factor [1]. The relevant F terms in the scalar potential
are

VðM; ~M;aD3 ;aÞ ¼ 2g2D

�������� ~MMþ �ffiffiffi
2

p @u2
@aD3

��������2þg21

���������@u2
@a

��������2

þ 2jaD3 Mj2þ 2jaD3 �~Mj2þ			 ; (3.1)

where we denote the light adjoint scalar of the dual gauge
multiplet associated with �3 by aD3 , while a stands for the

neutral scalar in the U(1) gauge multiplet of U(2). The
corresponding coupling constants are gD and g1, respec-
tively. We also define

uk ¼
�
Tr

�
1

2
aþ Taaa

�
k
�
; k ¼ 1; . . . ; N: (3.2)

Thus, the deformation superpotential (2.2) is proportional
to u2. From the potential (3.1) it is easy to derive for the
monopole vacuum

h ~MMi ¼ � �ffiffiffi
2

p @u2
@aD3

;
@u2
@a

¼ 0; aD3 ¼ 0: (3.3)

The Seiberg-Witten curve in this case factorizes as follows:

y2 ¼ ðx� e1Þ2ðx� eþ2 Þðx� e�2 Þ; (3.4)

see Eq. (2.14). Here the double root at x ¼ e1 corresponds
to a single condensed monopole in the r ¼ 0 vacuum,
while two other roots [subject to the condition (2.15)]
determine the gaugino condensate.

The exact solution of the theory on the Coulomb branch
relates the fields aD3 and a to contour integrals running

along the contours �1 in the x plane encircling the double
root e1 and the contour C at infinity; see Fig. 1.

Using explicit the expressions from Refs. [24–27] and
their generalizations to the UðNÞ case [8], we arrive at

@aD3
@u2

¼ 1

2

1

2�i

I
�1

dx

y
;

@aD3
@u1

¼ 1

2�i

I
�i

dx

y
½x� ðe1 þ e2Þ�;

@a

@u2
¼ 1

2

1

2�i

I
C

dx

y
;

@a

@u1
¼ 1

2�i

I
C

dx

y
½x� ðe1 þ e2Þ�;

(3.5)

where the variables u1 and u2 are given in Eq. (3.2), while

e2 ¼ 1

2
ðeþ2 þ e�2 Þ: (3.6)

In fact, e2 should vanish due to the condition (2.15). We
will see shortly that this is indeed the case.

For the factorized curve (3.4), the integrals (3.5) can be
easily evaluated. In particular, the integral along the �1

contour is given by its pole contributions. This gives

@aD3
@u2

¼ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1 � eþ2 Þðe1 � e�2 Þ

q ;
@a

@u2
¼ 0;

@aD3
@u1

¼ � e2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1 � eþ2 Þðe1 � e�2 Þ

q ;
@a

@u1
¼ 1:

(3.7)

Inverting this matrix we get

@u2
@aD3

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1 � eþ2 Þðe1 � e�2 Þ

q
;

@u2
@a

¼ 2e2: (3.8)

Now, from Eq. (3.3) we see that indeed

e2 ¼ 0; (3.9)

i.e., the condition (2.15) is automatically met. The mono-
pole VEV is 7

hMi ¼ h �~Mi ¼
ffiffiffiffiffi
�1

2

s
; (3.10)

with

�1 ¼ �2
ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1 � eþ2 Þðe1 � e�2 Þ

q
: (3.11)

We see that the monopole condensate in the r ¼ 0
vacuum is determined by the same Eq. (1.1) in much the
same way as the quark condensates; see Eq. (2.9). A
straightforward generalization of this result to arbitrary N
gives for elementary monopole condensates

hMPðPþ1Þi ¼ h �~MPðPþ1Þi ¼
ffiffiffiffiffiffi
�P

2

s
; (3.12)

C

−+

β

e

e
e

1

2

1

2

FIG. 1. �1 and C contours in the x plane in the U(2) theory.
Solid straight lines denote cuts.

7Here we also use the D-term condition requiring jMj ¼ j ~Mj.
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where the parameters �P are again determined by the
general formula (1.1) [P ¼ 1; . . . ; ðN � 1Þ]. Here MPP0

denotes the monopole with the charge given by the root
�PP0 ¼ wP � wP0 of the SUðNÞ algebra with weights wP,
P< P0.

B. The sine formula

The famous sine formula for the k-string tensions
(and, hence, condensates) was derived in Ref. [15] in the
N ¼ 2 limit of pure gluodynamics. The latter can be
obtained from our model by tending the quark masses to
infinity, where they decouple.

Consider the r ¼ 0monopole vacuum in theUðNÞ gauge
theory with heavy quarks, mA ! 1. The Seiberg-Witten
curve in this case takes the form

y2 ¼ YN
P¼1

ðx��PÞ2 � 4

�
�0ffiffiffi
2

p
�
2N
; (3.13)

where the scale �0 is

�2N
0 ¼ �2N�Nf

YNf

A¼1

mA: (3.14)

The corresponding expressions for �P’s, double monopole
roots eP, and two unpaired roots e�N are [15]

�P ¼ 2 cos
�ðP� 1

2Þ
N

�0ffiffiffi
2

p ; P ¼ 1; . . . ; N;

eP ¼ 2 cos
�P

N

�0ffiffiffi
2

p ; P ¼ 1; . . . ; ðN � 1Þ;

e�N ¼ �2
�0ffiffiffi
2

p :

(3.15)

Substituting these roots in the formula (1.1), we arrive at
the following monopole VEVs:

h ~MPðPþ1ÞMPðPþ1Þi ¼ �P

2
¼ �2i��0 sin

�P

N
: (3.16)

The same monopole VEVs determine the tensions of the
Abelian electric strings,

TP ¼ 2�j�Pj; P ¼ 1; . . . ; N � 1: (3.17)

Our general expression (1.1) reproduces the sign formula.
The string described by Eq. (3.16) can be viewed [18] as
the so-called ‘‘k string’’; see Ref. [16] and references
therein.

In much the same way as the magnetic non-Abelian
strings appearing upon the quark condensation in the r
vacua, these strings are BPS to the leading order in �
[18,19]. These Abelian electric strings confine quarks.

IV. HYBRID r VACUA

As was already mentioned, the low-energy gauge group
in the hybrid r vacuum is Eq. (2.8), while the light matter

sector consists of Nf quark flavors charged under the UðrÞ
gauge subgroup, plus ðN � r� 1Þ singlet Abelian mono-
poles. The quarks and monopoles are charged with respect
to orthogonal subgroups ofUðNÞ. Hence, they are mutually
local (i.e., can be described by a local Lagrangian). If in
Sec. II C we discussed the case r > Nf=2, now we turn to

the opposite case r < Nf=2.

In these vacua the low-energy theory is infrared free, and
it is at weak coupling once the quark and monopole VEVs
are small. To ensure this condition, we assume all parame-
ters �P given by Eq. (1.1) to be small enough.
For example, for large and (almost) equal quark masses,

the effective scale of the non-Abelian SUðrÞ subgroup of
Eq. (2.8) is

�
Nf�2r

SUðrÞ ¼ m2ðN�rÞ

�2N�Nf
; (4.1)

where m is the common mass, and j�Pj � �2
SUðrÞ,

P ¼ 1; . . . ; r. For simplicity here and in Sec. VA, we
assume m to be large, and hence quarks have only electric
color charges. For a discussion of the small mass limit, see
Sec. VC.
As an example we choose for our analysis the r ¼ 1

vacuum in the U(3) gauge theory with Nf quark flavors.

The light matter sector consists of a single color compo-
nent of Nf quark flavors and a monopole singlet. We can

choose color charges of quarks and monopoles as follows
[see (2.7)]:

~nq1A ¼
�
1

2
; 0;

1

2
; 0;

1

2
ffiffiffi
3

p ; 0

�
;

~nM23
¼

�
0; 0; 0;� 1

2
; 0;

ffiffiffi
3

p
2

�
;

(4.2)

respectively, where we use the notation

~n ¼ ðne; nm; n3e; n3m;n8e; n8mÞ; (4.3)

and ne and nm denote the electric and magnetic charges of
a given state with respect to the U(1) gauge group.
Moreover, n3e, n

3
m and n8e, n

8
e stand for the electric and

magnetic charges with respect to the Cartan generators of
the SU(3) gauge group. The charges chosen in Eq. (4.2)
correspond to taking the quark charge equal to the weight
w1 and monopole charge equal to the orthogonal root
�23 ¼ w2 � w3 of the SU(3) subgroup of U(3); see Fig. 2.
From Eq. (4.2) we see that the quarks interact with U(1)

gauge field

Aq
� ¼

ffiffiffi
3

7

s �
A� þ A3

� þ 1ffiffiffi
3

p A8
�

�
; (4.4)

with the charge

nq 
 1

2

ffiffiffi
7

3

s
: (4.5)
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At the same time, the monopoles interact with the U(1)
gauge field

AD
� ¼ 1

2
ðAD3

� þ ffiffiffi
3

p
AD8
� Þ; (4.6)

with the charge nM ¼ 1, while the orthogonal combination

Aunbr
� ¼ 3

2
ffiffiffi
7

p
�
� 4

3
A� þ A3

� þ 1ffiffiffi
3

p A8
�

�
(4.7)

is the gauge field of the unbroken Uð1Þunbr always present
in all r < N vacua. Here ADa

� denote dual gauge potentials

associated with the Cartan generators of SU(3).
Relevant F terms in the scalar potential of the low-

energy theory are

V ¼ 2g2q

��������nq~qA1q1A þ �ffiffiffi
2

p @u2
@aq

��������2

þ 2g2M

�������� ~M23M23 þ �ffiffiffi
2

p @u2
@aD

��������2þg2unbr

��������� @u2
@aunbr

��������2

þ 2

��������
�
nqaq þmAffiffiffi

2
p Þq1A

��������2þ2

��������
�
nqaq þmAffiffiffi

2
p

�
�~q1A

��������2

þ 2jaDMj2 þ 2jaD �~Mj2 þ 	 	 	 ; (4.8)

where aq, a
D, and aunbr are scalar superpartners of the

gauge potentials in Eqs. (4.4), (4.6), and (4.7), while gq,

gM, and gunbr are the corresponding U(1) gauge couplings.
The dots represent the D terms. From Eq. (4.8) we learn
that

nqh~qA1q1Ai ¼ � �ffiffiffi
2

p @u2
@aq

; h ~M23M23i ¼ � �ffiffiffi
2

p @u2
@aD

;

@u2
@aunbr

¼ 0; (4.9)

while aD ¼ 0 and
ffiffiffi
2

p
nqaq ¼ �m1. All derivatives in

Eqs. (4.9) can be calculated from the Seiberg-Witten curve,
which factorizes in the r ¼ 1 vacuum at hand as follows:

y2 ¼ ðx� e1Þ2ðx� e2Þ2ðx� eþ3 Þðx� e�3 Þ: (4.10)

Double roots at x ¼ e1 and x ¼ e2 are associated with the
light quark q11 and light monopole M23, respectively.
Details of this calculation can be found in the appendix.
The result is

h~q11q11i ¼ �1

2
; h ~M23M23i ¼ �2

2
; (4.11)

while the last equation in Eq. (4.9) ensures that eþ3 þe�3 ¼0;
see Eq. (2.15). Here �1 and �2 are given by Eq. (1.1).
Again we see that all condensates, independently on

their nature, are determined by the same universal formula
(1.1). Above we analyzed only a few particular examples.
Extension to the general case is straightforward, however.

V. DYNAMICAL REGIMES AND DUALITIES
IN THE r VACUA

A. Confinement and screening

In the hybrid r vacua, both quarks and monopoles
charged with respect to orthogonal subgroups of UðNÞ
condense. As a result, both the non-Abelian magnetic
strings [3–6] and the Abelian Abrikosov-Nielsen-Olesen
electric strings develop supported by the quark and mono-
pole condensates, respectively. Clearly, the magnetic
strings confine monopoles, while the electric strings con-
fine quarks. Now, we focus on large quark masses, with the
quarks possessing pure color-electric charges.8

Let us turn again to the simplest example of the r ¼ 1
vacuum in the U(3) gauge theory and show how confine-
ment and screening of different states work in this case. A
similar discussion for the r ¼ 1 vacuum in the SU(3) gauge
theory can be found in Ref. [28].
All charges of condensed quark q11 and monopole M23

are given in Eq. (4.2). Now, we calculate the fluxes of the
strings formed due to condensation of these states.
Consider first the magnetic strings.
Sincewe have only one condensed quark q11 in the r ¼ 1

vacuum, we deal with a single Abelian magnetic string, to
be referred to as Sm. Suppose the q

11 quark has a winding

q11 �
ffiffiffiffiffi
�1

2

s
ei�; M23 �

ffiffiffiffiffi
�2

2

s
(5.1)

at r ! 1 [see (4.11)], where r and � are the polar coor-
dinates in the plane i ¼ 1, 2 orthogonal to the string axis.
Equations (5.1) imply the following behavior of the gauge
potentials at r ! 1:

1/2 1

11

M
23

q

FIG. 2. Projection of charges (4.2) of the condensed quark and
monopole states onto SU(3) subalgebra of U(3).

8The string formation and confinement in the r-dual theories at
small quark masses due to the quarklike dyon condensation were
studied in Refs. [2,13]; see Sec. VC.
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1

2
Ai þ 1

2
A3
i þ

1

2
ffiffiffi
3

p A8
i � @i�; � 1

2
A3
i þ

ffiffiffi
3

p
2

A8
i � 0;

(5.2)

as follows from the quark andmonopole charges in Eq. (4.2).
In the r ¼ 1 vacuum, we have to supplement these condi-
tionswith one extra condition ensuring that the combination
(4.7) of the gauge potentials, which interacts neither with
the quark nor the monopole, is not excited, namely,

� 4

3
Ai þ A3

i þ
1ffiffiffi
3

p A8
i � 0: (5.3)

The solution to these equations is

Ai � 6

7
@i�; A3

i �
6

7
@i�; A8

i �
6

7
ffiffiffi
3

p @i�: (5.4)

It determines the gauge fluxes
R
dxiAi,

R
dxiA

3
i , andR

dxiA
8
i of the stringSm, respectively. The integration above

is performed over a large circle in the (1, 2) plane.
Next, we define the string charges [13] asZ

dxiðAD
i ; Ai;A

3D
i ; A3

i ;A
8D
i ; A8

i Þ

 4�ð�ne; nm;�n3e; n

3
m;�n8e; n

8
mÞ: (5.5)

This definition guarantees that the string has the same
charge as a probe monopole, which can be attached to
the string endpoint. In other words, the flux of the given
string is the flux of the probe monopole sitting on the
string’s end with the charge defined by Eq. (5.5). Note
that this probe monopole does not necessarily exist in the
theory under consideration. For example, the monopoles
from the SUðrÞ sector are rather string junctions, so they
are attached to two strings, [5,13]. We will see below that
the charges of the physical monopoles confined in the
hybrid vacuum differ from the charge of the probe
monopoles.

In particular, according to this definition, the charge of
the string with the fluxes (5.4) is

~n Sm ¼
�
0;
3

7
; 0;

3

7
; 0;

3

7
ffiffiffi
3

p
�
: (5.6)

Since this string is associated with the quark winding, it is
magnetic.

Now, let us consider the electric string existing due to
the winding of the monopole M23. In the vacuum at hand,
we have

q11 �
ffiffiffiffiffi
�1

2

s
; M23 �

ffiffiffiffiffi
�2

2

s
ei� (5.7)

at r ! 1. Therefore,

� 1

2
A3D
i þ

ffiffiffi
3

p
2

A8D
i � @i�;

1

2
A3D
i þ 1

2
ffiffiffi
3

p A8D
i � 0:

(5.8)

The solution to these equations is

A3D
i �� 1

2
@i�; A8D

i �
ffiffiffi
3

p
2

@i�: (5.9)

The gauge potential AD
i is not excited. This gives the

charge of the Se string,

~n Se ¼
�
0; 0;

1

4
; 0;�

ffiffiffi
3

p
4

; 0

�
: (5.10)

Since this string is associated with the monopole winding,
it is electric.
It is instructive to check that all quarks and elementary

monopoles are either screened or confined in the hybrid
vacuum under consideration. Clearly, the quarks q1A and
monopoles M23 are screened. Let us analyze other quarks
q2A, q3A as well as monopoles M12, M13. The SU(3)
projections of the charges of these states are shown in
Fig. 3. Note that these states are heavy and are not included
in the low-energy theory.
Start with the quark q2A. It should be confined by the

electric sting Se. It is not difficult to verify this. Indeed, the
charge of this quark can be represented as

~n q2A ¼
�
1

2
; 0;� 1

2
; 0;

1

2
ffiffiffi
3

p ; 0

�
¼ � ~nSe þ

1

7
~nq11 þ

9

7
~neunbr;

(5.11)

where

~n e
unbr ¼

�
1

3
; 0;� 1

4
; 0;� 1

4
ffiffiffi
3

p ; 0

�
(5.12)

1/2 1

23
M

q

M

M

q

q3A

13

11
2A

12

FIG. 3. Projection of charges of different quark and monopole
states to the SU(3) subalgebra of U(3). Charges of condensed
states are shown by solid arrows, while charges of confined states
are shown by dashed arrows.
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is the source for the electricUð1Þunbr gauge field (4.7). This
U(1) is unbroken.

We see that the q2A quark is confined. Part of its electric
flux is confined by the electric string (5.10). Another part is
screened by the q11 condensate. What is left is precisely the
flux of the unbroken gauge field Uð1Þunbr.

Of course, any three-dimensional vector of the quark q2A

charges can always be written as a linear combination of
three orthogonal vectors. What is nontrivial in Eq. (5.11),
however, is the coefficient in front of the string charge: it
should be an integer to ensure confinement.

As a result of confinement and screening, stringy me-
sons made of quarks and antiquarks q2A connected by
strings Se are formed; see Fig. 4. The string endpoints
emit electric fluxes of the unbroken Uð1Þunbr. This makes
this meson a dipolelike configuration, cf. Ref. [2]. All other
color fluxes are either confined or screened inside the
meson.

Analogously, we can convince ourselves that the quark
q3A is confined, too. To check this we represent the charge
of this quark as

~n q3A ¼
�
1

2
; 0; 0; 0;� 1ffiffiffi

3
p ; 0

�
¼ ~nSe þ

1

7
~nq11 þ

9

7
~neunbr:

(5.13)

Thus, the q3A quark is obviously confined by the electric
string Se. The unconfined part of its flux is screened by the
q11 condensate, while the remainder coincides with the
flux of unbroken Uð1Þunbr.

Now, we will pass to confinement of the monopoles.
Decomposing

~nM12
¼ ð0; 0; 0; 1; 0; 0Þ ¼ ~nSm � 1

2
~nM23

� 9

7
~nmunbr; (5.14)

we see that the part of the monopole M12 flux is confined
by the magnetic string Sm [see Eq. (5.6)], while the second
term is screened by the M23 condensate. The remainder of
the flux is proportional to

~n m
unbr ¼

�
0;
1

3
; 0;� 1

4
; 0;� 1

4
ffiffiffi
3

p
�
; (5.15)

which is the source for the unbroken magnetic gauge field
Uð1Þunbr.

As a result, a meson formed by the magnetic string Sm
with the M12 monopole, and its antimonopole attached to
the endpoints appears in the physical spectrum. This meson
is a dipolelike configuration emitting magnetic fluxes of
the unbroken gauge field Uð1Þunbr; see Fig. 4.
For the M13 monopole, we have

~nM13
¼
�
0;0;0;

1

2
;0;

ffiffiffi
3

p
2

�
¼ ~nSm þ

1

2
~nM23

�9

7
~nmunbr: (5.16)

This monopole is apparently confined by the same Sm
magnetic string.
Note that in the simple case at hand (r ¼ 1), we have a

single condensed quark and a single condensed monopole
ðN � r� 1 ¼ 1Þ. Therefore, other (confined) quarks and
monopoles play a role of the endpoints of electric and
magnetic strings, respectively. In the case of generic r,
with r condensed quarks, we have r elementary magnetic
non-Abelian strings. Hence, the confined elementary
monopoles of the SUðrÞ subgroup become junctions of
two ‘‘neighboring’’ strings [2,5]. Similarly, for a generic
value of ðN � r� 1Þ (i.e., N � r� 1 condensed mono-
poles), we have ðN � r� 1Þ Abelian electric strings; thus,
certain confined quarks become junctions of two different
elementary electric strings [18].

B. r Duality in N ¼ 2

In Sec. VC we will briefly analyze various phases
attainable in N ¼ 2 SQCD in the limit of small quark
masses. It is instructive to discuss now the transition to this
limit.
From Sec. II C we know that the low-energy theory in

the r vacuum with r > Nf=2 is at weak coupling because

the quark masses are large, and hence
ffiffiffi
�

p � �. However,
if we reduce the quark masses making the parameters �
small, the quark sector runs to strong coupling, and the
theory undergoes a crossover transition.
At small values of �, low-energy physics can be de-

scribed by a dual weakly coupled infrared-free r-dual
theory [2]. The gauge group of the r-dual theory is

Uð�Þ �Uð1ÞN��; � ¼
8<
: r; r � Nf

2

Nf � r; r >
Nf

2

: (5.17)

The light matter sector of the r-dual theory is represented
byNf flavors of non-Abelian quarklike dyons charged with

respect to the gauge group SUð�Þ [as well as a combination
of Abelian factors in Eq. (5.17)] plus ðr� �Þ singlet quarks
and ðN � r� 1Þmonopoles charged with respect to differ-
ent Abelian factors in Eq. (5.17). The color charges of the
non-Abelian quarklike dyons are identical to those of
quarks.9 However, they belong to a different representation

q

q

S

Sm
12,13

2,3

2,3

M

e M12,13

FIG. 4. Stringy mesons made of quarks and monopoles.

9Because of monodromies, the quarks (preserving their
weightlike electric charges) pick up certain rootlike magnetic
charges at strong coupling.
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of the global color-flavor locked group. VEVs of both non-
Abelian quarklike dyons and quark singlets are still given
by Eq. (1.1) with P ¼ 1; . . . ; r [2].

Upon condensation of the quarklike dyons in the Uð�Þ
sector of the r-dual theory, non-Abelian strings are formed.
These strings still confine monopoles, rather than quarks
[2,13]. Thus, r duality is not electromagnetic.

At strong coupling where the dual description is appli-
cable, the quarks and gauge bosons of the original theory
from the Uð�Þ sector are in the instead-of-confinement
phase. Namely, the Higgs-screened quarks and gauge bo-
sons decay into monopole-antimonopole pairs on the
curves of marginal stability [13,29]. The (anti)monopoles
pair is confined. In other words, the original quarks
and gauge bosons evolve at small � into monopole-
antimonopole stringy mesons (presumably forming the
Regge trajectories).

Note that the presence of the SUð�Þ � Uð1ÞNf�� gauge
groups at the roots of the Higgs branches in massless
(� ¼ 0) N ¼ 2 SUðNÞ SQCD was first recognized long
ago in Ref. [11]; see also Ref. [12].

C. Phases of N ¼ 2 SQCD at small masses

In this section we summarize for completeness the
phases of �-deformed N ¼ 2 QCD with small quark
masses (and small �). First, we will discuss the small-r
vacua, namely, r < Nf=2.

As we reduce the quark masses, the quantum numbers of
the light states change due to monodromies [1,23,30]. In
particular, the quarks pick up rootlike color-magnetic
charges in addition to their weightlike color-electric
charges. Still (in the r < Nf=2 vacua), there is no cross-

over; the low-energy theory remains the same: infrared-
free UðrÞ � Uð1ÞN�r gauge theory with Nf quarks (or,

more exactly, what becomes of quarks) and N � r� 1
singlet monopoles [31]. It is at weak coupling, provided
the parameters �P are small enough.

The quarks from theUðrÞ sector and monopoles form the
orthogonal Uð1ÞN�r still develop VEVs determined by
Eq. (1.1). The physics of screening and confinement also
remains intact at small mA. Say, if a given monopole state
[charged with respect to the Cartan generators of SUðrÞ] is
confined by the quark condensation at large masses, this
confinement property does not change when we follow this
given state to the small mass domain, although the quark
color charges change [31]. If quarks are screened in the r
vacuum at large masses, they (or what becomes of quarks)
are still screened in the same vacuum in the limit of small
masses. Monodromies are nothing other than the relabeling
of states; they do not change physics.

In the r vacua with r > Nf=2, the physics is quite differ-

ent; see Refs. [2,13] and Sec. II C above. With decreasing �
the theory undergoes a crossover transition. At small � the
physics can be described by the weakly coupled infrared-
free r-dual theory with the gauge group Uð�Þ � Uð1ÞN��

and � ¼ Nf � r. The quarks from Uð�Þ sector are in the

instead-of-confinement phase: the Higgs-screened quarks
decay into the monopole-antimonopole pairs confined by
the non-Abelian strings. The singlet quarks from the
Uð1Þr�� sector and the monopoles from the Uð1ÞN�r sector
are Higgs-screened. Other monopoles charged with respect
to Cartan generators of SUðrÞ and heavy quarks charged
with respect to the orthogonal Uð1ÞN�r are confined.

VI. CONCLUSIONS

Our main result is the demonstration of the fact that
VEVs of all condensates—quark and monopole—in the
hybrid r vacua of N ¼ 2 SQCD are given by the unified
exact formula (1.1). In the limit of infinitely heavy quarks,
when the theory under consideration becomes pure glue,
this formula implies the well-known sine formula for the
string tensions. [The P strings appearing in Eq. (3.16) are
usually referred to as k strings.]
In Sec. V we briefly discuss dynamical regimes and

dualities in the hybrid r vacua. Due to the condensation
of r quarks and ðN � r� 1Þ monopoles, we have r non-
Abelian magnetic and ðN � r� 1Þ Abelian Abrikosov-
Nielsen-Olesen electric strings in such vacua. Magnetic
strings confine monopoles, while electric strings confine
quarks. We calculate the fluxes of the confining strings. A
similar discussion in the SUðNÞ theory was presented in
Ref. [28].
Dynamical regimes and their change crucially depend

on the value of r. In the r < Nf=2 vacua, the small quark

mass domain does not qualitatively differ from the large
quark mass domain; confinement and screening are essen-
tially the same. In r > Nf=2 vacua the physics is rather

different. With decreasing mA (and hence decreasing �),
the theory undergoes a crossover transition and can be
described at small � using r duality.
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APPENDIX: THE r ¼ 1 VACUUM IN U(3)

In this appendix we calculate the derivatives @u2=@aq
and @u2=@aD that appear in the right-hand sides of
Eqs. (4.9) for the quark and monopole condensates in the
r ¼ 1 vacuum of the U(3) theory. This calculation is quite
similar to the calculation in the r ¼ 0 vacuum in the U(2)
theory in Sec. III and in the r ¼ 3 vacuum in the U(3)
theory in Ref. [8]. Therefore, we will be brief.
Explicit expressions from Refs. [24–27] generalized to

the UðNÞ case [8] imply
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@�1

@uk
¼ 1

2�i

I
�1

dx

y
PkðxÞ þ 	k1;

@aD

@uk
¼ 1

2�i

I
�2

dx

y
PkðxÞ þ 	k1;

@ð�1 þ�2 þ�3Þ
@uk

¼ 1

2�i

I
C

dx

y
PkðxÞ þ 3	k1;

(A1)

where �1,�2, and�3 are diagonal elements of the matrix
�, see Eq. (2.3), while the polynomials PkðxÞ, k ¼ 1, 2, 3
are given by

P3ðxÞ ¼ 1

3
; P2ðxÞ ¼ 1

2

�
x� 1

3
ðe1 þ e2 þ e3Þ

�
;

P1ðxÞ ¼ �2

�
x2 � 1

2
xðe1 þ e2 þ e3Þ

þ 1

9
ðe1 þ e2 þ e3Þ2

�
; (A2)

and e3 ¼ ðeþ3 þ e�3 Þ=2. Here the contours �1 and �2 en-

circle the double roots e1 and e2 of the Seiberg-Witten
curve (4.10) associated with the light quark q11 and the
light monopoleM23, respectively, while C is the contour at
infinity; see Fig. 5.

The contour integrals in Eq. (A1) can be readily calcu-
lated; in particular, the integrals along the contours �1 and
�2 are given by their pole contributions. These integrals
determine the derivatives of aq and aunbr with respect to uk
since �1 ¼ nqaq, while aunbr is a linear combination of aq
and ð�1 þ�2 þ�3Þ ¼ 3a=2; see Eq. (4.7). Inverting the

matrix @ðaq; aD; aunbrÞ=@uk, we get the desired expressions
for @u2=@aq, @u2=@a

D, and @u2=@aunbr in terms of the

roots of the Seiberg-Witten curve.
Ommiting details presented in Sec. III and Ref. [8] for

similar cases, we arrive at the results for the quark and
monopole VEVs quoted in Eq. (4.11). Also, the last
equation in Eq. (4.9) gives e3 ¼ 0, in accordance with
Eq. (2.15).
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