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Recent numerical studies of the gluon propagator in the minimal Landau and Coulomb gauges in space-

time dimension two, three, and four pose a challenge to the Gribov confinement scenario. In these gauges

all configurations are transverse, @ � A ¼ 0, and lie inside the Gribov region�, where the Faddeev-Popov

operator, MðAÞ ¼ �@�D�ðAÞ, is positive, that is, ðc ;MðAÞc Þ � 0 for all c . We prove, without

approximation, that for these gauges the continuum gluon propagator DðkÞ in SUðNÞ gauge theory

satisfies the bound d�1
d

1
ð2�Þd

R
ddk DðkÞ

k2
� N. This holds for the Landau gauge, in which case d is the

dimension of space-time, and for the Coulomb gauge, in which case d is the dimension of ordinary space

and DðkÞ is the instantaneous spatial gluon propagator. This bound implies that lim k!0k
d�2DðkÞ ¼ 0,

where DðkÞ is the gluon propagator at momentum k, and consequently Dð0Þ ¼ 0 in the Landau gauge in

space-time d ¼ 2 and in the Coulomb gauge in space dimension d ¼ 2, but Dð0Þ may be finite in higher

dimensions. These results are compatible with numerical studies of the Landau-and Coulomb-gauge

propagator. In four-dimensional space-time a regularization is required, and we also prove an analogous

bound on the lattice gluon propagator, 1
dð2�Þd

R
�
�� ddk

P
�
cos 2ðk�=2ÞD��ðkÞ
4
P

�
sin 2ðk�=2Þ � N. Here we have taken the

infinite-volume limit of lattice gauge theory at fixed lattice spacing, and the lattice momentum componant

k� is a continuous angle, �� � k� � �. Unexpectedly, this implies a bound on a renormalization-group

invariant that governs the overall normalization of the continuum gluon propagator in the minimum

Landau and Coulomb gauges in four space-time dimensions, which, moreover, is compatible with the

perturbative renormalization group when the theory is asymptotically free.
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I. INTRODUCTION

The successes of perturbative calculations at high energy
and of numerical studies in lattice gauge theory provide
strong evidence that the interactions of quarks and gluons
are correctly described by the non-Abelian gauge theory
known as QCD. However, we lack a satisfactory under-
standing of the mechanism by which quarks and gluons
are confined, comparable to that provided by the Higgs
model of electroweak interactions. There are several
suggestive scenarios which involve the dual Meissner
effect with condensation of magnetic monopoles, the maxi-
mal Abelian gauge, the maximal center gauge, or the light-
cone gauge.

There is also a scenario in the Landau and Coulomb
gauges that originated with Gribov [1] that is based on the
insight that there exist Gribov copies—that is to say
gauge-equivalent configurations that satisfy the gauge
condition—and moreover that the dynamics is strongly
affected if one cuts off the integral over configurations A
to avoid over counting these copies. According to this
scenario, the cutoff is nearby in infrared directions (in A
space), which suppresses the gluon propagator DðkÞ at
small k, so that would-be massless gluons exit the physical
spectrum and are said to be confined. However, recent
numerical studies—which we shall review shortly—have
revealed that the behavior of the gluon propagator is more
complicated than expected, and present a challenge to this

scenario. In the present article we present exact bounds on
the gluon propagator—which result from the cutoff in A
space—that are consistent with and clarify the results
found in numerical studies of the gluon propagator.
There had been various early conjectures about the

behavior of the gluon propagatorDðkÞ. Gribov in particular
obtained, by an approximate calculation in the Landau

gauge [1], DðkÞ ¼ k2

k4þ�
in all space-time dimensions.

This has the notable property that Dð0Þ ¼ 0, in striking
contrast to the tree-level gluon propagator, DðkÞ ¼ 1

k2
,

which has a pole at k ¼ 0. This same propagator is also
the zeroth-order gluon propagator in a perturbative expan-
sion based on a local, renormalizable action that includes a
cutoff at the Gribov horizon [2]. However, according to
numerical studies in the Landau gauge it appears that Dð0Þ
does not vanish in dimension 2þ 1 and 3þ 1. To address
this problem, a dynamically refined action for dimension
2þ 1 and 3þ 1 has been proposed and studied [3–7].
The gluon propagator has been much studied by Dyson-

Schwinger (DS) equations and related methods. The gen-
eral consensus at present is that there are two types of
solutions: a scaling solution, with Dð0Þ ¼ 0 [8,9], and a
decoupling solution, with Dð0Þ> 0, as discussed in
Ref. [10], where further references may be found. The
scaling solution accords with the Gribov scenario. This
may seem paradoxical because the Gribov horizon does
not appear in the DS equations. However, the explanation
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was given some time ago [11]. The functional DS equation
is derived by doing a partial integration in A space while
neglecting the boundary term. This boundary is commonly
thought to be at infinity. However, because the integrand
contains the Faddeev-Popov determinant det ½MðAÞ� as a
factor, whereMðAÞ ¼ �DðAÞ � @, the integrand in fact also
vanishes on every Gribov horizon [because these are the
surfaces on which an eigenvalue �nðAÞ of the Faddeev-
Popov operator MðAÞ vanishes, �nðAÞ ¼ 0]. Therefore, a
cutoff may be made at the first (or the nth) Gribov horizon
without introducing a boundary term, that is, without
changing the form of the DS equation. Each of these differ-
ent cutoffs in A space corresponds to a different solution of
the same functional DS equation. One of these solutions
corresponds to a cutoff at the first Gribov horizon; this is
presumably the scaling solution.1

The gluon propagator in the Landau gauge has also been
the subject of numerical studies in lattice gauge theory.
From recent studies, a somewhat puzzling picture has
emerged. It appears that in dimension 1þ 1 the gluon
propagator in the Landau gauge does in fact vanish at k ¼
0,Dð0Þ ¼ 0, in accordance with Gribov’s result [12–14]. In
dimension 2þ 1 it was found that the gluon propagator has
a turnover below which DðkÞ decreases with decreasing k,
and there is no explanation for this nonintuitive behavior
besides the proximity of the Gribov horizon in infrared
directions. However, from studies on huge lattices, it ap-
pears that in dimension 2þ 1, DðkÞ approaches a finite
value at k ¼ 0 [13,15,16]. In dimension 3þ 1 there may be
a kind of shoulder at low momentum and, as in dimension
2þ 1, it appears that Dð0Þ is finite [13,15,17–19].

Most of the numerical studies of the Coulomb gauge
[20–24]2 are for SU(2) gauge theory in dimension 3þ 1,
with results for dimension 2þ 1 in Refs. [22,24] and for
SU(3) gauge theory in dimension 3þ 1 in Ref. [23]. From
these numerical studies it appears that in the Coulomb
gauge in 3þ 1 dimensions, the static gluon propagator
vanishes at k ¼ 0, Dð0Þ ¼ 0, in accordance with the
Gribov scenario (see particularly Ref. [21]). In 2þ 1
space-time dimensions, the static Coulomb propagator
Dð0Þ must vanish at k ¼ 0, as follows from the bound
obtained here [Eq. (40)].

To summarize, we are faced with the puzzle that nu-
merical studies in the Landau gauge indicate thatDð0Þ ¼ 0
in dimension 1þ 1—which accords with the Gribov
scenario—but Dð0Þ is positive, Dð0Þ> 0, in dimension

2þ 1 and 3þ 1. The puzzle deepens in view of an argu-
ment that led to the conclusion that Dð0Þ ¼ 0 in any
number of dimensions [25]. This argument involves the

free energy,WðJÞ � ln heðJ;AÞi, where J is an external source.
The input for this argument is (i) a bound onWðJÞ, and (ii) the
hypothesis that WðJÞ is analytic in J. The bound on WðJÞ
appears unassailable, and so if the numerical results are
accepted, it must be that WðJÞ is nonanalytic in J, which is
the signal for a change of phase. The nonanalyticity of
WðJÞ will be discussed elsewhere [26].
In the present article we take up another bound—which

is found in Appendix B of Ref. [25]—that does not involve
the free energyWðJÞ. It is an ellipsoidal bound, satisfied by
all configurations A in the Gribov region �. From this
bound on configurations A, we will obtain a bound on the
gluon propagator DðkÞ by taking expectation values.
In Sec. II Awe recall some known results, in Sec. II B we

explain the simple idea on which the derivation of the
bound is based, and in Sec. II C we note that the bound
applies to other gauge bosons. In Sec. III we present exact
bounds on the gluon propagator that hold in continuum and
in lattice gauge theory, and we also present the renormal-
ized continuum bound that holds in dimension 3þ 1. In
Sec. IV we discuss the implications of these bounds for
the Landau- and Coulomb-gauge propagator in dimension
1þ 1, 2þ 1, and 3þ 1. In addition to infrared bounds that
are stronger in lower space-time dimensions, we shall find,
unexpectedly, that the cutoff at the Gribov horizon implies
a bound on the high-momentum behavior of the Landau-
and Colulomb-gauge propagator in dimension 3þ 1 given
in Eqs. (35) and (50), respectively. Some concluding re-
marks may be found in Sec. V. In Appendix A we derive
an ellipsoidal bound on continuum configurations that lie
inside the Gribov horizon. In Appendix B we convert
this into a bound on the continuum gluon propagator.3 In
Appendix C we exhibit a simpler ellipsoidal bound on
continuum configurations in the infinite-volume limit. In
Appendix D we derive the bound on the lattice gluon
propagator.

II. SETUP AND BASIC IDEA

A. Elementary properties

We deal with Euclidean QCD in its continuum and
lattice formulations. Numerical gauge fixing on the lattice
is done by gauge transforming to a local minimum of a
lattice analog (specified in Appendix D) of the continuum
minimizing functional [27–29]

FAðgÞ ¼k gA k2¼
Z

ddxjgAðxÞj2: (1)

1Because there are Gribov copies inside the Gribov region, a
correct quantization would be an integral of the Faddeev-Popov
weight over a subset of the Gribov region, for example the set of
absolute minima on each gauge orbit. In this case, strictly
speaking, the standard DS equations would not be satisfied
because they should be corrected by a boundary term.

2Reference [24] also presents results for gauges that interpo-
late between Coulomb and Landau gauges, with the gauge
condition �@0A0 þ @iAi ¼ 0.

3The same continuum bound is also obtained in Eq. (15) as a
limit of the lattice bound derived in Appendix D, but we have
provided an independent derivation of the continuum bound
because it is simpler.
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This is the Hilbert square norm of the configuration gA� ¼
g�1A�gþ g�1@�g, which is the gauge transform of the

gauge field A�ðxÞ ¼ tbAb
�ðxÞ by the local gauge transfor-

mation gðxÞ 2 SUðNÞ, where � ¼ 1; . . . d. Here the ta are
an anti-Hermitian basis, ðtaÞy ¼ �ta, of the Lie algebra of
the SUðNÞ group, ½ta; tb� ¼ fabctc, normalized to
trðtatbÞ ¼ ��ab=2, where a ¼ 1; . . .N2 � 1. If d is taken
to be the dimension of Euclidean space-time, then this
gauge fixing produces a gauge in the class of minimal
Landau gauges, whereas if d is the dimension of ordinary
space then the gauge is in the class of minimal Coulomb
gauges. (For the Coulomb gauge this minimization is done
at every Euclidean time t). The minimization produces a
local minimum of the minimizing functional. Any local
minimum will do. In principle it could be the absolute
minimum, but this is not necessary for our purposes, nor
is it achievable in practice numerically.

At a local minimum (i) the functional FAðgÞ is station-
ary, and (ii) the matrix of its second derivatives is positive.
Property (i) gives the transversality condition

@�A
a
� ¼ 0; (2)

which is characteristic of the Landau gauge. Property (ii) is
the positivity of the Faddeev-Popov operator,

ðc a;MacðAÞc cÞ¼ð@�c a;@�c
aÞ�ðc afabc;Ab

�@�c
cÞ�0;

(3)

for any wave function c aðxÞ. These two properties define
the (first) Gribov region �, and gauge fixing by this mini-
mization produces configurations A that all lie inside �.

B. Basic idea of the bound

It is very easy to establish bounds on configurations A
that are in the Gribov region �. Take any trial wave
function c ðAÞ that may depend on A. Then, from Eq. (3),
it follows that every A in � satisfies the bound

ðc aðAÞfabc; Ab
�@�c

cðAÞÞ � ð@�c aðAÞ; @�c aðAÞÞ: (4)

For an appropriately chosen trial wave function c ðAÞ, an
ellipsoidal bound on A of the formX

k

Cbc
k;��a

b�
k;�a

c
k;� � 1 (5)

is obtained, as shown in Appendix A. Here abk;� is the

component of Ab
�ðxÞ in the Fourier expansion,

Ab
�ðxÞ ¼

X
k

abk;�e
ik�x; (6)

on a finite periodic Euclidean volume V ¼ Ld, where k� ¼
2�n�=L, and n� runs over all integers. Such a bound for a

finite lattice was established in Appendix B of Ref. [25],
and a stronger ellipsoidal bound is derived in the present
article for continuum and lattice gauge fields in

Appendices A and D, respectively. Upon taking expecta-
tion values, we obtain the bound on the gluon propagator
D��ðkÞ,

V�1
X
k

Cbb
��ðkÞD��ðkÞ � 1; (7)

where we have used hab�k;�ack;�i ¼ V�1�bcD��ðkÞ. In di-

mension 3þ 1, the continuum theory must be regularized,
and in Appendix D a bound on the lattice gluon propagator
is derived from the positivity of the lattice Faddeev-Popov
operator. The limit in which the ultraviolet regulator is
removed, � ! 1, is discussed in Sec. IV.

C. Other gauge bosons

The only input to the bounds obtained here is the re-
striction of the functional integral to the interior of the
Gribov region. For this reason, the bound is the same
whether or not the gluons are coupled to quarks or not,
although the bound becomes inconsistent in dimension
3þ 1 if the theory is not asymptotically free. The bounds
obtained here also apply to the propagator of other gauge
bosons that belong to an SUðNÞ gauge group, including
those with a Higgs coupling. In the present article we are
concerned with QCD gauge theory only. However, it
should be noted that the Landau gauge is a special case
of the R� gauge, with � ¼ 0, that is used when the gauge

field is coupled to a Higgs boson. This gauge may be given
a nonperturbative meaning by the minimizing gauge fixing
described above. This is straightforward in dimensions
1þ 1 and 2þ 1, and our results hold in these dimensions.
In dimension 3þ 1, a lattice regularization of ultraviolet
divergences would be required to give the theory a non-
perturbative meaning, but we have not considered other
gauge bosons in dimension 3þ 1.

III. BOUNDS ON THE GLUON PROPAGATOR

A. Bound on the continuum gluon propagator

The continuum propagator is defined by

hAb
�ðxÞAd

�ð0Þi ¼ V�1
X
k

�bdD��ðkÞeik�x; (8)

where the (hyper)cubic periodic volume V ¼ Ld is suffi-
ciently large that (hyper)spherical symmetry holds, and the
propagator has the tensor structure

D��ðkÞ ¼ DðkÞ
�
��� �

k�k�

k2

�
(9)

by transversality. Note that a factor of the coupling
constant g0 has been absorbed into the gauge field A, so
D ¼ g20D0, where D0 is the unrenormalized, canonical

propagator.
Statement: For gauge fixing to the interior of the Gribov

region �, as in the minimization procedure described
above, the gluon propagator DðkÞ in SUðNÞ gauge theory
satisfies the bound
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J � d� 1

d

1

ð2�Þd
Z

ddk
DðkÞ
k2

� N: (10)

This holds for the Landau gauge, in which case d is the
dimension of space-time, and for the Coulomb gauge, in
which case d is the dimension of ordinary space and DðkÞ
is the instantaneous spatial gluon propagator. (Because of
renormalization, dimension 3þ 1 requires a special dis-
cussion, which will be given shortly.) This is proven in
Appendices A and B.

Lest it be thought that this bound is trivial, note that for
the free propagator in the Landau gauge, DðkÞ ¼ 1=k2, the
bound is violated because of an infrared divergence of the
k integration in dimensions 1þ 1, 2þ 1, and 3þ 1, and
by an ultraviolet divergence of the k integration in dimen-
sion 3þ 1.

If the angular integration is performed, the bound reads

J � d� 1

d

Sd�1

ð2�Þd
Z 1

0
dkkd�3DðkÞ � N; (11)

where S1 ¼ 2�, S2 ¼ 4�, and S3 ¼ 2�2. Note that J has
engineering dimension 0 in all dimensions d.

B. Bound on the lattice gluon propagator

To discuss the case of dimension 3þ 1, we must regu-
larize and renormalize. The lattice provides a convenient
regularization, and a lattice analog of the bound (10) holds,

J � 1

dð2�Þd
Z �

��
ddk

P
� cos 2ðk�=2ÞD��ðkÞ
4
P

� sin
2ðk�=2Þ

� N; (12)

as is shown in Appendix D. (We have used the same
symbols J, D�� . . . for continuum quantities and their

lattice analogs.) Here we have taken the lattice volume to
infinity while keeping the lattice spacing finite, and the
lattice momentum k� is a continuous angle ���k���.

The lattice propagator is given by D��ðkÞ ¼P
xhAb

x;�A
c
0;�ie�ik�½xþðe�=2Þ�ðe�=2Þ�, where the lattice variable

Ab
x;� is defined in Eq. (D3).

C. Renormalized form of the continuum bound

The lattice variable A goes over in the continuum limit to

A ! g0ð�ÞA0 ¼ g0ð�ÞZ1=2
3 ð�ÞAr; (13)

where g0 ¼ g0ð�Þ is the bare coupling constant that de-
pends on the ultraviolet cutoff �, A0 is the unrenormalized
or canonical continuum gauge field, and Ar is the renor-
malized continuum gauge field. Consequently, the lattice
gluon propagator is related to the unrenormalized and
renormalized gluon propagators by

D ! g20ð�ÞD0 ¼ g20ð�ÞZ3ð�ÞDr; (14)

where DrðkÞ is the finite, renormalized, continuum propa-
gator. The lattice momentum goes over to the continuum

momentum by k ! ak, where a is the lattice spacing, so
the lattice integral

R
�
�� ddk goes over to the continuum

integral with a cutoff
R
jkj�C� ddk, where � ¼ 1=a, and C

is a constant of order 1. Consequently, for large � the
lattice bound (12) goes over to the bound,

J � d� 1

d

Sd�1

ð2�Þd
Z C�

0
dkkd�3DðkÞ

¼ g20ð�ÞZ3ð�Þd� 1

d

Sd�1

ð2�Þd
Z C�

0
dkkd�3DrðkÞ � N:

(15)

This is the renormalized form of the continuum bound (11)
that holds in dimension 3þ 1, where d ¼ 4 for the Landau
gauge and d ¼ 3 for the Coulomb gauge. We will find that
the limit � ! 1 is independent of C.

IV. DISCUSSION

A. Infrared bound in the Landau gauge

We first discuss the Landau-gauge case. The bound (11)
is more stringent in the infrared in lower dimensions be-
cause of the factor kd�3 in the integrand. Since the bound is
finite and the integrand is positive, it follows that in dimen-
sion d ¼ 1þ 1 the propagator DðkÞ must vanish at k ¼ 0,

lim
k!0

DðkÞ ¼ 0 for d ¼ 1þ 1: (16)

However, in dimension 2þ 1, the bound (11) is compatible
with a finite value for Dð0Þ. DðkÞ may even be singular at
k ¼ 0 for d ¼ 2þ 1, provided that the strength of the
singularity remains less than 1=k,

lim
k!0

kDðkÞ ¼ 0 for d ¼ 2þ 1: (17)

This condition forbids the existence of gluons of mass zero
for d ¼ 3. Numerical studies of the gluon propagator in the
Landau gauge in dimension 2þ 1 indicate a finite value for
Dð0Þ, as discussed in the Introduction.
Numerical studies also indicate that in dimension

d ¼ 2þ 1 the propagator in the Landau gauge is sup-
pressed in the infrared, although not as severely as in
dimension d ¼ 1þ 1, with DðkÞ decreasing with k as k
decreases to 0, but approaching a finite value, Dð0Þ> 0.
There is no other explanation for this otherwise counter-
intuitive decrease besides the proximity of the Gribov
horizon in infrared directions. The bound (11) for
d ¼ 2þ 1 does not require such a decrease, but only that
DðkÞ not diverge as strongly as 1=k. Thus it appears that
this bound by itself does not fully express the strength of
the dynamical consequences of the cutoff of the functional
integral at the Gribov horizon in dimension 2þ 1.
According to the lattice bound (12), the lattice Landau

propagator D��ðkÞ in dimension 3þ 1 cannot have a

singularity as strong as 1P
�
sin 2ðk�=2Þ at k ¼ 0 [where

cos ðk�=2Þ ¼ 1],
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lim
k!0

X
�

sin 2ðk�=2Þ
X
�

D��ðkÞ ¼ 0: (18)

Thus the bound on the lattice gluon propagator in the
Landau gauge in four Euclidean dimensions does not
tolerate a 1=sin 2ðk=2Þ singularity, that is to say, a massless
lattice gluon, for any finite value of the lattice spacing a or,
in other words, for any finite value of the cutoff � ¼ 1=a.
Moreover, the finiteness of the renormalized continuum
bound (15) for large but finite � implies

lim
k!0

k2DrðkÞ ¼ 0; for d ¼ 3þ 1: (19)

According to numerical studies discussed in the
Introduction, in dimension 3þ 1 there appears to be a
kind of shoulder in DðkÞ at low k, with a finite value of
Dð0Þ> 0. This is entirely consistent with the infrared
bound obtained here, but again, as in dimension 2þ 1,
the gluon propagator DðkÞ is apparently more strongly
suppressed in the infrared than required by the bound we
have obtained. Thus it appears that also in dimension
3þ 1, the bound obtained here does not by itself fully
express the strength of the dynamical consequences of
the cutoff of the functional integral at the Gribov horizon.

B. Bound on the renormalization-group
invariant in the Landau gauge

The coefficient g20ð�ÞZ3ð�Þ, which appears in the re-

normalzied continnum bound (15), is either zero or infinite
as � ! 1, so it might be thought that if g20ð�ÞZ3ð�Þ is
zero then the bound (15) is trivially satisfied by any finite
renormalized propagator Dr, and if g20ð�ÞZ3ð�Þ is infinite
then the bound implies that the renormalized propagator
DrðkÞ vanishes identically for all k, in which case the
theory is inconsistent. However, before coming to this
conclusion, we must also consider the � dependence in-
troduced by the ultraviolet cutoff of the integral at k ¼ C�.

In dimension d ¼ 3þ 1, the bound (15) reads

J � g20ð�ÞZ3ð�Þ 3

32�2

Z C�

0
dkkDrðkÞ � N: (20)

We evaluate J using the perturbative renormalization group
according to which, asymptotically at large �,

g20ð�Þ � 1

2b ln�
; (21)

where b is the leading coefficient of the � function
dg0=d ln� ¼ �bg3 þOðg5Þ. It is gauge independent
and has the value ([30], p. 653)

b ¼ 1

ð4�Þ2
�
11N

3
� 2nf

3

�
; (22)

where nf is the number of quarks in the fundamental

representation. The dependence of Z3ð�Þ on � is found
from the perturbative renormalization group. We have

Z3 ¼ 1þ cg2r ln�þOðg4rÞ; (23)

where, in the Landau gauge for SUðNÞ gauge theory ([30],
p. 589),

c ¼ 1

ð4�Þ2
�
13N

3
� 4nf

3

�
; (24)

and we have added the quark contribution. According to
the renormalization group we have

d lnZ3

d ln�

��������gr

¼ cg2r þO
�
g4r
�
¼ cg20 þO

�
g40

�

¼ c

2b ln�
þ . . . ; (25)

which is solved by

Z3ð�Þ ¼ z3ðln�Þp; (26)

where

p ¼ c

2b
¼ 13N � 4nf

22N � 4nf
; (27)

and z3 is a finite constant of integration. Thus the renor-
malized bound at large � reads

J � 3z3
64�2b

ln p�1�
Z C�

0
dkkDrðkÞ � N: (28)

If p > 1, the coefficient of the integral, ln p�1�, diverges,
so the bound J � N requires that the renormalized propa-
gator, DrðkÞ, vanish for all k, in which case the theory is
inconsistent.
To see if this happens, we note from Eq. (27) that

p < 1; (29)

provided that the denominator is positive, that is, provided
that 11N > 2nf. This is the restriction on the number of

quarks for the theory to be asymptotically free, b > 0. Thus
the inconsistency is avoided provided that the theory is
asymptotically free, as we now assume.
Because we are in the case p < 1, the coefficient of the

integral in Eq. (28) vanishes in the limit � ! 1,

lim
�!1

ln p�1� ¼ 0: (30)

There are three possibilities. (i) If the integral in Eq. (28) is
finite, the bound is trivially satisfied—and vacuous. This
also happens if the integral diverges at large �, but too
weakly to compensate the vanishing of the coefficient.
(ii) If the integral diverges sufficiently strongly that J
diverges for � ! 1, then the theory is inconsistent.
(iii) If the integral has a divergence that precisely compen-
sates for the vanishing of the coefficient at large �, then a
finite bound results.
To find out which possibility is realized, we first note

that any finite contribution to the integral is annihilated by
the coefficient, and we may write the bound as
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J � 3z3
64�2b

ln p�1�
Z C�

�
dkkDrðkÞ � N; (31)

where � is an arbitrary mass. Only the asymptotic form of
DrðkÞ at large k concerns us.

According to the Callan-Symanzik equation, the correc-
tions to scaling in the gluon propagator are logarithmic at
high momentum, and the renormalized gluon propagator
has the asymptotic behavior

DrðkÞ � r

k2ln pk
; (32)

where the same power p appears here as in Z3, and r is a
finite constant that depends on the normalization condition.
Since any finite contribution to the integral gets annihilated
by the vanishing of the coefficient, ln p�1� for� ! 1, we
may extend this asymptotic expression down to finite k,
and the quantity J in Eq. (31) is thus—asymptotically at
large �—given by

J ¼ 3z3r

64�2b
ln p�1�

Z C�

�

dk=k

ln pk

¼ 3z3r

64�2b
ln p�1�

�
ln 1�pðC�Þ � ln 1�p�

1� p

�
; (33)

and, with p < 1, we obtain the limit

lim
�!1

J ¼ 3z3r

64�2b

1

1� p
¼ 3z3r

32�2

1

2b� c
¼ z3r

2N
: (34)

The result is independent of � and C, and finite. From
lim �!1J � N we obtain the nontrivial bound

z3r � 2N2: (35)

Four comments are in order.
(i) The trivial and inconsistent possibilities are avoided

because the divergence of the integral compensates
for the vanishing of the coefficient in the limit
� ! 1.

(ii) This bound governs the overall normalization of the
gluon propagator. It is derived from the asymptotic
high-momentum gluon propagator that is provided
by the perturbative renormalization group (RG). To
our knowledge the restriction to the interior of the
Gribov horizon has heretofore been used to bound
only the infrared behavior of the gluon propagator.
Note however that this bound occurs only in dimen-
sion 3þ 1.

(iii) The renormalized bound (20) may be expressed in
terms of unrenormalized quantities,

g20ð�Þ 3

32�2

Z C�

0
dkkD0ðkÞ ¼ z3r

2N
� N: (36)

Since the left-hand side is constructed out of un-
renormalized quantities, it is independent of any
renormalization scheme. On the other hand, it is
finite and independent of� at large�. As such, it is

a renormalization-group invariant. Thus the finite
quantity z3r, for which we have just established the
bound z3r � 2N2, is in fact a renormalization-
group invariant, although this was not apparent
from the way z3 and r were introduced.

(iv) The number nf of quark flavors has dropped out of

the inequality (35).

C. Infrared bound in the Coulomb gauge

The minimal Coulomb gauge is obtained by minimizing
the Hilbert square norm of the space components Ab

i ðx; tÞ
on each time slice t,

FAðg; tÞ ¼kgAiðtÞk2 ¼
Z

ddxjgAiðx; tÞj2; (37)

where i ¼ 1; . . . d, and the dimension of space-time is
dþ 1. Consequently, the equal-time propagator

DðkÞð�ij � kikj=k
2Þ�bc ¼

Z
ddxe�ik�xhAb

i ðx; tÞAc
jð0; tÞi

(38)

satisfies in the space dimension d the bounds we have
derived in the Landau gauge in space-time dimension d.
The expectation value is independent of t by time-
translation invariance. For orientation purposes we note
that in zeroth-order perturbation theory the equal-time
Coulomb-gauge propagator is given by

Dð0ÞðkÞ ¼
Z dk0

2�

1

k20 þ k2
¼ 1

2jkj : (39)

For space dimension d ¼ 2 we obtain from Eq. (11)

lim
k!0

DðkÞ ¼ 0; for d ¼ 2; (40)

so the equal-time propagator vanishes at k ¼ 0, Dð0Þ ¼ 0.
This states that a gluon of zero momentum cannot be
created by applying the field Ab

i ðx; tÞ to the vacuum, and
thus the would-be physical gluons exit the spectrum. From
Eq. (15), we obtain, as in Eq. (19),

lim
k!0

jkjDrðkÞ ¼ 0; for d ¼ 3; (41)

where DrðkÞ is the renormalized, equal-time, space-space
Coulomb-gauge propagator.

D. Bound on the RG invariant in the Coulomb gauge

For space dimension d ¼ 3, we must consider regulari-
zation and renormalization, as in the Landau gauge.
Although renormalization in the Coulomb gauge has
not been established to all orders, we suppose that it is
renormalizable, and that the perturbative renormalization
group holds.
We proceed exactly as in the Landau-gauge case, but

with different values for the constants. For space dimen-
sion d ¼ 3, Eq. (15) reads
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J � g20ð�ÞZ3ð�Þ 1

3�2

Z C�

0
dkDrðkÞ � N; (42)

where g0ð�Þ is the unrenormalized coupling constant, and
Z3ð�Þ is the renormalization constant for the space com-

ponents, Ai;0 ¼ Z1=2
3 Ai;r, in the Coulomb gauge. (The space

and time components of A� renormalize differently in the

Coulomb gauge).
The renormalization constant Z3 of the space compo-

nents Ai of the gauge field is given by Eq. (23) where, by
Eq. (B.37) of Ref. [31], with Z3 ¼ Z2

A, the coefficient c has
the value

c ¼ 1

ð4�Þ2
�
2N � 4nf

3

�
(43)

for SUðNÞ, and we have added the quark contribution. As
in the Landau gauge, we have

Z3ð�Þ ¼ z3ln
p�; (44)

where p ¼ c=2b. Here c, r, and z3 have values appropriate
for the Coulomb gauge, and we obtain

J ¼ 1

2b ln�
z3ln

p�
1

3�2

Z C�

0
dkDrðkÞ � N; (45)

where the gauge-independent quantity b is given in
Eq. (22). As in the Landau gauge, the theory is consistent
only if p < 1. We find

p ¼ c

2b
¼ 3N � 2nf

11N � 2nf
; (46)

and, as in the Landau gauge, we have p < 1, provided
that the denominator is positive, 11N > 2nf. This is, again,

the condition on the number of quarks for the theory to
be asymptotically free, as we now assume. As before, the
coefficient of the integral in Eq. (45) vanishes for � ! 1,
and any finite contribution to the integral is annihilated in
this limit.

According to the Callan-Symanzik equation, the renor-
malized equal-time propagator has logarithmic corrections
asymptotically at large k,

DrðkÞ � r

2jkjln pjkj ; (47)

where p is given in Eq. (46), and, as in Eq. (33), we have

J ¼ z3
6�2b

ln p�1�
Z C�

�
dk

r

2kln pk
� N: (48)

As in the Landau gauge, this gives (asymptotically at
large �)

J ¼ z3r

12�2bð1� pÞ ¼
z3r

6�2ð2b� cÞ ¼
z3r

2N
: (49)

We thus obtain

z3r � 2N2; (50)

which is the same bound as in the Landau gauge and, again,
the number of quark flavors has dropped out.
As in the Landau gauge, the quantity z3r is a

renormalization-group invariant. In the Coulomb gauge
the bound on this quantity governs the overall normaliza-
tion of the space components of the equal-time gluon
propagator DðkÞ, whereas in the Landau gauge it governs
the overall normalization of the Lorentz-invariant propa-
gator DðkÞ.

V. CONCLUDING REMARKS

We have obtained the continuum and lattice bounds (11)
and (12) on the gluon propagator, and the bound (15) on the
renormalized gluon propagator, which hold in the Landau
gauge, where d is the dimension of space-time, and in the
Coulomb gauge, where d is the dimension of space and
DðkÞ is the instantaneous spatial gluon propagator. In
space-time dimensions two, three, and four these bounds
imply restrictions on the infrared behavior of the contin-
uum gluon propagator in the Landau and Coulomb gauges
that are more severe in lower dimensions, and in space-
time dimension four there is, unexpectedly, a restriction on
the high-momentum behavior of the continuum gluon
propagator in the Landau and Coulomb gauges.
It would be of interest to test the lattice and continuum

bounds using numerical lattice data for the gluon propa-
gator in two, three, and four space-time dimensions in the
Landau and Coulomb gauges. It is possible that the bounds
are not close to being saturated.
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APPENDIX A: ELLIPSOIDAL BOUND ON
CONTINUUM CONFIGURATIONS

We shall establish an ellipsoidal bound on continuum
configurations A that lie inside the Gribov region �. We
consider the SUðNÞ gauge group on a periodic Euclidean
volume V ¼ Ld. To start, we substitute into the inequality
(4) the trial wave function

c ðAÞ ¼ c 0 � 	
Pq

ðM0 � p2ÞM1ðAÞc 0; (A1)

whereM ¼ M0 þM1 is the Faddeev-Popov operator, with
M0 ¼ �@2, Mac

1 ðAÞ ¼ �fabcAb
�@�. This wave function is

inspired by first-order perturbation theory, according to
which the first-order change in the zeroth-order wave
function c 0 is given by a similar expression, but we shall
of course obtain an exact bound. The plane-wave state

c 0 ¼ V�1=2 exp ðip � xÞ
 (A2)
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is an eigenvector of M0, M0c 0 ¼ p2c 0, 
 is an
x-independent, normalized color vector, and p� is an

allowed momentum vector on the periodic Euclidean
volume V ¼ Ld, p� ¼ 2�n�=L, where n� is an integer.

The operator Pq is the projector defined by the kernel

Pqðx; yÞ ¼ V�1
X

k;jkj�jqj
eik�ðx�yÞ; (A3)

which projects onto the direct sum of eigenspaces of M0

belonging to all eigenvalues k2 of M0 that are greater than
or equal to some fixed eigenvalue q2. We stipulate that the
inequalities

k2 � q2 > p2 � ð2�=LÞ2 (A4)

are satisfied so that the denominator in Eq. (A1) is always
positive, and that k�, p�, and q� are allowed momentum

vectors on the periodic volume V ¼ Ld. The quantities 	,
p�, and q� are at our disposal, and 	 will be a variational

parameter. Note that c 0 is independent of A, and M1 ¼
M1ðAÞ is linear in A, so the trial wave function c ¼ c ðAÞ
has a piece that is independent of A and a piece that is
linear in A.

With this wave function we have, by Eq. (4), for all
A 2 �,

ðc ;Mc Þ ¼ Ið	Þ ¼ X � 2	Y þ 	2Z � 0; (A5)

where

X ¼ ðc 0; ðM0 þM1Þc 0Þ;
Y ¼

�
c 0;M1

Pq

ðM0 � p2ÞM1c 0

�
;

Z ¼
�
c 0;M1

Pq

ðM0 � p2Þ ðM0 þM1Þ
Pq

ðM0 � p2ÞM1c 0

�
;

(A6)

and we have simplified Y using PqM0c 0 ¼ 0. The pos-

itivity of Ið	Þ for all 	 implies

X � 0; Z � 0: (A7)

Moreover, Ið	Þ has a minimum at 	 ¼ Y=Z, from which
we obtain the bound

Y2 � XZ: (A8)

Because A appears only in M1ðAÞ, which is linear in A,
there is a term in Z which is cubic in A, whereas X and Y
are at most quadratic in A. We shall bound the cubic term
by means of the following lemma.

Lemma: For the SUðNÞ group the bound

ð!; ½M0 þM1ðAÞ�!Þ � N2ð!;M0!Þ (A9)

holds for any A in � and any wave function !ðAÞ.
This lemma is derived in Appendix B of Ref. [25], but

we present the derivation here for completeness.

Proof: Consider first the SU(2) group. We decompose

M1 into the sum of three operators, M1 ¼ Mð1Þ
1 þMð2Þ

1 þ
Mð3Þ

1 , that are each given by

MðbÞ
1 ðAÞ ¼ SbHbðAÞ (A10)

(no sum on b), where ðSbÞac � i�abc is an angular momen-
tum matrix in the spin-one representation that acts on color
variables, and Hb ¼ iAb

�@� is a Hermitian operator that

acts only on space variables. We first bound the operator

Mð3Þ
1 ¼ S3H3. Let !a	 � ea	�ðxÞ, where �ðxÞ is any func-

tion of x, and e	 and e0 are x-independent, normalized
eigenvectors of S3, S3em ¼ mem. We have

0 � ð!	; ½M0 þM1ðAÞ�!	Þ
¼ ð�;M0�Þ 	 ð�;H3ðAÞ�Þ; (A11)

where the inequality holds for all A 2 �, and we have used
the fact that ðe	; S1e	Þ ¼ ðe	; S2e	Þ ¼ 0 because S1 and
S2 are off-diagonal in the S3 basis. It follows that the
inequality

jð�;H3ðAÞ�Þj � ð�;M0�Þ (A12)

holds for any�ðxÞ and all A 2 �. We now decompose any
wave function ! according to ! ¼ eþ�þ þ e0�0 þ
e���, and we have for all ! and all A 2 �

jð!;Mð3Þ
1 ðAÞ!Þj ¼ jð!; S3H3!Þj

¼ jð�þ; H3�þÞ � ð��; H3��Þj
� jð�þ; H3�þÞj þ jð��; H3��Þj
� ð�þ;M0�þÞ þ ð��;M0��Þ
� ð!;M0!Þ: (A13)

The same inequality holds for Mð1Þ
1 and Mð2Þ

1 , which gives

jð!;M1ðAÞ!Þj � 3ð!;M0!Þ: (A14)

For the SUðNÞ group, the proof is identical except that
there are N2 � 1 terms in M1, which gives

jð!;M1ðAÞ!Þj � ðN2 � 1Þð!;M0!Þ; (A15)

and Eq. (A9) follows h.
We apply the lemma to Z, which is of the form Z ¼

ð!;M!Þ, where ! ¼ Pq

ðM0�p2ÞM1c 0. The lemma yields

Z � N2Z0; (A16)

where

Z0 �
�
c 0;M1ðAÞ

PqM0

ðM0 � p2Þ:2 M1ðAÞc 0

�
; (A17)

and we obtain the bound

Y2 � N2XZ0: (A18)
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The gain here is that Z0 is only quadratic in A, whereas Z
contains a term that is cubic in A.

We further simplify the bound by comparing Y and Z0.
We insert a complete set of eigenstates,

c k;a ¼ V�1=2eik�xea; (A19)

where ea are a basis of color vectors, and obtain

Y ¼ X
k;a;jkj�jqj

1

k2 � p2
jðc k;a;M1c 0Þj2; (A20)

Z0 ¼
X

k;a;jkj�jqj

k2

ðk2 � p2Þ2 jðc k;a;M1c 0Þj2: (A21)

From the restriction k2 � q2 >p2 it follows that

k2

k2 � p2
� q2

q2 � p2
; (A22)

and consequently

Z0 � q2

q2 � p2
Y: (A23)

This gives the bound

Z0Y � q2

q2 � p2
Y2 � N2q2

q2 � p2
XZ0; (A24)

and so

Y � N2q2

q2 � p2
X: (A25)

We next consider

X ¼ ðc 0; ðM0 þM1Þc 0Þ ¼ p2 � ip�f
abc
a�abk¼0;�


c;

(A26)

where we have used the Fourier expansion (6), and abk¼0;�

is the 0-momentum component of Ab
�ðxÞ. We next

show that

jfabc
a�abk¼0;�

cj � 2�

L
; (A27)

where � is a fixed Lorentz index. To do so, we
use ð!;MðAÞ!Þ � 0 for A 2 �, where ! ¼
V�1=2 exp ð	i2�x�=LÞ
. We have

ð!;M!Þ ¼
�
2�

L

�
2 
 i

�
2�

L

�
fabc
a�abk¼0;�


c � 0;

(A28)

from which Eq. (A27) follows. This gives

X � p2 þ ð2�=LÞX
�

jp�j; (A29)

and we obtain the bound on Y,

Y � N2q2

q2 � p2

�
p2 þ ð2�=LÞX

�

jp�j
�
: (A30)

Note that Y is quadratic in A, while the right-hand side is
independent of A, so this is an ellipsoidal bound on A, as
advertised.
We next evaluate Y, Eq. (A20). We have

ðc k;a;M1c 0Þ ¼ �ip�f
abcV�1

Z
ddxAb

�ðxÞeiðp�kÞ�x
c

¼ �ip�f
abcabk�p;�


c: (A31)

This gives

Y ¼ X
k;a;jkj�jqj

jp�f
abcabk�p;�


cj2
k2 � p2

¼ X
k;a;jkþpj�jqj

jp�f
abcabk;�


cj2
ðkþ pÞ2 � p2

; (A32)

and we have the bound

fabcfade
c�
ep�p�

X
k;jkþpj�jqj

ab�k;�a
d
k;�

ðkþ pÞ2 � p2

� N2q2

q2 � p2

�
p2 þ ð2�=LÞX

�

jp�j
�
: (A33)

For each p and q satisfying q2 > p2 � ð2�=LÞ2, and for
each color vector 
, this is an ellipsoidal bound on the
Fourier components abk;� that holds at finite Euclidean

volume V for all configurations A 2 �. Geometrically
speaking, the configurations A that satisfy the bound
(A33) define an ellipsoid E in configuration space (that
depends on p and q). The Gribov region � is contained in
E, and we have the inclusions

� � � � E: (A34)

Here � is the fundamental modular region, which consists
of the absolute minimum of the minimizing functional on
each gauge orbit.

APPENDIX B: BOUND ON THE CONTINUUM
GLUON PROPAGATOR

We convert the ellipsoidal bound on configurations (just
obtained) to a bound on the gluon propagator by taking
expectation values,

fabcfade
c�
ep�p�

X
k;jkþpj�jqj

hab�k;�adk;�i
ðkþ pÞ2 � p2

� N2q2

q2 � p2

�
p2 þ ð2�=LÞX

�

jp�j
�
: (B1)

From the Fourier expansions
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hAb
�ðxÞAd

�ð0Þi ¼ V�1
X
k

�bdD��ðkÞeik�x

¼ X
k

hab�k;�adk;�ieik�x; (B2)

whereD��ðkÞ is the gluon propagator on the finite periodic
volume V, we obtain

hab�k;�adk;�i ¼ V�1�bdD��ðkÞ; (B3)

and the last bound becomes

V�1
X

k;jkþpj�jqj

p�D��ðkÞp�

ðkþ pÞ2 � p2

� Nq2

q2 � p2

�
p2 þ ð2�=LÞX

�

jp�j
�
; (B4)

where we have used fabcfabe ¼ N�ce. This is an exact
bound on the gluon propagator on a finite periodic
Euclidean volume V ¼ Ld.

We take the infinite-volume limit, L ! 1, keeping k, q,
and p finite, and obtain

V�1
X

k;jkþpj�jqj

p�D��ðkÞp�

ðkþ pÞ2 � p2
� Nq2

q2 � p2
p2: (B5)

We divide out a factor of p2,

V�1
X

k;jkþpj�jqj

p̂�D��ðkÞp̂�

ðkþ pÞ2 � p2
� Nq2

q2 � p2
; (B6)

where p̂� ¼ p�=jpj is a unit Lorentz vector. Recall that

jpj, p̂�, and q� are quantities at our disposal. We take the

limit jpj ! 0, keeping p̂� and q fixed, which gives

V�1
X

k;jkj�jqj

p̂�D��ðkÞp̂�

k2
� N: (B7)

We now take the limit q ! 0, and convert the sum to an
integral, since we are in the infinite-volume limit, and
obtain the bound

1

ð2�Þd
Z

ddk
p̂�D��ðkÞp̂�

k2
� N: (B8)

Spherical symmetry is regained in the infinite-volume limit
so, by transversality,D��ðkÞ ¼ DðkÞð��� � k�k�=k

2Þ, and
the angular average over k yields the bound

d� 1

d

1

ð2�Þd
Z

ddk
DðkÞ
k2

� N: (B9)

APPENDIX C: SIMPLE ELLIPSOIDAL BOUND ON
CONTINUUM CONFIGURATIONS AT

INFINITE VOLUME

We note parenthetically that we could have taken the
limit of large volume V, without taking expectation values.

In Eq. (A33), we take the limit L ! 1 keeping k, q, and p
finite, divide by p2, take the limit p ! 0, followed by the
limit q ! 0, and we obtain the ellipsoidal bound

fabcfade
c�
ep̂�p̂�

X
k

ab�k;�a
d
k;�

k2
� N2: (C1)

We obtain a simpler ellipsoidal bound by summing over a

complete basis
P

N2�1
b¼1 
c�

b 
e
b ¼ �ce, and

P
d
�¼1 p̂

�
�p̂

�
� ¼

���, which gives

X
k

ab�k;�a
b
k;�

k2
� NðN2 � 1Þd: (C2)

In position space this bound reads, by Eq. (6),

Z
V
ddxAb

�ðxÞ½ð�@2Þ�1A�b�ðxÞ � NðN2 � 1ÞVd: (C3)

For a configuration Ab
�ðxÞ that has compact support, this

bound becomes vacuous in the limit V ! 1 because the
right-hand side diverges with V, while the left-hand side
remains finite. However, for a typical gauge-fixed configu-
ration (and here we may suppose that a lattice regulariza-
tion is in place), the integral on the left is a bulk quantity of
order V, and the bound is meaningful. Bounds on lattice
configurations are given in Appendix D.

APPENDIX D: BOUND ON THE LATTICE
GLUON PROPAGATOR

1. Notation for lattice quantities

Lattice configurations are defined by link variables
Ux;� 2 SUðNÞ that live on the link hx; xþ e�i, where sites
of the lattice are labeled (in lattice units) by integers x�,
and e� is a unit Lorentz vector in the positive � direction.

Numerical gauge fixing is done by minimizing the function

FUðgÞ ¼
X
x;�

Re trð1� gUx;�Þ (D1)

with respect to local gauge transformations gx, where
gUx;� � g�1

x Ux;�gxþe� is the gauge transform of the con-

figuration Ux;� by gx. In practice there are many local

minima, and the particular minimum chosen is algorithm
dependent. For our purposes, any minimum will do: the
absolute minimum plays no special role. The only proper-
ties we shall use are that at any local minimum (i) the
functional FUðgÞ is stationary, and (ii) the matrix of its
second derivatives is positive. Property (i) gives the lattice
transversality condition,X

�

ðAa
x;� � Aa

x�e�;�Þ ¼ 0; (D2)

where we have introduced the lattice variables

Ab
x;�ðUÞ � �tr½tbðUx;� �Uy

x;�Þ�; (D3)
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that are a lattice analog of the continuum variables Ab
�ðxÞ.

Property (ii) is the positivity of the matrix element,

ðc ;MðUÞc Þ � 0; (D4)

for all c a
x . Here Mab

xy ðUÞ is the lattice Faddeev-Popov

matrix. It is a real symmetric matrix that is conveniently
expressed as

M ¼ M0 þM1; (D5)

where M0 and M1 are defined by the quadratic forms

ðc ;M0c Þ � X
x;�

tr½�ðc �
xþe�

� c �
xÞðUx;� þUy

x;�Þ

� ðc xþe� � c xÞ�; (D6)

where c x � tac a
x and c �

x � tac a�
x , and

ðc ;M1ðAÞc Þ ¼ trf½c xþe� ; c x�ðUx;� �Uy
x;�Þg

¼ fabcc a
xþe�

Ab
x;�c

c
x

¼ �ð1=2Þfabcðc xþe� þ c xÞa
� Ab

x;�ðc xþe� � c xÞc: (D7)

The relation to the continuum Faddeev-Popov operator (3)
is apparent. The last expression is real when A satisfies the
lattice transversality condition (D2). Properties (i) and (ii)
define the (first) lattice Gribov region �.

We consider a hypercubic periodic lattice of volume
V ¼ N d, where N is an integer and x� ¼ 0; 1; . . .N �
1, modðN Þ. The Fourier transformation is given by

Ab
x;� ¼ X

k

abk;� exp ½ik � ðxþ e�=2Þ�; (D8)

where k� ¼ 2�n�=N , and n� ¼ 0; 1 . . .N � 1,

modðN Þ. The transversality condition (D2) is diagonal
in momentum space, where it readsX

�

K�a
b
k;� ¼ 0; (D9)

and we have introduced

K� � 2 sin ðk�=2Þ; (D10)

and similarly P� � 2 sin ðp�=2Þ, Q� � 2 sin ðq�=2Þ.

2. Ellipsoidal bound on lattice configurations

We proceed as in the continuum case. The lattice Gribov
region � is defined by the following condition on (trans-
verse) configurations U:

� ðc ;M1ðAÞc Þ � ðc ;M0ðUÞc Þ; (D11)

for all c , where A ¼ AðUÞ.
As in the continuum case, the matrix M1ðAÞ is linear in

A. However, in the lattice caseM0ðUÞ is not independent of
the configuration U. We nevertheless obtain a simple lat-
tice bound by introducing the matrix K0 defined by

ðc ;K0c Þ � X
x;�

tr½�2ðc xþe� � c xÞ�ðc xþe� � c xÞ�;

(D12)

which is independent of U [25]. The difference,

ðc ; ½K0 �M0ðUÞ�c Þ � X
x;�

tr½�ðc �
xþe�

� c �
xÞð1�Ux;�Þ

� ð1�Uy
x;�Þðc xþe� � c xÞ�;

(D13)

is manifestly positive for every lattice configuration U and
every trial wave function c , so we have

ðc ;M0ðAÞc Þ � ðc ;K0c Þ; (D14)

which, by Eq. (D11), yields the inequality

�ðc ;M1ðAÞc Þ � ðc ;K0c Þ (D15)

for every configuration U 2 � and every c .
Geometrically, it is natural to define a region � in con-
figuration space by the condition

� � fU: � ðc ;M1ðAÞc Þ � ðc ;K0c Þ for all c g;
(D16)

where A ¼ AðUÞ is transverse, and we have the inclusions

� � � � �: (D17)

Here � is the fundamental modular region, which consists
of every configuration that is the absolute minimum of the
minimizing function on its gauge orbit. We shall derive a
bound on the lattice gluon propagator that holds for all
transverse configurations in �, which then holds a fortiori
for all configurations in the Gribov region�. BecauseK0

is independent of U and because M1ðAÞ is linear in A ¼
AðUÞ, the proof goes just as in the continuum case, but with
M0 ! K0.
We define

c 0 ¼ V�1=2eip�x
; (D18)

where V ¼ N d and p� ¼ 2�n�=N is a lattice momen-

tum, and we have

K 0c 0 ¼ P2c 0; (D19)

where P� is defined as in Eq. (D10). The continuum proof

goes through, with the substitutions p2 ! P2, k2 ! K2,
q2 ! Q2, and M0 ! K0, and Eq. (A4) becomes

K2 � Q2 >P2 � 4sin 2ð�=N Þ: (D20)
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From Eq. (D7) one sees that Eq. (A31) may be replaced by

ðc k;a;M1c 0Þ ¼ �ifabc
X
�

P� cos ðk�=2Þabk�p;�

c;

(D21)

Eq. (A26) gets replaced by

X ¼ P2 � i
X
�

P� cos ðp�=2Þfabc
a�abk¼0;�

c; (D22)

Eq. (A27) by

jfabc
a�abk¼0;�

cj � 2 tan ð�=N Þ; (D23)

Eq. (A29) by

X � P2 þ 2 tan ð�=N ÞX
�

j sinp�j; (D24)

Eq. (A30) by

Y � N2Q2

Q2 � P2

�
P2 þ 2 tan ð�=N ÞX

�

j sinp�j
�
; (D25)

and finally Eq. (A33) by

fabcfade
c�
e
X
k

C�ðk0; pÞab�k;�adk;�C�ðk0; pÞ
K02 � P2

� N2Q2

Q2 � P2

�
P2 þ 2 tan ð�=N ÞX

�

j sinp�j
�
; (D26)

where k0� � ðkþ pÞ�, K02 � 4
P

�sin
2ðk0=2Þ, C�ðk0; pÞ �

P� cos ðk0�=2Þ, and the sum over k is restricted by

K02 � Q2. This is an ellipsoidal bound that holds on a
finite lattice for every configuration abk;� in the lattice

Gribov region �.

3. Bound on the lattice gluon propagator

Upon taking expectation values, we obtain a bound on
the lattice gluon propagator,

V�1
X
k

C�ðk0; pÞD��ðkÞC�ðk0; pÞ
K02 � P2

� NQ2

Q2 � P2

�
P2 þ 2 tan ð�=N ÞX

�

j sinp�j
�
; (D27)

where D��ðkÞ is the gluon propagator on a finite lattice,

and we have used

hab�k;�adk;�i ¼ V�1�bdD��ðkÞ: (D28)

We now take the lattice volume to infinity, N ! 1,
while keeping the lattice spacing finite. The lattice mo-
mentum k� ¼ 2�n�=N becomes a continuous angle

�� � k� � �. We divide out P2, take the limit p ! 0

and then q ! 0, and we obtain the bound on the gluon
propagator on an infinite lattice,

P̂ �T��P̂� � N; (D29)

where P̂ is an arbitrary unit vector. Here

T�� � 1

ð2�Þd
Z �

��
ddk

cos ðk�=2ÞD��ðkÞ cos ðk�=2Þ
4
P

� sin
2ðk�=2Þ

(D30)

(no sum on � or �) is a tensor that is invariant under the
hypercubic symmetries. It is thus of the form T�� ¼ J���,

where J ¼ T��=d, and the bound on the lattice gluon

propagator reads J � N, or

1

dð2�Þd
Z �

��
ddk

P
� cos 2ðk�=2ÞD��ðkÞ
4
P

� sin
2ðk�=2Þ

� N: (D31)
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