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We consider two aspects of scattering in strong plane-wave backgrounds. First, we show that the

infrared divergences in elastic scattering depend on the structure of the background, but can be removed

using the usual Bloch-Nordsieck approach. Second, we analyze the infinite series of shifted-mass-shell

poles in the particle (Volkov) propagator using lightfront quantization. The complete series of poles is

shown to describe a single, on-shell, propagating particle.
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I. INTRODUCTION

Strong external fields impact many aspects of gauge
theories. In QCD, magnetic fields affect the vacuum [1],
phase diagram [2], electric dipole moments [3] and the
quark-gluon plasma [4]. In QED, scattering processes in
the fields of intense lasers currently attract quite some
interest [5,6], with the aim of investigating both nonper-
turbative effects [7] and beyond-standard-model physics
[8,9]. Modeling the laser as a plane wave allows scattering
amplitudes to be calculated for arbitrarily strong fields
because the fermion propagator in a plane wave is known
exactly; this is the Volkov propagator [10].

In this paper we will consider the propagation of
quantum particles in strong plane waves. While the basic
results for scattering in plane waves were given in the
1960s [11–13], those calculations assumed either mono-
chromatic waves or crossed fields (constant plane waves).
Both of these fields are of infinite extent and are therefore
rather special cases; two statements related to them will be
examined below.

We begin by considering the infrared (IR) structure of
processes in strong plane waves, focusing on soft correc-
tions to elastic scattering. In a crossed field, the differential

probability of photon emission scales like 1=!2=3 rather
than as 1=! as in bremsstrahlung. Thus the logarithmic
divergence of the IR becomes an integrable singularity.
That this happens in a field which never vanishes is poten-
tially interesting because IR problems originate in the
(incorrect) assumption that the QED coupling switches
off at large distances [14,15]. This weakening of the
divergence actually comes at the expense of admitting
unphysical large distance behavior (see Ref. [16]), but it
has raised the question of whether a partially nonperturba-
tive treatment of plane-wave backgrounds can offer insight
into the IR problem [17–19], which is still under active
investigation [20–25]. It may also be that background fields
lead to new IR problems; it has been suggested, for ex-
ample, that IR divergences do not factorize in pair-creating

backgrounds [26]. These are all motivations for the first
part of this paper, in which we investigate how the structure
of the background field impacts the structure of IR
divergences.
In the second part of the paper, we turn to the basic

building block of elastic scattering, the electron propaga-
tor. Our focus is on the poles of the propagator, particularly
in monochromatic fields. These are still used as an intuitive
basis for more general calculations in finite pulses, and
this has led to some debate concerning the ‘‘intensity-
dependent mass shift’’ in Refs. [27–30]. The mass shift
(or rather, its effect) can be seen in the spectrum of
undulator radiation [31], but its theoretical definition is
more elusive. When it appears, the mass shift leads to
poles in the propagator away from p2 ¼ m2, suggesting
the presence of heavy states. We investigate this by directly
constructing the quantum states of a particle in a plane
wave and also by resumming the pole contributions to
scattering amplitudes.
The paper is organized as follows. We begin by briefly

reviewing necessary previous results. In Sec. II we discuss
loop and soft emission corrections to elastic scattering in
plane-wave backgrounds, and the cancellation of IR diver-
gences following [32,33]. In Sec. III we discuss the propa-
gator and the quantum states using lightfront quantization,
and explicitly relate the poles of the propagator to the
ordinary mass-shell condition. We conclude in Sec. IV.
Much of the groundwork for this paper was laid in

Ref. [16]. However, this paper can be read independently.
The reader who is interested in the details behind our
results is referred to the appendixes. Appendix A collects
useful results on the propagator, asymptotic states
and S-matrix normalization in external plane waves.
Appendix B contains full details for our IR calculations.

A. Conventions and review

Consider a classical particle in a plane wave F��ð�Þ
depending on � ¼ k:x with k2 ¼ 0, lightlike. We take
k:x ¼ !xþ, lightfront time. (As usual, x� ¼ x0 � x3,
x? ¼ fx1; x2g, and x� ¼ 2x�.) We consider finite duration
fields, for which F�� vanishes before some �i and after
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some �f. The lightfront structure of the plane wave means

that all initially present particles enter (leave) the wave at
the same lightfront time �i (�f). A particle entering the

wave with momentum p� has a subsequent kinematic

momentum �� given by

��ðp;�Þ ¼ p� � eC�ð�Þ þ k�
2ep:Cð�Þ � e2C2ð�Þ

2k:p
;

(1)

in which C�ð�Þ is the integral of the electric field strength
from the initial to the elapsed lightfront time:

Cjð�Þ ¼ 1

!

Z �

�i

d’Ejð’Þ; j 2 f1; 2g; (2)

and C� ¼ 0. No gauge potential is used or needed here.
(1) follows directly from solving the classical Lorentz
equation, which depends only on the field strength [34].
(It is easily checked, though, that the vector C�, as we

defined it, is a gauge potential for F��.) We are always

free to choose �i. Note that Cð1Þ is proportional to the
(trivially gauge invariant) Fourier zero mode of the electric
field strength [16]:

Cð1Þ ¼ 1

!

Z
d’Eð’Þ ¼ 1

!
~Eð0Þ: (3)

From here on we write C1 � Cð1Þ and �1 � �ðp;1Þ.
We are interested in ‘‘unipolar’’ pulses for which the
integral over the entire electric field is nonzero [35], hence
C1 � 0, and which can be taken as crude models for fields
which provide vacuum acceleration [36–38]. Our interest
here is not in the phenomenology of vacuum acceleration,
but rather the effect of such accelerating ‘‘structures’’ on
the IR sector of scattering amplitudes. After F�� has

switched off, C� becomes constant, and we can identify
it with its value at � ¼ 1, so we write C�ð�Þ ¼ C�

1 for
�>�f throughout. C1 is, as we will shortly see, central

to the IR in plane-wave backgrounds. Using (1), the dif-
ference in momentum for an electron passing through the
wave obeys ð�ðp;1Þ � pÞ2 ¼ e2C21 � 0, which has the
right sign for scattering. When C1 ¼ 0, there is no net
acceleration and �1 ¼ p.

II. THE INFRARED SECTOR

We begin by recalling some results on the IR sector of
classical and quantum electrodynamics. See [Ref. [39], §6]
for a clear introduction to the IR, and our Appendix B for
full details of our IR calculations. Beginning classically,
the spectral density of radiation emitted from a classical
particle in any background field is proportional, at low
frequency, to 1/frequency, which signals an IR divergence
in the integrated photon number. In a plane wave, the
constant of proportionality is nonzero when the wave is
unipolar, and zero for ‘‘ordinary’’ waves. In other words,

there is an IR divergence when the background is capable
of giving net acceleration to a particle passing through it,
i.e., when C1 � 0.
We now turn to QED, where the same divergences can

be seen in the IR behavior of scattering processes in plane-
wave backgrounds. Consider first single photon emission
from an electron in a plane wave, called ‘‘nonlinear
Compton scattering’’ [12,13,40]. As an introduction, it is
straightforward to calculate this process in ordinary per-
turbation theory. (As a caveat, see Ref. [41] for the radius
of convergence of perturbative expansions in background
field problems such as that considered here.) Assuming
that the initial electron is at rest here (and only here) for
simplicity of presentation, the lowest order expression for
the probability of nonlinear Compton is1 [16]

Ppert¼
Z 1

0

ds

2�

�
e ~EjðsÞ
m!

�
2 1

s

��

2

Z 1

�1
dðcos�Þ

�
!0

s

s!

�
2
�
!0

s

s!
þs!

!0
s

�sin2�

�
; (4)

which is a sum over Klein-Nishina probabilities for
ordinary Compton scattering of incoming photons of all
frequencies s! (second line), modulated by the strength of
the electromagnetic fields (first line). Gauge invariance
is manifest. The photon frequencies !0

s which can be
produced by each Fourier mode s of the background fields
Ej is

!0
s ¼ s!

1þ s!
m ð1� cos�Þ : (5)

The lower limit of the frequency integral in (4), s ¼ 0,
contains a logarithmic IR divergence, corresponding to the
emitted photons becoming arbitrarily soft. Expanding (4)
for small s, we have

Ppert ¼ 4�

3

Z
0

ds

2�

jeC1j2
m2

1

s
þOðsÞ: (6)

A standard perturbative calculation therefore reveals that
when C1 � 0, the probability is IR (log) divergent at
s ¼ 0. The IR divergence is present when the Fourier
zero frequency mode of the background field strength is
nonzero. This coincides with the ability of the field to
transfer net acceleration to a particle; see above.
However, we do not wish to treat the background per-

turbatively. There are two reasons for this. First, we have a
phenomenological interest in high intensity laser matter
interactions [6], for which the background is strong and not
amenable to perturbation theory. (The convergence of per-
turbation theory in the background intensity is discussed in
Ref. [41].) Second, working perturbatively can generate
divergent diagrams which require careful treatment in

1To convert from the notation of Ref. [16], use that f0 in that
paper is f0 ¼ eE=ðm!a0Þ.
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order to obtain the correct result [42], a result which is
obtained directly by treating the background exactly. We
therefore work in the Furry picture, the application of
which to QED in strong background fields was pioneered
many years ago in Refs. [11–13]. In this approach, inter-
actions between quantized fields are treated in perturbation
theory, just as in ordinary QED, but the background field
are treated exactly i.e., without recourse to perturbation
theory.

If one calculates exactly in the background, the soft
contribution to the probability of nonlinear Compton is,
using dim reg in d > 3 dimensions,

Y :¼ �e2
Z ddl

ð2�Þd
1

2l0

�
�1
l:�1

� p

l:p

�
2
; (7)

with a cutoff corresponding to, say, detector resolution. See
Fig. 1. This result is logarithmically divergent in d ¼ 3
when C1 � 0, but vanishes when C1 ¼ 0. Hence, this IR
divergence depends on the properties of the background;
we have a divergence in a unipolar wave, and no diver-
gence in an ‘‘ordinary’’ wave, which agrees precisely with
the classical theory.

IR divergences typically arise when virtual particles
come close to the mass shell. The field-dependent IR
divergences in plane-wave backgrounds arise as follows.
At each vertex, the structure of the background allows the
x� and x? integrals to be performed immediately. The pþ
integral can be performed using the residue theorem, which
restricts the remaining xþ integral by introducing a light-
front time ordering. One then sees that it is the large
lightfront time parts of these integrals which yield singu-
larities. In other words, our IR divergences essentially arise
from the background-free regions of spacetime, before and
after the pulse. See Appendix B.

A. Double Compton scattering: Hard-soft factorization

Consider now the emission of two photons from an
electron in a plane wave, i.e., the process

e�ðpÞ !inlasere�ðp0Þ þ �ðk0Þ þ �ðlÞ; (8)

as recently investigated in Refs. [43–45]. Assume that the
photon with momentum l� is soft. It can be emitted from

either the incoming or outgoing leg, and the S-matrix
element takes the form

Sfi ¼ e�soft:

�
p

l:p
� p0

l:p0

�
SNLCðp ! p0; k0Þ; (9)

in which SNLC is the S-matrix element for nonlinear
Compton. This is the expected form of a soft correction
to a hard scattering process; two-photon emission becomes
degenerate with nonlinear Compton when one of the emit-
ted photons is soft. The soft divergence implied by (9) is
independent of the structure of the background. This is an
example of a general result (see the Appendix B): the
structure of the plane wave has no impact on the hard-
soft factorization of IR divergences, or the severity of those
divergences, which give the usual 1="IR poles in 4þ 2"IR
dimensions. (See Refs. [46,47] for examples in crossed
fields.) Essentially, taking the soft limit removes the
background-field dressing from emission vertices, and
factorization proceeds as in QED without background.
However, the soft divergence implied by (9) is not the

highest order divergence in two-photon emission. Rather,
this comes from the case in which both photons are soft;
two-photon emission then becomes degenerate with elastic
scattering; see Fig. 2. The IR divergent part of the emission
probability in this case is

P ¼IR 1
2

�
e2

Z ddl

ð2�Þd2l0
�
�1
l:�1

� p

l:p

�
2
�
2 ¼ 1

2
Y2: (10)

Unlike in (9), this divergence does depend on the structure
of the background. For C1 � 0 each integral contributes
the same divergent term; the leading singularity is there-
fore 1="2IR.

B. Elastic scattering

As shown in Appendix B [leading to (B21)], the elastic
scattering probability including the soft contribution from
all loop orders (see Fig. 2) is

P ¼IR exp
�
e2

Z ddl

ð2�Þd
1

2l0

�
�1
l:�1

� p

l:p

�
2
�
¼: eX; (11)

which defines X. This expression has two parts. The
exponential is the all-orders soft loop contribution which
is log divergent in d ¼ 3 when C1 � 0. This multiplies a
‘‘1’’ which is (see the Appendix B), the exact tree-level
probability of elastic scattering. (ThatP ¼ 1 at tree level is
already a sign that something is wrong).
These problems are related and their resolution is clear:

it is not possible to observe ‘‘elastic scattering’’ alone, due
to the potential emission of soft, unobservable photons.

FIG. 1. Nonlinear Compton scattering of a soft photon, at tree
level. Double lines indicate the background-dressed Volkov
propagator.

FIG. 2. The probability for elastic scattering. The grey dot
denotes all loop corrections.
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When we calculate the inclusive probability, IR divergen-
ces coming from soft emission should cancel those coming
from the loops. We turn to this now.

C. IR cancellation

Generalizing (10), the tree-level probability of emitting
n soft photons is Yn=n!. The all-orders soft loop contribu-
tion to each of these processes is eX, as in (11). What can be
observed in an experiment is the sum of (1) the probability
for elastic scattering and (2) the probabilities for emission
of any number of undetected soft photons. This sum
(see Fig. 3) is the measurable probability of observing
scattering of the electron without photon emission, and
its IR part is

P ðe� ! e�Þ¼IR eX � 1þ eX �
�
Y þ 1

2
Y2 þ � � �

�
¼IR eXþY:

(12)

We see that the IR contributions factorize. Comparing (7)
and (11), we see also that X ¼ �Y, so that

P ðe� ! e�Þ¼IR 1; (13)

and the leading field-dependent soft divergences cancel to
all orders. Two remarks are now in order.

First, we have followed Ref. [33] and considered only
the divergent IR contributions to amplitudes, showing
that these cancel. In order to extend our results to the
complete amplitudes, i.e., in order to include the IR finite
parts, one can instead follow the method of Ref. [32].
(See Refs. [46–49] for various loop calculations).

Second, there are no purely soft divergences in a crossed
field [12]. In such a field, all particles are accelerated to the
speed of light. Further, the literature results assume that the
particle is also initially moving at the speed of light. This
leads to the replacements f�; pg ! k in (10) and (11), so
that X and Y vanish individually. If a field which is nonzero
and constant for a long but finite time is used instead, the
C1-dependent logarithmic divergence reemerges [16].
Thus, the ‘‘improved’’ IR behavior in crossed fields comes
at the expense of introducing unphysical large distance
behavior. It does not seem to say anything about the large
distance structure of QED.

D. Indistinguishable processes

Suppose now that C1 ¼ 0, i.e., there is no vacuum
acceleration, and consider again nonlinear Compton scat-
tering. The final state integrals are now IR finite, and one
can integrate over all photon momenta to calculate the
‘‘full probability.’’ This number, though, is not measurable.
Even when processes are IR finite, one must still account
for indistinguishable processes.
Physically, this issue originates in the nonzero frequency

range of a pulsed field. If we parametrize this frequency
range as s! where s is real, then each s can produce
photons with a frequency !0

s, where (taking the incoming
electron to be at rest for simplicity) [16]

1

!0
s

¼ 1

s!
þ 1

m
ð1� cos �Þ: (14)

Each !0
s is bounded below, !

0
s > !s, but this lower bound

can extend down to zero frequency in a pulse, even if there
is no support at zero frequency itself, i.e., if C1 ¼ 0 [16].
Suppose, then, that an experiment can detect only photons
of frequency higher than !0. The measurable probability
for one-photon emission is then the sum of that for non-
linear Compton scattering with !0 >!0, together with the
sum of all n-photon emission probabilities in which n� 1
photons are soft, !0 <!0.
For a discussion of indistinguishable processes and the

structure of the Volkov propagator, see Ref. [50]. The
essential part of the amplitudes calculated above is in
fact just this propagator: elastic scattering at tree level is
given by the double amputation of the propagator (see
Appendix A), and this is multiplied at higher orders by
soft corrections. We therefore turn now to the propagator
itself.

III. THE POLES OF THE PROPAGATOR

The Källén-Lehmann representation of the two-point
function provides a natural way to identify the mass of
single-particle states, as the location of the poles in
momentum space [51]. One of the most discussed proper-
ties of the Volkov propagator is its infinite series of poles at

ðp� lkÞ2 ¼ m2�; l 2 Z; (15)

where m2� ¼ m2ð1þ a20Þ is the shifted mass of a particle in

a plane wave of intensity a0 [34,52,53]. There is no pole
at the ordinary mass shell. The l ¼ 0 pole, p2 ¼ m2�,
might suggest a change in the rest mass, while the other
poles describe such a heavy particle absorbing ‘‘multiple
photons’’ from the background. Our focus in this section is
on the pole structure. It is important to note that the poles
‘‘are there.’’ Signals of the mass shift are seen daily2 in, for
example, the spectra of undulator radiation [31]. The mass

FIG. 3. The measurable probability of ‘‘scattering without
emission’’ is the sum of the probabilities for elastic scattering,
and the probabilities for the emission of arbitrary numbers of soft
(unobserved) photons.

2Observation of the mass shift in the famous SLAC E-144
experiment [54,55] is apparently less certain [56].

ANTON ILDERTON AND GREGER TORGRIMSSON PHYSICAL REVIEW D 87, 085040 (2013)

085040-4



shift is therefore a real effect, but its interpretation, and
also that of the poles, is debated. It was originally thought
that the poles were divergences [57], and that they would
be regulated (given a finite height and width) by loop
corrections [58]. The fact that the poles are discrete has
lead to the claim that the spectrum of a particle in a plane
wave is discrete [57,59]. See Ref. [60] for an interpretation
of the mass-shift m� as a finite mass renormalization, and
Ref. [61] for an interpretation in terms of effective
potentials.

At this point we recall the debate in Refs. [27,28] on the
existence of the mass shift. Using exact treatments of the
background field, the mass shift was shown to play an
important role in scattering amplitudes, beginning with
the work of Ref. [11] and being pursued in Refs. [12,13].
It can be observed through, for example, an associated
frequency shift in the photon spectrum emitted by elec-
trons in a plane wave [28]. However, in the perturbative
treatment of Ref. [27], it was claimed that no mass shift
existed. This was resolved in Ref. [42]. The authors of
Ref. [27] had discarded a set of diagrams as being diver-
gent and therefore unphysical, whereas Ref. [42] showed
that the contributing sum of all such diagrams was actually
finite, and that the finite term was precisely the missing
mass shift. The lesson here is that it is important to treat the
background field exactly, without perturbation, in order to
keep track of the mass shift, which is of central interest.
That is what we will do here (and throughout this paper).

Since a plane wave cannot spontaneously produce pairs
[62], particle number is conserved and our theory is simple.
However, progress with the equal-time quantization of this
theory has only very recently been made [50]. The princi-
ple difficulty lies in proving certain orthogonality relations
of the Volkov solutions [63,64], this difficulty being due to
the fact that the background singles out preferred lightlike
directions. It is therefore natural to approach problems in
plane waves using lightfront quantization, as suggested in
Ref. [65]. We will show here that the theory is trivially
quantized on the lightfront. We will then recover the
Volkov propagator as a lightfront time-ordered product
and investigate the poles.

Spin effects do not impact our discussion so we restrict
to a scalar particle. Propagator poles are usually tied to the
optical theorem and intermediate states, so we will begin
by constructing the quantum states of a particle in a plane
wave explicitly. Loop corrections are not necessary here,
so we turn off the QED interaction. We therefore consider
only a scalar particle in a plane wave.

A. Particle states in plane waves

In lightfront field theory, the dynamical (noncon-
strained) gauge fields are those transverse to the lightfront
and, therefore, to the propagation of our background laser
[66,67]. If we take a transverse potential A� � A�ðk � xÞ
depending only on k � x, then the physical external field is

Fext
��ðk � xÞ ¼ k�A

0
�ðk � xÞ � A0

�ðk � xÞk�; (16)

which is a plane wave with transverse electric fields
Ej ¼ !A0

j. It can then be easily checked that a transverse

potential for our plane wave background with fields Ej is

the vector C� described in Sec. I A. With this, we turn to

the equations of motion for a complex scalar in a plane
wave, which are ðD2 þm2Þ’ ¼ 0. The general solution is

’ðxÞ ¼
Z d3p�ðp�Þ

ð2�Þ32p�
ap’pðxÞ þ byp’�pðxÞ; (17)

where p :¼ fp?; p�g. The functions ’p are scalar Volkov

solutions obeying the initial condition ’pð� ¼ 0Þ ¼ e�ip:x

[10]. The set fap; bpg is therefore the initial data at � ¼ 0,

and the Volkov solutions recover the classical kinematic
momenta of a particle in a plane wave via

iD�ð�Þ’pðxÞ ¼ ��ðp;�Þ’pðxÞ: (18)

To quantize, we impose the lightfront commutation rela-
tion (LCR) [67],

½’ðxÞ; 2@�’yðyÞ	jxþ¼yþ ¼ i	?;�ðx� yÞ: (19)

Using (17) to calculate the left-hand side of (19), the
complicated exponentials in the Volkov solutions cancel
immediately, and the commutator reduces to that of the
free lightfront theory. The LCR is obeyed if

½ap; ayq 	 ¼ ½bp; byq 	 ¼ ð2�Þ32p�	3ðp� qÞ; (20)

which are the usual free-field commutators on the light-
front. The particle interpretation of our theory is as follows.
The vacuum j0i is, as in the free theory,3 the state annihi-
lated by the ap and bp, while the first excited states are

jpi :¼ ayp j0i; and j �pi :¼ byp j0i; (21)

which we will now see are one-particle/antiparticle states
respectively. Using the energy momentum tensor, we
combine the normal ordered Hamiltonian and kinematic
momenta into

��ð�Þ ¼ T�� ¼
Z

d3x@�’yD�’ðxÞ þ c:c:;

¼
Z d3p�ðp�Þ

ð2�Þ32p�
��ðp;�Þaypap þ ���ðp;�Þbypbp;

(22)

where ��� � ��je!�e. The vacuum is annihilated by the

Hamiltonian, and is therefore stable; this is just the long-
known statement that a single plane wave is incapable of

3This provides a very simple example of the triviality of the
lightfront vacuum [67].
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spontaneous pair production [62]. The states (21) then have
time-dependent energies and momenta given by

��ð�Þjpi ¼ ��ðp;�Þjpi;
��ð�Þj �pi ¼ ���ðp;�Þj �pi:

(23)

The excited states therefore carry the time-dependent
momenta of the classical theory. So, ay and by create
particles which, on the initial surface � ¼ 0, have on-shell
kinetic momenta p�. This labels the continuous spectrum

of states. At all subsequent times, the states carry momen-
tum ��ðp;�Þ with �2 ¼ m2. Thus, we have the same

particle content as a free theory.

B. The propagator

We have seen that the one-particle states have mass m2,
and that this spectrum of states is continuous. The
background-dependent structure in the field operators
(essentially the Volkov solutions) simply describes the
action of the Lorentz force on a particle in a background
field. How should this be reconciled with (15) which might
suggest that additional ‘‘heavy’’ states appear? To answer
this we turn to the propagator, which is the lightfront time-
ordered product of the fields (17):

Gðx; yÞ ¼ h0jT þ’ðxÞ’yðyÞj0i

¼
Z d3p�ðp�Þ

ð2�Þ32p�
�ðxþ � yþÞ’pðxÞ’y

p ðyÞ

þ �ðyþ � xþÞ’�pðxÞ’y
�pðyÞ: (24)

The lightfront time ordering may be made covariant by
using an i� prescription to yield

Gðx; yÞ ¼ i
Z d4p

ð2�Þ4
e
�ip:ðx�yÞ� i

2k:p

R
k:x

k:y
2eA:p�e2A2

p2 �m2 þ i�

¼ i
Z d4p

ð2�Þ4
’pðxÞ’y

pðyÞ
p2 �m2 þ i�

: (25)

This is the Volkov propagator [68,69]. In the second line,
we have written the Volkov solutions ’pðxÞ with a script

label to indicate that p� is arbitrary, i.e., p2 � m2 in

general. Performing the integral over pþ (on which ’p

depends trivially), the simple pole returns us to (24),
putting the initial momentum p�, and therefore the kinetic

momentum ��, onto the mass shell.

Since we can write p2 �m2 � �2ðp;�Þ �m2, we see
that (25) is a spectral representation of the explicitly time-
dependent operator D2 þm2. It is not, in contrast to the
free propagator, a Fourier representation, which is avail-
able only for simple fields such as monochromatic waves.
Fortunately, this is just the case of interest. So, consider a
circularly polarized, monochromatic field

C�ð�Þ ¼ l1� sin�þ l2� cos�; (26)

with e2li:lj ¼ �m2a20	
ij, lj:k ¼ 0. The intensity a0

appears here and is equal to eErms=m!. We define

rei� ¼ i
l1:p

k:p
þ l2:p

k:p
and q� ¼ p� þ a20

2k:p
k�: (27)

The well-known quasimomentum q� obeys q2 ¼
m2ð1þ a20Þ � m2�, yielding the shifted mass. The Volkov

solutions in this field are

’pðxÞ ¼ e�iq:x�ir sin ð���Þ�ir sin ð�Þ: (28)

(The final term in the exponent follows from initial con-
ditions, but is usually dropped in the literature. Our results
hold in either case.) The Fourier transformed propagator
can be constructed directly from (24) or (25) and coincides
with the known result [60,68,69]

~Gmonðp0; pÞ ¼ X
n;l2Z

JnþlðrÞJlðrÞein�ð2�Þ4

� 	4ðp0 � p� nkÞ i

ðp� lkÞ2 �m2� þ i�
:

(29)

The delta-comb structure is due to the periodicity of the
background [60,70]. Since the Bessel functions are every-
where regular, we see that when p� and p0

� are such that

the nth delta function has support, we recover the infinite
series of poles (15).

C. Pole resummation

Writing a Feynman amplitude in momentum space,
internal lines become the Fourier transform of the propa-
gator. From (29), we see that one then hits a ‘‘resonance’’
for particular values of l and n, each of which corresponds
to taking particular values of energy-momentum from the
background.4 In general, all the poles’ terms contribute to a
given amplitude, and there is no obvious way to single out
a particular pole over any other. We therefore consider
the sum of contributions from all the poles. This can be
extracted by taking real and imaginary parts, i.e., applying
the standard result

1

xþ i�
¼ �i�	ðxÞ þ P

x
; (30)

to (29) and retaining only the delta function terms; call this
part of the propagator R. In position space, one has

4Related structures are seen in the lower order three-point
processes of strong-field QED; due to the periodicity of the
background, the emission rates take the form of a diffraction
pattern. When the momentum transfer over a cycle is a multiple
of the laser frequency, there is a peak in the emission rate which
is analogous to a patch of constructive interference [65,71].
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Rðx; yÞ ¼
Z d4ðp; p0Þ

ð2�Þ8 eip:yþip0:x
X

n;l2Z

JnþlðrÞJlðrÞein’ð2�Þ4

� 	ðp0 � p� nkÞ�	ððp� lkÞ2 �m2�Þ: (31)

Performing the p0 integrals, changing variables n ! s ¼
nþ l and p ! p� lkþ a2

2kp k, and summing over the

Bessel functions using
X
s2Z

JsðrÞe�isðk:x�’Þ ¼ exp ð�ir sin ðkx� ’ÞÞ (32)

gives the final result

Rðx; yÞ ¼
Z d4p

ð2�Þ4 �	ðp
2 �m2Þ’pðxÞ’�

pðyÞ; (33)

which is a sum over on-shell Volkov wave functions (28).
The same result is obtained directly from (25) by sending

i

p2 �m2 þ i�
! �	ðp2 �m2Þ: (34)

Hence, the total contribution of the infinite series of poles
is to replace the propagator by an integral over all real,
on-shell intermediate states. In other words, the poles
contribute the ‘‘imaginary parts’’ one obtains from cutting
the propagator, in the sense of the optical theorem. This
confirms that the off-shell poles do not describe heavy
states. The reason that the usual Källén-Lehmann interpre-
tation does not go through directly is that its derivation
assumes Poincaré invariance of the theory. This is explic-
itly broken by the presence of background fields (though
covariance is not). Related to this, the Fourier transform
cannot be interpreted in the same way as in a free theory
since canonical momentum (the Fourier variable) and
kinematic momentum are not equal. See Ref. [72] for
analogous statements and an investigation of the Källén-
Lehmann representation in AdS space.

Our treatment of the poles has been formal: the poles do
play a role in the detailed structure of emission rates [44],
and they collectively describe the regime of momentum
exchange in which sufficient energy is taken from the
background to put normally virtual (intermediate) particles
onto the mass shell. Associating individual poles to
physical states is misleading, though. The confusion arises
because in monochromatic (periodic) waves, the one-
particle states are also eigenstates of cycle-averaged
momentum operators, with constant eigenvalues equal to
the quasimomenta, which square to the shifted mass. One
then speaks of the quasimomenta as the ‘‘good quantum
numbers’’ of the system [73]. However, such nonlocal
operators do not tell us much about the states. A particle
in a background field represents a time-dependent problem
and so ‘‘eigenvalues’’ are in general time dependent,
as in (23).

The results above extend to general plane waves as
follows. Given Volkov solutions ’pðxÞ in a particular plane

wave, we define Rðx; yÞ as in (33) and introduce the Fourier
transform � via

’pðxÞ ¼ e�ip:x
Z ds

2�
e�isk:x�sðpÞ; (35)

from which we obtain the implicit Fourier transform

~Gðp0; pÞ ¼
Z dldn

ð2�Þ2 �nþlðpÞ��
l ðpÞð2�Þ4	4ðp0 � p� nkÞ

� i

ðp� lkÞ2 �m2 þ i�
: (36)

It is then trivial to check that

~Rðp0; pÞ ¼
Z dldn

ð2�Þ2 �nþlðpÞ��
l ðpÞð2�Þ4

� 	4ðp0 � p� nkÞRe
�

i

ðp� lkÞ2 �m2 þ i�

�
:

(37)

The sum over on-shell intermediate states, R, is therefore
given by taking the real part of the free propagator buried
inside G. In this context the contributions from the back-
ground act as a ‘‘dressing’’ which encodes the time depen-
dence of the system, but the plane wave does not change
the fundamental particle content of the theory.

IV. CONCLUSIONS

Hard-soft factorization of scattering processes in QED
goes ahead in the presence of a plane-wave background
field of arbitrary strength and shape. The factorization is
not sensitive to the structure of the background. The
implication is that, just as in ordinary QED, IR divergences
in plane-wave backgrounds exponentiate and cancel from
measurable processes. A rough explanation of why is as
follows. A scattering process in a fixed background obey-
ing Maxwell’s equations can be rewritten as scattering
between asymptotic, coherent, photon states. As these are
free-theory states, the scattering process is equivalent to a
sum over ordinary QED process with all numbers of
photons. Hence, if the IR divergences cancel in QED,
they should also cancel here. (Compare Ref. [26], which
suggests that pair-creating backgrounds, which do not obey
Maxwell’s equations in vacuum, may lead to nonfactoriz-
able divergences.)
However, in those processes which are entirely soft, e.g.,

elastic scattering, the IR divergences depend on the Fourier
zero mode of the field strength (if this is nonzero, the pulse
can transfer net energy to a classical particle passing
through it). Nevertheless, we have shown that the soft IR
divergences in loop corrections to elastic scattering are
canceled by divergences coming from multiple soft photon
emissions, as normal.
The structure of the plane wave leads to the appearance

of lightfront time ordering in scattering amplitudes, and IR
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divergences then arise from the large lightfront time
regions before and after the pulse. This suggests that
the natural setting for strong field QED is lightfront quan-
tization, as employed in Ref. [65]. We used lightfront
quantization to explicitly construct the quantum states of
a particle in a plane wave (which are continuous, not
discrete as previously claimed), and recover the Volkov
propagator as a lightfront-time-ordered product. We
showed that the the sum of shifted mass-shell poles in
the Fourier representation of the propagator actually cor-
respond to the ordinary mass shell. The reason that the
poles do not correspond to particle masses is due to
the explicit breaking of Lorentz invariance induced by
the background; the presence of the laser means that the
Fourier variable does not coincide with physical momen-
tum, and hence the Källén-Lehmann interpretation of the
poles does not apply to the Fourier representation of the
propagator. It seems more natural, therefore, to talk of
the mass shift in terms of its observable effects, namely
the spectral properties of photons emitted in nonlinear
Compton scattering [28]. See Ref. [31] for a discussion
of such effects beyond the monochromatic approximation.
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APPENDIX A: THE VOLKOV PROPAGATOR
AND WAVE FUNCTIONS

1. LSZ reduction

We write eCð�Þ ¼ að�Þ from here on to compactify
notation. We work in the Furry picture, treating the cou-
pling to the background exactly and the interactions
between the quantized fields in perturbation theory as
normal. Feynman diagrams are therefore built from ordi-
nary QED vertices and the spinor Volkov propagator S,
which is the inverse of �� i½i 6D�m	:

Sðx; yÞ ¼ i
Z d4q

ð2�Þ4 Kqx

e�iq:ðx�yÞ

6q�mþ i�
�Kqye

�i
R

k:x

k:y
Vq ; (A1)

where we have defined

Kpx :¼ 1þ 6ka
2k:p

; Vp ¼ 2a:p� a2

2k:p
; (A2)

and �K ¼ �0Ky�0. For S-matrix elements we also
need Lehmann-Symanzik-Zimmermann (LSZ) reduction,
which, in the absence of background fields, tells us to
replace external legs with free particle wave functions.
In a background, LSZ reduction transforms external

propagators into incoming and outgoing fermion wave
functions; the following short calculation shows this
explicitly in plane waves (although the result holds more
generally). According to LSZ reduction, the incoming
electron wave function is given by

�in
p ðxÞ ¼ �i

Z
d4ySðx; yÞ½�i6@Q@y �m	e�ip:yup: (A3)

Since �K 6@Q ¼ 0, we find �i6@Q ! 6qþ Vq6k in (A1). The y?,
y� integrals set q�;? ¼ p�;?. Writing q ¼ pþ tk we get,
after simplifying the spin term,

�in
p ðxÞ ¼ Kpxupe

�ip:x
Z

d�y

Z dt

2�

�
1þ Vp

tþ i�

�

� e
�itð�x��yÞ�i

R
�x

�y
Vp
: (A4)

Now we perform the t integral. The first term in the round
brackets gives a delta function which sets �y ¼ �x. The

second term yields a step function, and the resulting �y

integral is exact. Performing this integral we obtain

�in
p ðxÞ ¼ Kpxu



p exp

�
�ip:x� i

Z �x

0
Vp

�
; (A5)

which is the Volkov electron wave function (the solution to
the Dirac equation in a plane wave) with kinetic momen-
tum p� and spin 
 in the far past. Its current is

1

2m
��in
p���

in
p ¼ ��ðp;�Þ; (A6)

which corresponds to a particle with kinematic momenta
(1). We now turn to outgoing particles. The asymptotic
theory in the past is the usual free theory, while in the
future the theory contains an additional constant gauge
field a1 � 0 (but with zero field strength). The effect of a
nonzero a1 is seen when one constructs the LSZ reduction
formulas; these differ by phase factors depending on a1,
which leads to incoming and outgoing particles having
different wave functions, as is well known [28]. The out-
going electron wave function which carries kinetic momen-
tum p� and spin 
 in the far future is given by [16,28]

��out
p ðxÞ¼ �u
p	 �Kpxexp

�
iðpþa1Þ:x� i

Z �f

�
	Vp

�
; (A7)

in which, and from here on, 	 means a ! a� a1. This
wave function obeys the same Dirac equation as the
incoming wave function, which in the asymptotic future
becomes the Dirac equation with a constant gauge potential
a1. Positron solutions are obtained by sending u ! v and
a ! �a. In summary, LSZ transforms external lines into
Volkov wave functions, which describe (on mass shell)
particles in a background plane wave.
One can of course use other gauge potentials for the

background [74]; the consequence of doing so would be
that both the incoming and outgoing wave functions would
have to be adjusted [each picking up additional terms,
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similarly to (A7) relative to (A5)], in order for them to
obey the Dirac equation and have the correct boundary
conditions in the asymptotic regimes. In this case, one
would always find that physical, gauge invariant results
depended on a combination of the chosen potential which
reduced to C1 as in (2), thus reproducing our results. The
whole calculation is simplest with our chosen potential,
which is almost universal when working with plane
waves [6,11–13].

2. Normalization

The use of the Furry picture Feynman rules and the
LSZ formulas above correspond to calculating S-matrix
elements using equal-time quantization as normal, with
asymptotic momentum states jpi obeying

hqjpi ¼ 2p0ð2�Þ3	3ðp� qÞ: (A8)

The free states evolve in time to become Volkov wave
functions. The structure of the plane wave means firstly
that these wave functions are naturally normalized on the
lightfront [not as in (A8)], and secondly that S-matrix
elements of such wave functions conserve overall p :¼
fp�; p?g, not three-vector p. We give here a clear prescrip-
tion for dealing with normalizations which eliminates the
need for volume factors or trying to compare the infinite
volumes 	3ðpÞ and 	3

?;�ðpÞ; see also Refs. [75,76].

An S-matrix element calculated using the Volkov solu-
tions (A5) and (A7) for an incoming electron, momentum
p�, and a set of outgoing particles with momenta fpfg
takes the form (sums/products of pf are implicit)

Sfi ¼ ð2�Þ3	3
�;?ðpf � pÞMðp ! pfÞ; (A9)

which defines M. Now, we should really consider scatter-
ing between properly normalized wave packets rather than
momentum states. Final states will always be integrated
out to obtain the full probability with Lorentz invariant
measure

X
pf

¼ Y
f

Z d3pf

ð2�Þ32pf0

; (A10)

and it is enough to consider only the incoming electron
wave packet. This corresponds to multiplying (A9) by the
factor

Z d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þ32p0

p c ðpÞ with
Z

d3pjc ðpÞj2 ¼ 1: (A11)

The S-matrix element mod-squared then becomes

jSfij2¼
Z
d3pjc ðpÞj2

�ð2�Þ3	3
�;?ðpf�pÞjMðp!pfÞj2 1

2p�
: (A12)

Making the usual assumption that the wave packet is
sharply peaked corresponds to calculating (A9) and then

dropping the first line in (A12) for jSfij2. In short, the

incoming electron should carry a normalization factor of
1=2p�, rather than the usual 1=2p0, at the level of the
probability, the final expression for which is summed
(averaged) over final (initial) polarization and spin:

P¼1

2

X
pf;
;�

1

2p�
ð2�Þ3	3

?;�ðpf�pÞjMðp!pfÞj2: (A13)

3. Example: Elastic scattering

As an example, consider the matrix element for elastic
scattering at tree level. According to the LSZ reduction
formulas this is obtained by amputating the Volkov wave
function for the incoming electron:

Sð0Þ ¼ �i
Z

d4xeiðp0þa1Þ:x �up0 ði 6D�mÞ�in
p ðxÞ

¼ ð2�Þ3	3
?;�ðp0 þ a1 � pÞ �up0

6k
2kþ

up

� i
Z f

�1
d�ðV1 � VÞ exp

�
i
Z �

0
V1 � V

�
: (A14)

The integral over� needs to be regulated. Inserting a small
convergence factor we find, for a � 0,

Sð0Þ ¼ ð2�Þ3	3
?;�ðp0 þ a1 � pÞ �up0

6k
2kþ

upe
i�; (A15)

where

� :¼
Z �f

0
ðV1 � VÞ: (A16)

We now apply (A13). The spin sum and average in our case
gives

1

2
� 1

4k2þ
Tr½ð6pþmÞ6kð�þmÞ6k	 ¼ 4p2�; (A17)

and it follows that the total probability is

P ¼
Z d3p0

ð2�Þ32p0
0

1

2p�
� ð2�Þ3	3

?;�ðp0 � pÞ � 4p2�

¼
Z d3p0�ðp�Þ

2p0�
2p�	3

?;�ðp0 � pÞ ¼ 1; (A18)

where we used the Lorentz invariance of the measure in
the second line to change variables. The reason why the
probability is unity is discussed in Appendix B; it is a
manifestation of the IR problem.

APPENDIX B: IR STRUCTURE

Here we establish in general how soft photons affect a
given Feynman diagram in the Furry picture. We focus on
the leading order IR divergences, following Weinberg’s
treatment [33].
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We use dimensional regularization to take care of the IR
divergences, working in 1þ d dimensions with d > 3.
Noting that our background field singles out a lightlike
direction � ¼ k:x
 xþ, we follow Ref. [77] and place the
extra dimensions into the d� 1 directions transverse to the
background. This means in particular that all the structure
of the plane wave is preserved by the regularization. The
measures in position and momentum space are then, in
lightfront coordinates,

dx :¼ 1

2
dxþdx�dd�1x? � d�x

2kþ
dx�dd�1x?;

dq :¼ ddþ1q

ð2�Þdþ1
¼ dqþ

�

dq�dqd�1
?

ð2�Þd :

(B1)

As we are only interested in the IR, we assume there is a
cutoff in place to take care of the UV divergences, regard-
ing which we note the following. By employing a proper
time representation, all propagators can be expressed in
terms of heat kernels, and these are easily continued to
d � 3 following Ref. [78]. The short-time expansion of the
heat kernel then gives a very convenient method for iden-
tifying UV divergences even when background fields are
present. See Ref. [69] for an example.

1. Soft photon correction to an external line

We concentrate on incoming electron lines; other exter-
nal lines can be treated similarly. A Feynman diagram in
which the incoming electron emits n soft photons (which
may be real or virtual, we consider both cases below) with
small momenta lj contains the term

Enðxnþ1Þ :¼ ð�ieÞn
Z

dxn . . . dx1Gðxnþ1; xnÞ��n

� eiln:xn . . .Gðx2; x1Þ��1eil1:x1�in
p ðx1Þ: (B2)

We will first factor out the infrared divergent part. To
begin, consider n ¼ 1,

E1ðx2Þ ¼ e
Z

dx1
Z

dqKq2

6qþm

q2 �m2 þ i�
�Kq1�

�1Kp1up

� exp

�
�iq:x2 þ iðqþ l1 � pÞ:x1

� i
Z 2

1
Vq � i

Z 1

0
Vp

�
: (B3)

The x� and x? integrals set q ¼ p� l1. (In the absence
of the field, we would also be able to perform the xþ
integral to set q� ¼ p� � l�.) Since we are only interested
in the soft sector, and in particular the divergent terms,
we employ the usual eikonal approximation, replacing
k:q ! k:p inK. Define now a new variable t by q2 �m2 ¼
2k:qt � 2k:pt. Changing the integration variable from qþ
to t we find, again to lowest order in l,

E1ðx2Þ¼ e

2k:p

Z
d�1

Z dt

2�
Kp2

� 6pþm

tþ i�
þ6k

�
�Kp1�

�1Kp1up

�exp

�
�itð�2��1Þ� iðp� l1Þ:x2

� i
Z 2

0
Vp� i

Z 2

1

l1:�

k:p

�
: (B4)

We have condensed our notation further: when � appears
under a � integral it means �ðp;�Þ, and when it appears
outside such integrals it means �ðp;1Þ. Consider the term
in square brackets. Performing the t integral, the 6k term
leads to a delta function setting �2 ¼ �1. This is the
contribution from the lightfront zero mode [67], which is
interesting in itself but does not contribute to the IR
divergence and so we drop it. The remaining term in
the square brackets gives �ð�2 ��1Þ, which restricts
the �1 integral. The spin term can be simplified to
ð6pþmÞ �K��Ku ¼ 2��u, and we then find

E1ðx2Þ ¼ �in
p ðx2Þeil1:x2

��ie

k:p

�

�
Z �2

�1
d�1�

�1

1 exp

�
�i

Z �2

�1

l1:�

k:p

�
: (B5)

The calculation is easily extended, so that we obtain

EnðxÞ¼�in
p ðxÞexp

�
i
Xn
j¼1

lj:x

��
� ie

k:p

�
n

�
Z x

�1
d�n . . .

Z 2

�1
d�1

Yn
j¼1

�
�j

j exp

�
�i

Z x

j

lj:�

k:p

�
:

(B6)

The leading term is the incoming Volkov solution. The
evaluation of the remaining integrals, which contains the
IR divergence, depends on whether (a) the leg is attached to
a ‘‘hard’’ vertex and is therefore part of a multiparticle
scattering process or (b) the leg continues to an outgoing
line, in which case there are only soft photons in the
process. We now consider these two cases, which are
illustrated in Fig. 4.

FIG. 4. Left: An external leg emits soft photons (or emits and
absorbs virtual photons) as part of a scattering process with a
hard vertex at x�. Right: Emission of many soft photons from a
single electron. There is no hard scattering part to this diagram.
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2. Between a soft and a hard place

We begin with the left-hand diagram in Fig. 4, consid-
ering the effect of the soft photon lines in (B6) (which can
correspond to real emission or virtual loops, as we will
need both) on a hard scattering process. We will see that in
this case, the IR divergence does not depend on the prop-
erties of our background field.

So, we assume that EnðxÞ is connected to a hard vertex.
In that case, there is a hard photon momentum in the
exponent of (B6) at position x, and relative to this we
can neglect the term

P
lj. Since we have reduced the

spin terms to products of �’s in (B6), the integrand therein
is symmetric with respect to the �j except for the step

functions. This simplifies when we sum over all the orders
in which the soft photons can be emitted (i.e., when we
account properly for all diagrams):

X
l-perm

EnðxÞ ¼ �in
p ðxÞ

�
� ie

k:p

�
n Yn
j¼1

Z x

�1
d�j�

�j

j

� exp

�
�i

Z x

j

lj:�

k:p

�
; (B7)

and we see that the step functions drop out. The divergent
part of the � integrals comes from the region before the
pulse turns on. Since the leg is attached to the hard vertex,
the upper limit of the integrals in the exponent is unim-
portant as long as it is finite, and we can make the follow-
ing replacement without affecting the leading divergence:

Z x

�1
�j !

Z 0

�1
�j: (B8)

Performing the � integrals with the help of a convergence
factor as usual, we find

X
En ¼ �in

p ðxÞ
Yn
j¼1

�ep
�j

j

lj:p� i�
; (B9)

in which the soft contributions factor off, meaning that the
Feynman amplitude factorizes into a hard part and a soft
correction, as for QED without background fields. Similar
expressions hold for other external lines. Hence, we have
reduced the IR problem in plane waves to the case with no
background, with no surprises thus far, and we may pro-
ceed as in [Ref. [33], § 13] to show that the leading infrared
divergences cancel to all orders when one sums the prob-
abilities for indistinguishable processes. These statements
hold for processes in which a ‘‘hard part’’ can be identified,
i.e., assuming that the external lines are connected to hard
vertices. We turn now to single electron processes with
only soft vertices.

3. Soft processes

The S-matrix element for a diagram with a single elec-
tron and n soft vertices (see the right-hand diagram of
Fig. 4) contains

Sn :¼ �ie
Z

dx ��out
p0 ðxÞ��eil:xEn�1ðxÞ: (B10)

Since the photons are soft, k:q � k:p and k:p0 � k:p. The
spin terms can then be simplified and taken outside the
integrals, leaving

Sn ¼ ð2�Þd	3
�;?ðp0 þ a1 � pÞei� �up0

6k
2kþ

up

�
� ie

k:p

�
n

�
Z 1

�1
d�n

Z n

�1
d�n�1 . . .

Z 2

�1
d�1

Yn
j¼1

�
�j

j

� exp

�
i
Z j

0

lj:�

k:p

�
; (B11)

with � as in (A16). (We drop the factor
P

lj from the delta

functions. In a more rigorous treatment the soft photon
energies should be restricted so that this sum is less than
some given energy; see Ref. [33]. The divergent part is still
the same.) As before, Sn simplifies when we sum over the
permutations of the lj,

X
l-perm

Sn ¼ ð2�Þd	3
�;?ðp0 þ a1 � pÞei� �u0 6k

2kþ
u

�
� ie

kp

�
n

�Yn
j¼1

Z
d�j�j exp

�
i
Z j

0

lj:�

k:p

�
: (B12)

We have derived this formula for n � 1 (with E0 ¼ �in),
but it also holds for n ¼ 0, when it describes elastic
scattering at tree level; see Appendix A 3 above. The
significant difference compared to the case of hard-soft
factorization is that in soft processes, the outgoing elec-
tron’s momentum is fixed by classical momentum conser-
vation, in other words by the properties of the background
field, and in particular a1.
The soft photons can be real or virtual. For each real

emission we multiply (B12) by a polarization vector �,
giving

� ie

k:p

Z
d��:� exp

�
i
Z � l:�

k:p

�
¼ e�

�
�

l:�
� p

l:p

�
:

(B13)

At the level of the probability we sum over polarizations,
which gives minus the above expression squared, and
then integrate over the photon momenta. We get the same
factor for each photon, but with a symmetry factor of
1=n!. The contribution from the emission of n soft photons
is therefore

1

n!

�
�e2

Z ddl

ð2�Þd
1

2l0

�
�

l:�
� p

l:p

�
2
�
n
: (B14)

For each virtual photon we choose lj ¼ �li ¼ l and multi-

ply (B12) by
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Z
dl
�ig�i�j

l2 þ i�
: (B15)

We then have

Z
dl

�i

l2 þ i�

�
� ie

k:p

�
2 Z

d�id�j�i�j exp

�
�i

Z i

j

l:�

k:p

�
:

(B16)

We divide this into two parts, �i > �j and �i < �j, and

change variable l ! �l in the < part. We can then close
the l0 contour in the lower half plane, and (B16) becomes

Z ddl

ð2�Þd
1

2l0

�
e

k:p

�
2 Z

d�id�j�i�jð�>e� þ �<e
þÞ;
(B17)

with obvious notation. The imaginary part of (B16)
diverges like

Im 

Z

d�; (B18)

but we will shortly see that it drops out of probabilities. In
the real part, the �i integrals can be performed and are
finite, and (B16) becomes

e2
Z ddl

ð2�Þd
1

2l0

�
�

l:�
� p

l:p

�
2 þ i . . . (B19)

We get one such factor for each virtual photon with a factor
of 1=2nn!, which is the number of identical permutations of
the sum over lj for n virtual photons. Summing over all n

we get the all-orders loop contribution to a soft process,

exp

�
e2

2

Z ddl

ð2�Þd
1

2l0

�
�

l:�
� p

l:p

�
2 þ i . . .

�
: (B20)

This contribution appears mod-squared at the level of the
probability, which removes both the leading factor of one
half, and the divergent imaginary term; the latter are the
usual phase divergences. Hence, returning to the example
of Appendix A 3, the probability for elastic scattering
including all soft loop contributions is given by the modu-
lus squared of (B20),

P ¼ exp

�
e2

Z ddl

ð2�Þd
1

2l0

�
�

l:�
� p

l:p

�
2
�
: (B21)

When a1 � 0, i.e., when the background field is unipolar,
the loops give an IR divergent contribution as d ! 3.
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