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The Bethe-Salpeter amplitude for the fermion-antifermion bound state in the Schwinger model is
investigated. The dependence on the relative time and position in the center-of-mass frame in all
contributing instanton sectors is analyzed. The same is accomplished for the relative energy and
momentum variables. Several interesting properties of the amplitude are revealed. The explicit threshold

structure is demonstrated.
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L. INTRODUCTION

The formation of bound states is one of the most funda-
mental unsolved problems in quantum field theory. It be-
comes especially troublesome if the relativistic nature of
these states cannot be neglected and retardation effects in
the interactions among constituent particles have to be
taken into account.

In the 1950s, the quantum field theoretical equation for
the bound state amplitude—the so-called Bethe-Salpeter
(B-S) equation—was formulated [1,2], and the framework
for considering bound states was established. However, for
serious reasons, this equation cannot be solved in realistic
quantum field theory. From the mathematical point of
view, it is an extremely complicated multidimensional
integral equation for a kind of a wave function, but the
main difficulty is due to the fact that from the very begin-
ning one needs to know the nonperturbative propagators
for ingredient particles and their interaction kernel.
Obviously none of these quantities is known in theories
like QED or QCD or even in simpler field theoretical
models.

The significant feature of the relativistic B-S amplitude
is its dependence on the so-called relative time, or relative
energy, the role of which in characterizing a bound state
has not yet become completely clear. Their presence in the
theory mirrors the effects of retardation in the interactions
and constitutes the main difference with respect to the
nonrelativistic studies. It is also a source of mathematical
(and interpretational) complications.

For the above reasons over the last sixty years much
work has been devoted to the investigation of approxi-
mated versions of the equation [3,4]. These approxima-
tions consisted of simplifying the propagators and
interaction kernel (most often the “ladder” approximation
was used) and of reducing the equation to lower dimen-
sions by neglecting the relative time or relative energy
dependence [5-10]. In this case retardation effects, and
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consequently part of the physical information, were lost,
not allowing for the full study of the bound state properties,
such as its threshold structure. Some insight into the rela-
tive time (or energy) dependence of the bound system has
been obtained in certain models [11-14]. The wave-
function dependence of relative variables was mainly given
in Euclidean space [15-21], where it is easier to obtain, but
the Minkowski-space approach for a bound system has also
been developed [21-29].

A very unpleasant situation is that full results are still
lacking even in simple field theoretical models. There are
only few examples, such as the so-called Wick-Cutkosky
model [16,30,31], where it is possible to find ‘“‘exact”
solutions (with the “ladder” approximation incorporated
into the model). In this context we would like to mention
the result obtained in the Schwinger model (SM)—a two-
dimensional massless electrodynamics [32], where full
(i.e., exact) B-S wave function was found, in the spirit of
Refs. [33,34], from the residue of the pole corresponding to
the bound particle, but also as a direct computation of the
field amplitude [35,36], thereby opening the possibility of
its investigation.

To our knowledge, no other truly exact solutions of the
B-S equation in nontrivial field theoretical models are
known. Our main motivation in this work is then the
examination of the previously found B-S amplitude from
the point of view of the relative time and energy depen-
dence. One should stress here that the considered model is
fully relativistic, since it deals with massless fermions.

Although B-S function does not have any direct proba-
bilistic interpretation, it appears in the matrix elements and
scattering processes involving bound states [34,37]. The
results then may be of some interest both in particle and
nuclear physics. As pointed out in Ref. [11], the relative
time or energy dependence is important for the processes in
which the bound state appears in loop integrations, but also
can manifest itself when one deals with high-momentum
transfers. The results, which in the SM are exact, may
constitute also the measure of accuracy of various approxi-
mation schemes.
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The Schwinger model offers one more attractive possi-
bility. As is well known, it is the theory with nontrivial
vacuum [38—43], which has the character of the #-vacuum.
Apart from the confinement of fermions, this feature re-
sulting from the the existence of instanton sectors makes
the theory a simple model of QCD. The nonzero instanton
sectors do contribute to the B-S amplitude, and the appro-
priate contribution was explicitly found in Ref. [35]. One
can then analyze how instantons influence the relative
energy and momentum dependence of the bound-state
wave function (an attempt to account for instanton effects
in bound states was made in Refs. [44,45]).

The present paper is organized as follows. In the next
section we invoke the exact B-S amplitude in coordinate
space for all contributing instanton sectors. We investigate
its position dependence for fixed values of relative time
and vice versa in the center-of-mass frame and present the
appropriate plots. In Sec. III we concentrate on the behav-
ior of the amplitude in the relative momentum for certain
characteristic values of relative energy, again in the center-
of-mass frame, and we depict the results of the numerical
computations for each sector. At the end we present the
density plots, revealing the dependence of the wave func-
tion on the whole two-momentum argument and show the
trajectories of the threshold cusps. And finally in the last
section, we give the summary of the obtained results and
propose some conclusions.

II. BETHE-SALPETER AMPLITUDE IN
COORDINATE SPACE

In order to fix the notation, we start this section by
recalling basic facts concerning SM. Its Lagrangian den-
sity is given by

L) = T()i7#a,, — gA* (1), V()
— PO, — 5 0,AR 02 (D)

where g is the coupling constant and A the gauge-fixing
parameter (in what follows we choose Landau gauge
setting A — 00). Dirac gamma matrices are chosen in
two-dimensional form,

y0=01 L_ (0 -1
1 0/ 1 0/
1 0
5 _ ~0A1
Y =y (0_1),

and for the metric tensor we have g% = —g!! = 1. In
Schwinger’s papers [32] the nonperturbative formula for
the fermion propagator in coordinate space was found.
It may be given the following form:

S(x) = So(x) exp[—ig? B(x)], 3)
with Sy(x) being the free propagator,

(2)
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Sow) = — %

27 x2 —ig’

“)
and function B defined by

iz[— ’7” + v+ Indu’x?/4 + %’Hé”(W)],

x timelike,

féz[VE +Iny/—u’x?/4 + KO(\/—/szz)],

x spacelike.

Bkx) =

(&)

Symbol vy denotes here the Euler constant, u is the
Schwinger boson mass (u? = g2/), and H" and K,
are Hankel function of the first kind and Basset function,
respectively.

In further development of the model, higher Green’s
functions in explicit form were obtained. Special attention
was paid to two-fermion function [46—48]. The analysis of
its analytical structure showed that it contains the bound
state pole with the residue defining the B-S amplitude
[35,36]. It has the contributions from k = 0 and k = *1
instanton sectors and may be given the form

Dp(x) = PP (x) + OV (x), (6)

where

DV (x) = —2/7S(x)y’ sin (Px/2), (7)
DV (x) = o e7eis?B0 =107 )5 cos (Px/2).  (8)
P N

P denotes here the total two-momentum of the bound state
(satisfying P? = u?), x = [t, r] is the relative two-position
variable, and 6 is the parameter defining the #-vacuum.

The bound state amplitude is then defined entirely by the
function B and trigonometric functions. The presence of
these functions (sine for kX = 0, and cosine for k = *=1)
shows that there are regions where the noninstantonic
sector dominates, and others where instanton contributions
are larger.

For our further analysis we choose the center-of-mass
frame in which P = [, 0]. In such a case the trigonomet-
ric functions depend only on the relative time, and expres-
sions (7) and (8) reveal quasiperiodic structure in this
variable. For ¢ approaching (2n + 1)/, the amplitude
CI)EE)) dominates over the topological part, but for ¢ close to
2n7r/ ., the instanton corrections become more important
(except the light cone).

If we fix the relative time to take a certain chosen value,
the dependence of the amplitude on the spatial variable r

may be easily plotted. Since cI>§9) and <I)(P]) are 2 X 2 com-
plex matrices, we will draw the behavior of the quantities

1/2
|| = (% tr[d>§?)+<l>§9>]) : )

085042-2



RELATIVE VARIABLES OF THE EXACT FERMION- ...
1 1/2
|| = (i tr[(bﬁ}“@fj)]) (10)

without any claim to their probabilistic interpretation. With

this definition, the dependence of |<I)§>1)| on the unphysical
f-parameter (afterall, in the SM it may be gauged away)
disappears. The real and imaginary parts of (7) and (8) may
also be easily plotted if needed. Thanks to the trace prop-
erties of Dirac gamma matrices, for the total amplitude
we get

1
|Dp| = ,/5 u[@Fdp] = VIO + 0P (11

In Fig. 1 the dependence of both contributions together
with (11) on the relative position r for fixed relative time is
plotted. For t — 0, the amplitude || (which is indicated
in all graphs with a dotted line) is hardly visible, since it
becomes a Dirac delta function, which is not easy to draw.
Due to the denominator in (4), the amplitude for £k = 0
exhibits the singularities on the light cone. This does not
refer to the nonzero instanton sector (dashed line). The
solid line corresponds to the expression |Pp|.

On the third plot (i.e., for = 3 in units of w™!), we
observe the broadening of peaks in |®| and strong re-

duction of the value of |<I>E>l) |. This is understandable since
3 is close to 7 (hence sin (w?/2) = 1 and cos (ut/2) = 0).
The same refers to + = 9, which approaches 37. On the
other hand, for t = 6 (i.e., close to 277) and t = 12 (i.e.,
almost 417), I(IJE})I becomes more important, and I(I)E?)I is
close to zero, apart from the proximity of the light cone,
where peaks turn now very narrow. This kind of light-cone
singularities is connected with the masslessness of the
fundamental fermions in the model.
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Since the Basset function tends to zero for large
arguments,

Ko(z) ~ e %/ /2,

it may be easily seen from (7) and (8) that both amplitudes
behave like 1/ \/m and become comparable to each other
for large separations. This is a relatively slow decrease and
is again related to the formation of the massive bound state
by massless fermions and to the presence of fermionic zero
modes in the instanton background. One should also note
that in that region (strictly speaking outside the light cone),
the whole amplitude in both sectors is real (for § = 0).

If we now fix the relative position and investigate in an
analogous way the relative time dependence of the ampli-
tudes, we expect their quasiperiodic behavior due to the
presence of trigonometric functions (in a boosted frame,
this character would appear also in the r dependence).

They make IQDEF(,)‘I)I to have (by turn) nodes at the integer
values of 77/ w. This can be seen in Fig. 2, together with the
typical light-cone singularities. Again the peaks of |CI)5[9)|
widen for odd values of 77/u (which is also in general
accompanied by the damping of instanton contributions)
and become sharp for even ones. The latter are regions of
instanton domination. On the other hand, |®p| is much
smoother with no nodes at all. For example, if the relative
distance gets large, there is for relatively small ¢# a whole
range of almost constant |®p|. One can easily check that in
this case,

(P = 572l # 2 sin (P2,
o

] = Fers/2e ) cos (P2,
o

12)

-0 t=3
1 1
r A R r
-10 -5 5 10 -10 -3 3 10
t=9
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FIG. 1. The dependence of amplitudes ICDE?)I (dotted line), I(IDEJI)I (dashed line), and |®p| (solid line) in units of w on relative position

r with fixed relative time ¢. The variable ¢ for the successive plots

is chosen to be 0, 1, 3, 6, 9, 12. All coordinates are in units of = !.

The dotted line for # = 3 and t = 9 is covered by the solid line since the instanton contribution is tiny.
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FIG. 2. Same as Fig. 1, but with fixed relative position r. The variable r for the successive plots is chosen to be 0, 1, 3, 6, 9, 12.

Since for those fairly large values of —x? the function

Ko(+/— u*x?) equals almost zero, both contributions com-
plement each other and |®p| becomes a very slowly
varying function. This interplay between oscillating non-
instantonic and instantonic parts constitutes an interesting
observation.

For large values of relative time (i.e., for large timelike
separations), we have to use the upper formula of (5). The
asymptotic behavior is then dictated by the presence of a
logarithm since for the Hankel function we have

Hy (@) ~ e/\Z = 0.

and we conclude that the amplitudes fade out, similarly to
the previous case, as 1 /m.

III. BETHE-SALPETER AMPLITUDE IN
MOMENTUM SPACE

A. k = 0 instanton sector

In real four-dimensional quantum field theory calcula-
tions, one mostly deals with Feynman diagrams in momen-
tum space. In this representation, the S-matrix elements
have their natural form, and the analytical properties of the
Green’s functions (poles, cuts) are closely related to the
physical quantities. One can also expect that the B-S wave
function should reveal certain important properties, regard-
ing for instance the internal threshold structure.

To analyze the dependence of B-S wave function on the
relative two-momentum variable Q = [E, g], what we
need is the transformed propagator (3), since

V(Q) = —2y7 f d?xe'%* sin (Px/2)S(x)y’
= iﬁ[s(g + Q) - S(—g + Q):I'ys. (13)

Due to its complicated form, however, it cannot be explic-
itly Fourier transformed. The direct numerical transforma-
tion is, on the other hand, very slowly convergent due to the
oscillatory nature of integrand function. For these technical
reasons, we prefer to make use of the integral representa-
tion of the Euclidean version of propagator S(p) [49],
which may be, in a straightforward way, continued to
spacelike momenta,

) = 5 e [ ann
X exp [EKO(,LLX/\/—_pZﬂ,

where J; is the Bessel function. One might say that in this
formula the angular part of the two-dimensional transform
has been performed, and the radial part is still left. To make
the appropriate plots, we will need to know the values of
S(p) in the whole momentum plane. The analytical con-
tinuation of (14) to the region, where pr>0, gives

\/2_( 2];/4(1 — l)eVE/zf dx~/xJ,(x)

o[ 7 (/37

Using (14) and (15) together, we get the integral represen-
tation of (13).

Figure 3 shows the dependence of the quantity |<I>§9)|,
defined again by the formula (9) [but referring now to the
object (13)], on the relative momentum for two chosen
values of relative energy, E =0 and E = 1/4pu, in the
center-of-mass frame.

The observed singularities are of a kinematical nature
(similar ones appear in Refs. [26-28]) and correspond to

(14)

S(p) =

(15)

the external “legs” of the B-S wave function (CI);(,)) isnot an
amputated function). They arise when (P/2 + Q)?> = 0 or

085042-4
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(=P/2+ Q)*=0. These two
rewritten as

(k/2+EP —q> =0,

conditions may be

(—u/2+E?—g*>=0.
(16)

Hence, for E = 0 the singularities are situated at g =
+1/2u. If relative energy increases, four such singularities
appear. For instance at E = 1/4u, we getg = *1/4u and
g = *=3/4u. This is clearly visible on the second plot of
Fig. 3.

When the relative energy reaches the threshold corre-
sponding to the Schwinger boson, a new effect appears. In
general, nth order thresholds result from satisfying the
equations

(P/2+ QP = (nu)*  (=P/2+ Q) = ()’ (17)

i.e., when appropriately high-momentum transfer becomes
possible. In the center-of-mass frame, their appearance
requires that (=u/2 + E)> — n?u? > 0 and, hence,

(5= (o= Ju][e+ (= Ju]>0 o

For n = 1 we see that while taking upper signs in (18), the
first two cusps should appear if E > 1/2u. For instance as
E = 3/4u, the solutions of the first equation of (17) are

E=0
200
100
q
-3 -2 -1 1 L 2 3
2 2
E_l
7
2
1
) 3 1 3 2 q
4 4 4 4

FIG. 3. The dependence of the amplitude ICDEE(,))I (in units of
u~1) on the relative momentum ¢ for fixed values of relative
energy (in w): E = 0 (upper plot) and E = 1/4 (lower plot).
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S RN R A

These cusps are clearly visible on the first plot of Fig. 4 in
places exactly predicted, apart from kinematic singularities
at g = *1/4u and g = *=5/4u resulting from (16).

Moving further we see that if relative energy exceeds the
value of 3/2u, the condition (18) with lower signs may be
satisfied too. This should produce additional two cusps. For
exemplary value E = 7/4u it may be easily found that the
positions of all four cusps are

V65

M, q= iT,u ~ +2.02u.

W

q==

This is exactly what we see on the second plot of Fig. 4
(besides kinematic singularities which now move to
*+5/4u and £9/4u).

Putting n = 2 into (18), we find that second-order cusps
connected with two-boson thresholds appear for E > 3/2u
(the first two) and for E > 5/2u (the other two). These
cusps are, however, extremely weak (they are smaller than
the thickness of the line we use), although visible on very
high resolution plots. For instance, on the lower plot of
Fig. 4, the n =2 cusps appear at g = +/17/4u ~
*1.03u. We have to stress that we positively verified

_ 3
E_1
2

L

100

JUG

-3 92

5
4 4

JUL

2 3

q

3 3 5 9
4 4 4 4

FIG. 4. Same as in Fig. 3 but for E = 3/4 (upper plot) and
E = 7/4 (lower plot).
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also the appearance of all four new cusps for E = 11/4u 10{;: =0

(they are at +=+/105/4u and =+/17/4u), but they are so
faint that presenting the appropriate drawings here is
useless.

B. k£ = =1 instanton sectors 50

To find out whether instanton terms exhibit the same
threshold structure, we now have to Fourier transform
the expression (8), which, like for kK = 0, cannot be done J
explicitly. Fortunately, an analogous integral representa-
tion for Q% <0 as in (14) may be used. If we define the -3 -2 -1 1
quantity

B(p) = [ dPxelPrels’ P, (20) 109 1

we obtain

.12 1 _ oo
B(P) = _27”\/;(—192)3/46 YE/ZIO d)C\/.;J()(X) b

X exp[—lKo(Mx/ —p2>], @1
2 JIUARVE

where Jj, is the Bessel function. 3 ) ) 5 s

The instanton contribution to the B-S function may be 54 7 3
now written as

FIG. 5. Same as in Fig. 3 but for |(I>531)|.

W) = M 5 ,—i6y
ep (Q)—men?’e Y E3

X [36 + Q) + B(—g + Q)] (22) f( 4

For the timelike Q, one finds

20—4) 1 _ o0
B(p) = _TLWE 75/2/;] dx/xJo(x)

X exp [ - %Hé”(ux/\/z—;)]. (23) )

As may be seen in Figs. 5 and 6, the amplitude IQDEJI)I has : -2

analogous kinematic singularities as ICI)EE?)I, whose loca-
tions are dictated by (16). At the same threshold values of =7
E as before (i.e., 1/2u, 3/2u forn =1, and 3/2u, 5/2u 30
for n = 2, and so on) and for the same relative momenta
the resonant cusps occur. Their positions are at =3/4u on
the upper plot of Fig. 6 (E=3/4u) and at *3/4u,
+/65/4u on the lower one (E = 7/4u). They are now
much less pronounced, although still perfectly visible.

It is important to see how these peaks move with relative
two-momentum. If they really correspond to the Schwinger
boson thresholds, they should be located on hyperbolas J L
(17) in the plane (E,q). That it is actually the case may be A LL lJ L ')
seen from the pictorial density diagrams of Fig. 7, where - -7 7 %
light areas represent large values of the amplitudes and
dark small ones. Apart from the white lines, which show FIG. 6. Same as in Fig. 4 but for [®{].

25

_
—

| w

25

5 29 3
4 4
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3

N~

—

N

> 0

-1
) / \
-3

-3 -2 -1 0 1 2 3

E

FIG. 7. The density graphics showing the behavior of |(I>5,9)| (left diagram) and |<1>SD])| (right diagram). Bright areas correspond to
regions of large values and dark areas of small values. The colors are relative within each plot, so they should not be compared between

left and right diagram.

the locations of kinematic singularities, the two hyperbolas
corresponding to n = 1 thresholds are noticeable. We
checked that the n = 2 hyperbolas are also present, but
their observation requires very precise color plots and
simultaneous artificial lowering of the large values of

ICDE[(,)‘ 1)I in order to reduce the maximal amplitude of colors.
An important question arises concerning how these ef-
fects emerge in (13) and (22) from the mathematical point

of view. Why do different expressions for |<I>§9)| and |CI)S)|
display almost identical threshold structure? The crucial
observation is that infinite integrals (15) and (23) owe their
convergence to the presence of oscillating (phase) factors
coming from Bessel and Hankel functions. If we expanded
the exponential into a power series, the nth term under the
integral would contain the factor (/ stands for 0 or 1)

Jl(x)[H(()l)(Lx)]n.

v’

Now, in the large x asymptotics, the Bessel function (both
for / =0 and [ = 1) contributes e~ to the phase factor,

and n Hankel functions e"*/ P *. If both factors cancel,
ie., if

nt= =+, (24)
Vi’

(of course only “+” comes into play), the value of the

integral over x rapidly increases. The condition (24) cor-

responds exactly to (17). This again proves the correctness

of our former observation—that the cusps are localized on

hyperbolas in the relative two-momentum plane.

IV. SUMMARY

Summarizing the obtained results, we would like first
to stress that Schwinger model turned out again to be
an exceptionally useful theory. The possibility of

investigating the exact bound-state wave function in rela-
tivistic quantum field theory is unique even among model
studies. The fact that it possesses two features typical of
QCD——confinement and instantonic vacuum—deserves
special mention.

The full Bethe-Salpeter wave function in coordinate
space in this model is known from the residue in the
bound-state pole of the two-fermion Green’s function,
without the necessity of solving the B-S equation itself
(even the interaction kernel needed to formulate this equa-
tion is unknown). The contributions to the wave function
come from k = 0 and k = =1 instanton sectors (but not
higher, since this quantity is defined through the operator
bilinear in fermion fields). In Sec. II we analyzed, in the
center-of-mass frame, the wave function’s behavior in
relative position and in relative time. It turns out that it
displays the light-cone singularities and decreases as
1/ \/m for large spacelike separations and 1/ \/m for time-
like ones. This result, however, may be typical for D = 2.
As functions of relative time, both noninstantonic and
instantonic contributions show the oscillatory behavior
shifted by a phase of 7/2 with respect to each other.
Owing to that, the total function defined by (11) is
smoothed and has no nodes.

In the Fourier space we analyzed the behavior of |CI)§[9) |

and IQDSDI)I on relative momentum with fixed relative en-
ergy. In both instantonic sectors we found kinematic
singularities coming from the external “legs” of the un-
amputated amplitude. For E exceeding the threshold val-
ues, there appear peaks corresponding to the Schwinger
boson resonances. They emerge both for k=0 and

= *1. They are located on hyperbolas defined by
Eqgs. (17). This threshold behavior has been suggested in
the approximated scalar-scalar model [11].

Since the Schwinger model is both a nontrivial field
theory and analytically solvable, the obtained results may

085042-7
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be of some importance for studies of more advanced QFT
models. Both the retardation effects and going beyond the
“ladder” approximation are significant from the point of
view of the correct description of the bound state [50].
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The model also opens the possibility of investigations of
the B-S amplitude in the boosted frame, the analytical
properties in the complex relative energy plane, and of
form factors.
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