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Skyrmions up to baryon number 108
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The Skyrme crystal is built up of repeating units similar to the cubic Skyrmion of baryon number 4.
Using this as a guide, we construct new Skyrmion solutions in the massive-pion case, with various baryon
numbers up to 108. Most of our solutions resemble chunks of the Skyrme crystal. They are constructed
using a multilayer version of the rational map ansatz to create initial configurations, which are then

relaxed numerically to find the energy minima. The coefficients of the rational maps are found by a
geometrical construction related to the Skyrme crystal structure. We find some further solutions by
numerical relaxation of clusters composed of baryon number 4 Skyrmions.
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L. INTRODUCTION

The Skyrme model was proposed in 1961 as a model
for nuclear physics [1-3]. It is a nonlinear field theory of
pions that admits solitonic solutions called Skyrmions.
Skyrmions model atomic nuclei, and have a conserved,
integer-valued topological charge B, which is interpreted
as the baryon number, or mass number, of a nucleus.

The Skyrme field U(x) is an SU(2)-valued scalar field. It
can be written as

Ulx) = o) + im(x) 7, (1.1)
with pion fields 7 = (7, 7, 73) and the sigma field
o. Here x = (¢, X) = (x, X1, X3, x3) and 7 are the Pauli
matrices. o and 7 are not independent, as UUT =
(> + @7 @) =1

The Lagrangian in “Skyrme units” is

1

1 1
- j {— 3 TH(R,R¥) + < TH(R,,, R, J[R¥, R')

— m?Tr(I — U)}d3x, (1.2)

where R, = (9, U)U" is the right current. The energy unit
is roughly 700 MeV and the length unit roughly 1 fm. The
parameter m is the pion mass in Skyrme units. Using the
physical pion mass one finds m =~ 0.5 [4], but this is
sensitive to the length unit. It has been found that if one
calibrates the model to real spinning nucleons—and some
larger nuclei like carbon-12 in its ground and excited
states—a value of m =1 gives a better fit [5-7].
Therefore m = 1 is used in this paper.

For a static field U(x), the energy depends only on U and
its spatial derivatives (which are encoded in the spatial
current R;), and is
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+ m? Tr(I — U)}d3x. (1.3)
U = I is the vacuum of the theory. For a finite-energy field
configuration, it is necessary that U — I as |x| — oo, and
hence 0 — 1 and 7 — 0.

The baryon number B is the topological degree of the
map U: R®— SU(2), which is well-defined because
U — I at spatial infinity. B can be defined as the integral
over R3 of the baryon density,

B =

24
The minimum-energy field configurations for each B are
the true Skyrmions. For all but the smallest baryon
numbers one finds further configurations that are local
minima of the energy or saddle points—with very similar
energies—and these are also called Skyrmions.

The Skyrme model with massless pions (m = 0) has
been studied intensively, and Skyrmions with all baryon
numbers up to 22 have been found [8]. Beyond baryon
numbers 1 and 2, these Skyrmions have a polyhedral shell-
like structure, surrounding a hollow region of small baryon
density whose volume increases proportionally to the
baryon number. This does not model real nuclei well. In
recent years, the Skyrme model has been studied with a
pion mass m around 1, and Skyrmions with selected baryon
numbers up to B = 32 have been found [5,9,10]. These
massive-pion solutions are closer to the structure of real
nuclei. They are more compact, and clustering can be
observed. For example, the B = 8 Skyrmion consists of
two B = 4 Skyrmions, as in the a-particle model of nuclei.
The reason for this greater compactness is that in the
hollow region of the shell-like Skyrmions, U is close to
—1, and the pion mass term makes this unstable.

Many Skyrmions have been found with the help of the
rational map ansatz [11]. A rational map is a quotient of
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two complex polynomials p(z)/q(z), and using stereo-
graphic projection it can be interpreted as a map from the
Riemann sphere, S2. to itself. A rational map is an exact
multilump solution of the O(3) sigma model on 2, this
being a Skyrme-type model in two dimensions. In three
dimensions, the rational map is used to encode the angular
part of a Skyrmion, and by extending it using a radial
profile function one gets useful field configurations of the
three-dimensional Skyrme model. Part of the Skyrme en-
ergy depends on the coefficients of the rational map and it
is important to optimize the coefficients by minimizing the
energy, or at least by getting close to the minimum. After
this, a full numerical relaxation quickly leads to a shell-like
Skyrmion, with the baryon number equal to the degree of
the map. The approach can be extended to a multilayer
ansatz using two or more rational maps [12], and then—
with m = 1—numerical relaxation leads to the more com-
pact Skyrmions.

Rational maps can be constructed with the conjectured
symmetry of a Skyrmion for a given baryon number. This
is helpful, although one should check that configurations
with different symmetries are not of lower energy. The
coefficients of a rational map are constrained by its sym-
metry, and for small degrees only certain symmetries are
allowed. For example, for degree 4 there is an essentially
unique rational map with cubic symmetry, and no map with
icosahedral symmetry. This goes some way in explaining
the cubic symmetry of the B = 4 Skyrmion. However, for
larger baryon numbers, symmetry does not fix the coeffi-
cients uniquely. The remaining undetermined coefficients
can be found by numerical optimization of the relevant part
of the Skyrme energy [8], but this proves to be very time-
consuming and ineffective for baryon numbers beyond
about 20. New techniques to construct near-optimal ra-
tional maps are presented in this paper, and several new
Skyrmion solutions have been found using these. They
have various baryon numbers up to B = 108, far higher
than those of Skyrmions found before. The closest compa-
rable previously known solution is the cubic B = 32
Skyrmion, which can be obtained using a double rational
map ansatz [10].

A feature of many Skyrmions with massive pions is that
they look like fields cut out from the infinite Skyrme
crystal. We call these crystal chunks. The crystal with
massless pions has a primitive cubic structure where each
unit cell contains half a unit of baryon number, and can be
regarded as containing a half-Skyrmion [13-15]. In neigh-
boring unit cells the fields repeat with an SU(2) twist.
There is exact periodicity after two lattice spacings, so a
true cubic unit cell contains eight half-Skyrmions, and
hence four units of baryon number. In the crystal with
massive pions, the half-Skyrmion symmetry is slightly
broken. The true unit cell remains a cube with four units
of baryon number, and the fields in this unit cell are very
similar to the isolated B = 4 Skyrmion. As a consequence,
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many Skyrmion solutions with baryon numbers that are a
multiple of four are crystal chunks. At the same time they
look like clusters of B =4 Skyrmions glued together,
analogous to what is expected in the a-particle model [10].

The geometrical method used to construct rational maps
in this paper is based on the Skyrme crystal. The zeros and
poles of the rational map are derived from the locations of
half-Skyrmions in the crystal [16]. This requires a conver-
sion of the Cartesian coordinates in the crystal lattice
(relative to a suitable origin) to angular coordinates, and
then to the Riemann sphere coordinate z. The simplest
rational maps acquire the cubic point symmetry of the
crystal, but these have restricted values for their degrees,
resulting in Skyrmions with a restricted set of baryon
numbers. However, by selecting subsets of the half-
Skyrmions, and by applying a corner-cutting technique
that we will explain below, we are able to construct a large
range of useful rational maps with lower symmetry. This
yields a larger set of baryon numbers. We would like to
construct Skyrmions with every possible baryon number
up to B = 300, as this would potentially deal with all
nuclei. However, this remains beyond our reach.

While some of the solutions we find are composed of
B = 4 Skyrmions, there are some exceptions. Two new
solutions with B = 20 have T; and D,;, symmetry, respec-
tively. Both solutions consist of four B = 4 Skyrmions
with four B = 1 Skyrmions between them, rather than of
five B = 4 Skyrmions. This resembles the 4« + 4n cluster
structure recently suggested for 2°0 [17].

A few solutions presented here were not constructed
using a rational map ansatz. Instead, they were found by
relaxing an initial configuration made from a number of
B = 4 Skyrmions glued together using the product an-
satz [2]. The B = 24 solutions we have obtained this
way are of lower energy than anything constructed using
rational maps.

In Sec. I we recall the basic B = 1 hedgehog Skyrmion,
and the coloring scheme for pion fields that has been found
useful before. The rational map ansatz and the multilayer
rational map ansatz are also recalled. In Sec. III we
describe the geometrical method, based on the Skyrme
crystal structure, for constructing rational maps. New
Skyrmion solutions obtained by this method are also dis-
cussed, including the Skyrmions of highest baryon number
that we have found, with B = 100. Section IV analyzes a
class of rational maps with cubic or tetrahedral symmetry,
and some related Skyrmions. Section V describes the two
B = 24 Skyrmions that we have obtained as clusters of six
B = 4 Skyrmions. Concluding remarks are in Sec. VI, and
our numerical methods are discussed in the Appendix.

II. HEDGEHOGS AND RATIONAL MAPS

A. B = 1 Skyrmion and coloring scheme

The B = 1 Skyrmion has an O(3) symmetry (combined
rotations in real space and among the pion fields, together
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TABLE I. Energies and symmetries of Skyrmions (for m = 1). The energy E is accurate to *=0.01.
Baryon Number B Energy E E/B Symmetry Comment
1 1.465 1.465 0@3) Hedgehog
2 2.77 1.385 Doy, Toroid
3 4.02 1.340 T, Tetrahedral Skyrmion
4 5.18 1.295 o Cubic Skyrmion
8 10.25 1.281 Dy, Two B = 4 cubes with 90° twist
10.28 1.285 Dy, Two B = 4 cubes without twist
10 12.80 1.280 Dy,
20 25.47 1.274 D,,;, Two B = 10 clusters
25.53 1.277 T,
24 30.47 1.269 D3y Six B = 4 cubes with twists
30.57 1.273 D5y Six B = 4 cubes without twists
30.80 1.283 (o Octahedral cluster of B = 4 cubes dual to B = 32 cubic Skyrmion
25 31.79 1.272 Cyy, A cluster of B =4 and B = 3 Skyrmions
26 33.05 1.271 Cyy, Two B = 13 clusters
27 34.39 1.274 Cs,
28 35.57 1.270 T,
29 36.78 1.268 Cs,
30 38.00 1.267 Dy,
31 39.25 1.266 Cs,
32 40.51 1.266 0, Cubic cluster of eight B = 4 cubes
100 125.68 1.257 0,
101 126.86 1.256 Cs,
102 128.05 1.255 Dy,
103 129.26 1.255 Cs,
104 130.47 1.255 T,
105 131.71 1.254 Cs,
106 132.95 1.254 D3y
107 134.21 1.254 Cs,
108 135.47 1.254 0, Cubic cluster of 27 B = 4 cubes
00 oo 1.238 0, Skyrme Crystal [18]

with an inversion symmetry). It looks like a hedgehog in
that the pion fields are pointing radially outward from the
center. The ansatz for this field configuration is

U(x) = exp (if (N& - 7),

where r = |x| and & = x/r. This results in o = cos f(r),
ar = sin f(r)X, and—to get a B = 1 configuration—the
boundary conditions

f(0) =, f(0) =0

have to be imposed. Optimizing the radial profile function
f(r) to minimize the energy gives the Skyrmion. Table I
lists the energies and other properties of this and other
Skyrmions that we have found.

To visualize Skyrmions, a surface of constant baryon
density is plotted, colored using P.O. Runge’s color sphere.
The colors indicate the value of the normalized pion field
#r = ar/|m@|. No attempt at coloring is made at points
where o = *1 and 7 = 0, but these are absent from
the surfaces we show. The equator of the color sphere
corresponds to 7r; = 0. Here, the primary colors—red,

2.1

2.2)

green, and blue—show where the field 7| + i7r, takes
the values 1, exp (i27/3), and exp (i47/3), respectively,
and the intermediate colors—yellow, cyan, and magenta—
show the values exp (i7/3), —1, and exp (i57/3), respec-
tively. The 7r; value is assigned to the “lightness” attribute
so that white and black, at the poles on the color sphere,
show where 7r; = *1, respectively.

The hedgehog form of the B = 1 Skyrmion means that
on a spherical surface the coloring reproduces the color
sphere itself (see Fig. 1).

Because the pion fields are scalar fields, charges
(sources) of equal sign attract. As a consequence, parts
of Skyrmions with the same color tend to attract, and
low-energy configurations can be constructed by gluing
Skyrmions together with colors matching. This is what
makes the coloring so useful. However, for B > 1 there
is some frustration, i.e., nonmatching colors, as one
can see from some of the figures in this paper. If there
were no frustration, as occurs for example with a B =1
and B = —1 Skyrmion pair, then the Skyrmions could
annihilate.
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FIG. 1 (color online).
Skyrmion.

Runge color sphere, and B =1

B. Single rational map ansatz

The rational map ansatz [11] generates approximate
Skyrmions with separated radial and angular dependence,
generalizing the hedgehog ansatz (2.1). The radial part is
again given by a profile function f(r) satisfying the bound-
ary conditions f(0) = 7 and f(c0) = 0. It is assumed that
f(r) decreases monotonically as r increases. The angular
part is determined by a rational function R(z) = p(z)/q(z),
where p(z) and ¢(z) are polynomials. Here z is the complex
coordinate on the Riemann sphere defined, via stereo-
graphic projection, as z = tan (} 6) exp (i¢), where 6 and
¢ are the usual spherical polar coordinates. The z coordi-
nate is related to the Cartesian coordinates on the unit
sphere S C R’ via the formula

fi, + i,

) 23
1+ ny (2.3)

Z
where 1 is the outward normal vector on the unit sphere.
The inverse of this formula is

1
n, =—— +zi(z—2),1— 2.
.= |Z|2(Z zi(z —2) |z])

2.4)
The rational map ansatz, combining the rational map R(z)
with the radial profile function f(r), is defined by

U(r, z) = exp (if (Mg - 7)

= cos f(r)I + isin f(r)fig) - 7, (2.5)
where fig ;) is defined analogously to Eq. (2.4). This gen-
eralizes the hedgehog ansatz (2.1), which can be recovered
by setting R(z) = z.

The baryon number B is the topological degree of the
rational map R: S? — S2, which is also the algebraic de-
gree of R(z) [the higher of the degrees of the polynomials
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p(z) and ¢g(z)]. Below are some of the well-known rational
maps of high symmetry which approximate the Skyrmions
with baryon numbers B = 1, 2, 3, 4:

R(z) =z, R(z) = 2%,
_ 2 — 3iz
iz -1

A423i2+1 20

R(z -
@ z4—2\/§iz2+1

R(z) =

Optimizing the profile function f(r) gives approximate
Skyrmions, but true Skyrmions can only be found by
further numerical relaxation. The true Skyrmions have
the same symmetries as their rational maps, but for
B > 1 their angular dependence does vary with the radius,
contrary to what the rational map ansatz allows. The sym-
metry groups are O(3), Dy, T4, Oy, for B =1, 2, 3, 4,
respectively. The B = 3 and B = 4 Skyrmions are shown
in Fig. 2.

C. Multilayer rational map ansatz

The single rational map ansatz works well for
Skyrmions of small baryon number, but for larger
Skyrmions, a multilayered structure is needed. The double
rational map ansatz was the first extension to be considered
[12]. It uses two rational maps, denoted as R™™(z) and
R°"(z). A monotonic profile function f(r) is needed, taking
an extended range of values with f(0) = 27 and f(o0) = 0.
Let r; be the radius where f(r;) = . The ansatz is the
same as Eq. (2.5), but R(z) = R"(z) for 0 < r = r; and
R(z) = R°(z) for r; = r < o0. On the sphere of radius r,
the Skyrme field is U = —I. The total baryon number is
the sum of the degrees of the maps R™™ and R°™.

In the K-layer ansatz, the profile function needs to take
the values f(0) = Kar, f(o0) = 0, with the kth rational map
R¥(z) usedin the regionry,_; = r < r, fork=1,2,..., K.
Here f(r;) = (K — k), with ry = 0, rgy = oo. The total
baryon number is the sum of the degrees of all the rational
maps.

It is best if the maps in the different layers share a
substantial amount of symmetry. The maps in neighboring

FIG. 2 (color online).
(right) Skyrmions.

B = 3 tetrahedral (left) and B = 4 cubic
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layers need to be carefully oriented so that colors match as
far as possible. This requirement fixes certain relative signs
that are not determined by symmetry alone. The multilayer
ansatz is useful, but not so close to Skyrmion solutions as
the single-layer version. After relaxation, the solutions do
not have U = =1 on complete spheres, but instead at
isolated points.

III. GEOMETRICAL CONSTRUCTION
OF RATIONAL MAPS

A. Skyrmions from the Skyrme crystal

Rational maps of low degree can be constructed using
symmetry algebra to fix the coefficients of the polynomials
p(z) and ¢(z). Generally, however, symmetry leaves some
coefficients undetermined, and these have in the past been
found numerically by minimizing an expression that arises
when the rational map ansatz is inserted into the Skyrme
energy [11]. For degrees beyond about 20, however, this
minimization become intractable, and a new approach is
needed.

The Skyrme crystal, for massless pions, is made of
half-Skyrmions [13—15]. The field values at lattice points
of the crystal are known precisely because of the crystal
symmetry constraints. In a convenient orientation, the
7r; field takes the values *1 at alternating lattice points
(white and black in our color scheme). These values cor-
respond to the zeros and poles of a rational map R(z), that
is, to the roots of the polynomials p(z) and ¢(z).

This observation [16] is the basis for a geometrical
construction of a range of useful rational maps, which
lead to new Skyrmions. In particular, the construction leads
to the cubic Skyrmions with baryon number B = 4n?, with
n € N*, resembling chunks of the Skyrme crystal. The
first construction of the B = 32 Skyrmion (the n =2
example) was by manipulating the field of the Skyrme
crystal directly [19]. However, it is easier to use the inter-
mediary of an r-layer rational map ansatz. The real advan-
tage of this approach is that one can vary the degrees of the
maps and generate Skyrmions with baryon numbers not of
the form 4n°.

Y2

h

FIG. 3 (color online). 4 X 4 X 4 cubic grid.
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Here is how we rederived the B = 32 Skyrmion.
Figure 3 shows the 4 X 4 X 4 grid of half-Skyrmion loca-
tions that occur in a cubic chunk of the crystal. The (black)
circles and (blue) squares are used as the zeros and poles,
respectively, for the construction of the rational maps.
The grid needs to be separated into two layers. The outer
layer has 56 points and the inner (hidden) layer has
2 X2 X2 =8 points. The corresponding rational maps
have degrees 28 and 4.

We set up scaled Cartesian coordinates (y;, 5, y3), with
the origin at the center of the chunk, and lattice points
having half-integer coordinates. The distance to the origin
is denoted by p. The inner layer has its eight points at
(*£1/2, £1/2, =1/2), with p = +/3/2. The outer corner
points are at (*3/2, =3/2, +3/2), with p = 3+/3/2.
Other points in the outer layer are at distances p =
V19/2 (points on edges) and p = +/11/2 (face points).

The Riemann sphere coordinate for any of these points is

1ty
=212

, 3.1
pty;

a variant of Eq. (2.3). From the inner layer of points, we
construct a degree-four map. The numerator p(z) has roots
—_ 4+ 1= 4 1+ :
atz = *+ 7155, 5 and the denominator ¢(z) has roots
+ i+

— 1—i . .
atz==*F0, T 5 This gives

+

R(z) = (Z + \}51’1)(2 B J1§1i1>(z + \/l§+—i1>(z 5 il)
(e )= = Fe + )~ )
_ A+ 2032+ 1
_24—2\/§izz+ 1

(3.2)

which is the map with cubic symmetry, related to the
B = 4 Skyrmion. Cubic symmetry requires that the overall
coefficient is of magnitude 1, and here it is set to 1.

A similar procedure gives the degree-28 rational map of
the outer layer. The numerator and denominator are
expressed as products of their linear factors. The map is

bk :")

3

FIG. 4. Profile functions f(r) used for initial data.
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o (e e~ e e e~ )
(e = A)e — Ji)e — e — e — )= - 7)
(=l e e e e - )
(= e = e~ )~ e~ e — )
L
(2 = i)z = e = e = (e = ile = )
R e A
(= e~ e~ e oo e )
% (Z B 731;11.)(Z B \/litrll)(z B 731—+1i)(z B 137—11) (3.3)
(Z - ]3jri1)(z - ﬁ)(z - 3+—i1)(Z - 33]—;11) |

Cubic symmetry and matching to the inner-layer map fixes
the overall coefficient to be 1. The linear factors could be
multiplied out, giving a map of the structure discussed in
Ref. [10]. However, there is little reason to do this: the
linear factor representation makes it easier to check sym-
metry and to recall the coordinates of the half-Skyrmions.
It also avoids problems with overflowing numerics.

This degree-28 rational map is not energetically optimal,
but it is close to optimal because the zeros and poles are
approximately evenly spread over the Riemann sphere, and
they are rather well separated from each other. Using these
maps of degrees four and 28 in the double rational map
ansatz as initial data, with a simple, piecewise-linear radial
profile function, we successfully recover the cubically
symmetric B = 32 Skyrmion using the numerical relaxa-
tion algorithm developed in Ref. [18].

The profile functions we have used are shown in Fig. 4.
The lower, middle, and upper profile functions are used in
the single, double, and triple rational map ansatz, respec-
tively. Since f(r) is an integer multiple of 7 in finite
intervals of r, the Skyrme field U initially takes the value
*1 in spherical shells of finite thickness.

B. Exploring B = 24-31 solutions using
the corner-cutting method

The idea of cutting single Skyrmions from the corners of
the B = 32 Skyrmion was proposed in Ref. [16] to gen-
erate new solutions with baryon numbers from B = 31
down to B = 24. The corner cutting is performed on the
degree-28 rational map (3.3); it is best understood in terms
of the geometrical approach to rational maps presented
above. The inner degree-four map is unchanged.

The simplest way to remove a Skyrmion from a rational
map is to decrease its degree by one by merging a zero and
a pole. Linear factors cancel in the numerator and denomi-

nator. Say R(z) has a zero at a and a pole at b. Then
eliminating one Skyrmion is done by setting a = b,

0| _Gare| PO
q(Z) a=b (Z - b)Q(Z) a=b Q(Z),

where P(z) and Q(z) are the remaining parts of the poly-
nomials p(z) and ¢(z).

We could use this method on one of the corner poles
(or zeros) of the map (3.3) and one of its neighboring zeros
(or poles), but this destroys all the symmetry, which is
not desirable. Rather, to preserve as much symmetry as
possible, the three neighboring zeros are moved simulta-
neously towards a corner pole. The pole cancels against
one of the zeros, leaving a double zero at the corner after
cancellation (see Fig. 5). Notice that what had been a black
corner becomes a white one with a hole. The O;, symmetry
is broken down to Cj,. After numerical relaxation, this
method gives a new stable Skyrmion with B = 31. This
corner-cutting procedure can be repeated up to eight times.
At each corner, three poles are merged with one zero, or
three zeros with one pole, and the result is either a double

R(2)|— (3.4)

FIG. 5 (color online).

Moving three zeros (white) towards a
pole (black), to produce the B = 31 Skyrmion.
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(a) B=26

FIG. 6 (color online).

pole or a double zero. These persist in the Skyrmion
solutions as holes in the baryon density at corners that
have been cut.

We have obtained solutions from B =24 to B = 31
using this method. The B = 32 Skyrmion looks like eight
copies of the cubic B =4 Skyrmion. In the B = 31
Skyrmion, one of the B =4 cubes becomes a slightly
deformed B = 3 tetrahedral Skyrmion. The remaining
seven hardly change, because the interactions between
Skyrmions at the corners are weak. When this corner
cutting is repeated, further B = 4 cubes are replaced by
B = 3 tetrahedra. In order to preserve as much symmetry
as possible, we cut the corners as follows. For B = 30, a
pair of diagonally opposite corners are cut and D3, sym-
metry remains. For B = 29, we need to remove three
corners, and cutting diagonally opposite corners is no
longer a desirable option. Instead, three corners, with
each pair face-diagonally opposite, are cut. For B = 28,
four corners forming a tetrahedron are removed and 7,
symmetry remains. One further corner is removed to gen-
erate the B = 27 Skyrmion. For B = 26, just two diago-
nally opposite corners are left uncut. The field relaxation is

1.276
1.274
1272

1.270

Energy per Baryon, E/B

1.268

1.266

1.264
23 24 25 26 27

(b) B =25
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(c) B=24

Skyrmions from cutting corners.

initially similar to the higher-B cases, but now there is a
change. The anticipated final D;,-symmetric structure is
not stable. The six B = 3 Skyrmions at the cut corners
move towards the plane midway between the uncut cor-
ners. Then the two B = 4 cubes move in opposite direc-
tions, and each joins up with three of the B = 3 Skyrmions,
forming a structure consisting of two similar B = 13 clus-
ters [see Fig. 6(a)]. The B = 13 cluster has only one
reflection symmetry and smaller Skyrmion clusters could
not be identified clearly within it.

For B = 25, seven corners are cut initially. However, the
relaxed B = 25 Skyrmion again does not have the shape
expected from corner cutting [see Fig. 6(b)]. The relaxed
Skyrmion only has a Cy;, reflection symmetry, but we can
still just identify cubic B = 4 Skyrmions and tetrahedral
B = 3 Skyrmions within the cluster.

B = 24 is the most interesting case. Cutting all eight
corners from the B = 32 Skyrmion produces a cubically
symmetric solution that is best thought of as six B =4
cubes at the vertices of the octahedron dual to the B = 32
cube, rather than eight B = 3 Skyrmions at the vertices of
the original cube. Some half-Skyrmions of the B = 4 cubes

28 29 30 31 32 33

Baryon Number, B

FIG. 7. Energy per baryon for B = 24 to B = 32.
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FIG. 8 (color online).
(c) B = 100 Skyrmion with 8 corners cut.

are acquired from the B = 3 Skyrmions [see Fig. 6(c), and
note the fate of the three black regions near a white corner].
However, this solution appears to be a saddle point and is
not stable. After further relaxation, it approaches one of the
B = 24 solutions discussed in Sec. V.

Figure 7 shows the energy per baryon, E/B, of the stable
Skyrmions we have found. (They are also tabulated in
Table 1.) For B =27 to B = 31, the structures of the
Skyrmions are pretty close to that of the parent B = 32
solution. The energy per baryon varies smoothly in this
range. For solutions from B = 24 to B = 26, however, the
energy is lower than the extrapolation of this smooth
behavior. This shows that corner cutting is only a first
step and further relaxation occurs due to the interaction
between corners.

C. B = 100-108 solutions

The next in the sequence of B = 4n3 cubic Skyrmions is
B =108. Using a 6 X 6 X 6 cubic grid, we have con-
structed a degree-76 outer rational map [analogous to
Eq. (3.3) but too long to write out]. This is combined
with the degree-28 and degree-four maps from the B =
32 Skyrmion as middle and inner maps. A suitable profile
function f(r) running from 37 to 0 is used for the initial
configuration (see Fig. 4). After relaxation, the stable
Skyrmion shown in Fig. 8(a) is obtained. It has the familiar
structure of touching B = 4 subunits, all with the same
orientation.

The next step is to remove single Skyrmions from the
corners. This was done, as in the B = 32 case, by merging
three zeros (poles) of the outer map with a pole (zero) at
each corner. This procedure generates Skyrmions with all
baryon numbers from 107 down to 100. The cubic structure
is locally retained, except that the B = 4 cubes at the
corners are replaced by B = 3 tetrahedra. Recall that for
the B = 32 Skyrmion there was little structural change
observed until six or more corner Skyrmions were re-
moved. We find the B = 108 Skyrmion to be more stable
to corner cutting as the corners are further away from each

PHYSICAL REVIEW D 87, 085034 (2013)

Skyrmions from triple-layer rational maps: (a) B = 108 Skyrmion; (b) B = 104 Skyrmion with 4 corners cut;

other. Removing first four, and then all eight corners gives
the tetrahedral B = 104 Skyrmion and cubic B = 100
Skyrmion shown in Figs. 8(b) and 8(c). These Skyrmions
are apparently stable to perturbations of the initial rational
map. We use B = 103 as an example to study stability.
A rotation of 30° is applied to the outermost layer of the
B = 103 rational map. This is a significant perturbation
of the initial field configuration and all the symmetries of
the field are lost. The Skyrme field relaxes back to the
previously found B = 103 Skyrmion, which is strong evi-
dence that this Skyrmion is the global energy minimum
with B = 103.

IV. RATIONAL MAPS WITH O, AND T,
SYMMETRY

A. Klein polynomials and the degree-28 map

The Skyrme crystal is cubically symmetric, so the sym-
metries of rational maps constructed from the crystal are
related to O,. O, itself and its subgroup 7,—the full
symmetry groups of the cube and tetrahedron—are of
particular importance.

To study the interplay of the geometrical method and
symmetry, it is useful to recall the tetrahedrally symmetric
Klein polynomials [20] and to express our degree-28 map
(3.3) in terms of these. In our preferred orientation, the
tetrahedral vertex and face Klein polynomials p, (z) and
p—(z) are

pi(d) = +24Bi2 + 1,
p_(2) =2* —2\Bi2 + 1.

The ratio of these is the degree-four rational map R(z) =
p+(2)/p_(z) of the B =4 Skyrmion. This is not just
tetrahedrally symmetric, but cubically symmetric as well.
The extra symmetry under a 90° rotation sends z to iz, and
hence R(z) to 1/R(z).

p+/p_ turns out to be the most important ingredient in
the geometrically generated rational maps. For example,
the 56 points in the outer layer of the 4 X 4 X 4 cubic grid

4.1)
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(a)

FIG. 9 (color online).

shown in Fig. 3 can be separated into three subsets: those
on the face interiors, those on the edges, and those on the
vertices (see Fig. 9). Each subset has cubic symmetry.
Let us denote the rational maps constructed from these
subsets by Rr, Rg, and Ry. They are of degrees 12, 12, and
four, respectively, and Ry is the familiar cubic degree-four
map (3.2). Ry and Ry are (projectively) linearly related to

Ry = p/pl by

3 + 73 3 + 73

Rcmlp; )4 - RE=C212+ p L @42
Py Teap- Py T epo

with ¢; = —2.873 and ¢, = 0.178. (Both ¢; and ¢, can be

expressed in an analytical form, but this is messy and
provides no further insight.) The relations (4.2) can be
understood by noting that O;, symmetry does not uniquely
fix 24 points on the Riemann sphere. There is a family with
one real parameter ¢ having this symmetry,

3 3
cpy” + pos

Ry = H——P (43)
ps” tcep-

Starting from ¢ = —1, the numerator and the denominator

of the rational map R, cancel completely and the map
takes a constant value of —1, which corresponds to the two
zeros and the two poles on each face in Fig. 9(a) coinciding
at the center of the face. As ¢ varies from —1 to —oo, the
points move from the face centers along face diagonals to
the vertices; the rational map Ry is a special case. At ¢ =
—oo0, three zeros or three poles coincide at the vertices and
R,? is recovered. We next identify ¢ = —oo and ¢ = oo,
as they give the same rational map. When c¢ varies from oo
to 1, the points move along the edges and the rational map
changes from R,,> to a constant value of 1 where the zeros
and poles coincide at the middle of the edges. The range of
the parameter ¢ has now covered the lower half-circle of
Fig. 10. The rational map R .) behaves similarly for values
of ¢ on the upper half-circle, but with the numerator and
denominator interchanged (zeros become poles and vice
versa). The rational map Ry, is a special case in this range.

PHYSICAL REVIEW D 87, 085034 (2013)

(©)

Points of the 4 X 4 X 4 cubic grid. (a) Points on face interiors; (b) Points on edges; (c) Points on vertices.

We now see that

3+ p 3+ p
o g =2 (AP
P-\p3 T c1p=/\pi + cp=
_ p_+(clczpi + (¢ + e)pipd + pﬁ)
p-\p% + (c1 + cpipd + crept)
(4.4)
and this can be compared with the degree-28 map (modulo
sign flips) constructed by the optimization method,

R— p_+<—Cp6+ - Dpip’ + p6-)
p-\ p§ = Dpipl —Cp®

The values of C and D calculated from c¢; and ¢, are 0.51
and 2.70, respectively, which are moderately close to the
values C = 0.33 and D = 1.64 in Ref. [10].

(4.5)

B. B = 20 Skyrmions

We have also used the rational maps Ry, Rg, and Ry to
seek the B = 20 Skyrmion, which for massive pions was
not previously firmly established. The a-particle model of
nuclei suggests that the B = 20 Skyrmion is formed from
five B = 4 Skyrmions. A solution of this type was found
earlier [10], but was not of the expected triangular bi-
pyramid shape, had little symmetry, and was probably
not of minimal energy.

Two useful rational maps are R = Ry X Ry and R =
Ry X Rp. Their zeros and poles are shown in Fig. 11. Each
has degree 16 and can be used as an outer map. The inner
map is the cubically symmetric degree-four map (3.2).
Using these pairs of maps in the double rational map ansatz
and relaxing them gives two candidate B = 20 Skyrmions,
but neither has a bi-pyramid shape. The cubic symmetry is
also not rigorously enforced by the numerics, and it ends
up broken. The first Skyrmion has T, symmetry, and the
second only D,;, symmetry.

The T,;-symmetric solution has an energy per baryon
E/B = 1.277. It can be interpreted as four slightly dis-
torted B = 4 cubes at the vertices of a tetrahedron and four
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0 e-0178
Zeros and poles Zeros and poles
on face diagonals on edges
-1 1
¢ =-2.873
o0

FIG. 10. Range of c.

B =1 Skyrmions at the face centers of the tetrahedron
see Fig. 12(a)]. Each B = 1 Skyrmion is oriented such that
the color equator (7r;—7r, plane) is parallel to the face of
the tetrahedron containing the Skyrmion. Its primary colors
match the colors of the faces of the B = 4 cubes that it
touches. As a result, the B =1 and B = 4 Skyrmions are
all attractive. The D,,-symmetric solution has slightly
lower energy per baryon, E/B = 1.274, and appears to
be the lowest-energy solution for B = 20. The Skyrmion
consists of two loosely touching clusters, each in the form
of the known B = 10 Skyrmion [see Fig. 12(b)] [5].
An alternative interpretation of the structure of the
T ;-symmetric solution is as two B = 10 Skyrmions, of
which one is rotated by 90°.

The B = 10 Skyrmion itself resembles two B = 4 cubes
bound together by two B = 1 Skyrmions. Figure 13 shows
the top view of the B = 20 Skyrmion, which looks the
same as the B = 10 Skyrmion in Ref. [5]. The B = 10
Skyrmion can be reproduced using the geometric method,
and has E/B = 1.280. As expected, the B = 20 Skyrmion
has slightly lower energy than two well-separated B = 10
Skyrmions.

(a) (b)

FIG. 11 (color online). Grid points used for B = 20. (a) Points
generating the 7; symmetric Skyrmion; (b) Points generating the
D,;, symmetric Skyrmion.

PHYSICAL REVIEW D 87, 085034 (2013)

(a)

FIG. 12 (color online). B = 20 Skyrmions: (a) Skyrmion with
T, symmetry; (b) Skyrmion formed by stacking two B = 10

Skyrmions.

FIG. 13 (color online).
D,;, symmetry.

Top view of B = 20 Skyrmion with

Since the energy difference between the T,-symmetric
and D,;,-symmetric solutions is only about 0.2%, it is
reasonable to ask how similar the solutions are. A stability
test was carried out and both solutions appear to be stable.
The relaxed T,;-symmetric solution is used as the starting
point and a rotation is applied to one of its constituent
B = 10 Skyrmions. The rotated field configuration is then
relaxed and the relaxation process is monitored. The final
result (either a T;- or D,;,-symmetric Skyrmion) depends

S

Ny o

FIG. 14 (color online).

)
3

Zeros and poles with T,; symmetry.
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FIG. 15 (color online).

Left: Two B = 4 cubes bound together into a B = 8 saddle-point solution. Middle: The same, but one cube is

rotated around the axis of separation; this is the stable solution. Right: Three cubes in an “L” shape.

on the initial angle of rotation. This indicates that the
D,;,- and T ;-symmetric Skyrmions are both local minima,
and a saddle point lies between them.

To obtain the T,;-symmetric solution, it is actually
preferable to start with an outer rational map with 7; rather
than O, symmetry (the initial field configuration is closer
to the Skyrmion and converges faster). A suitable degree-
16 outer map has been constructed using the set of points
shown in Fig. 14. The degree-four inner map is unchanged.
This combination builds in the four B = 4 Skyrmions and
the four B = 1 Skyrmions rather effectively.

This rational map with 7, symmetry can again be
written in terms of p, and p_, and is

R=(l+c2)p_+(c]p1+p3)
L+c/p-\pi +epd)

(4.6)

where ¢, and ¢, are as in Eq. (4.2). It is a bit more
complicated than an Oj-symmetric map.

V. FURTHER SKYRMIONS

It is established that Skyrmions often cluster into B = 4
units, even when this is not imposed in the first place. One
may therefore take the B = 4 Skyrmion as a basic building
block and assemble larger Skyrmions from it, using the
product ansatz followed by numerical relaxation. This has
been done previously for B =8, B =12, and B = 32.
We have now found solutions for B = 24 in this way.

(a) (b)

FIG. 16 (color online). B = 24 Skyrmions: (a) Skyrmion as
crystal chunk; (b) Skyrmion with twisted cubes.

The cubic B = 4 Skyrmion (Fig. 2) has alternating white
and black half-Skyrmions at the corners. In the standard
orientation defined by the rational map (3.2), its face colors
are red, green, and blue, and opposite faces have the same
color. This means that two cubes in the same orientation,
face-to-face, will have matching face colors, but the corner
colors will not match. This is the situation in the Skyrme
crystal—where the B = 4 cubes are all oriented the same
way—and also in crystal chunks, such as the B = 32 and
B = 108 Skyrmions.

Given just two cubes, we can twist one of them by 90°
around the axis of separation. Then both the face and
corner colors match, although the edge colors do not.
This is the minimal-energy configuration in the B = 8§
sector for the Skyrme model with massive pions. The
solution with two B = 4 cubes in the same orientation
(Fig. 15, left) has slightly higher energy, and we have
established that it is a saddle point by rotating the solution
and observing how it relaxes. Any small perturbation
(rotation of one of the cubes) leads to the twisted
Skyrmion (Fig. 15, middle) upon relaxation. However, it
is not possible to construct a crystal with these twists: after
arranging three B = 4 cubes in an “L” shape with 90°
twists, the neighboring empty space will be bounded by
two faces of the same color, so a further cube cannot be
inserted with low energy to make a B = 16 square (see
Fig. 15, right).

One can get a B = 24 solution, as a crystal chunk, by
removing two B = 4 cubes from opposite corners of the
B = 32 Skyrmion. This results in a nonplanar ring of six
B = 4 cubes, all with the same orientation [Fig. 16(a)].
However, in this case we can do better. Because of the two
missing corner cubes, we can reorient the remaining six
cubes so that each neighboring pair has a 90° relative twist
around its separation axis [Fig. 16(b)]. This results in a
lower energy. These two B = 24 solutions have E/B =
1.273 and E/B = 1.269, respectively, and the latter ap-
pears to be the true B = 24 Skyrmion of minimal energy.

VI. CONCLUSIONS

In this paper we have presented several new Skyrmions
for a pion mass parameter m = 1, with baryon numbers as
high as B = 108. We have used insight obtained from the
infinite Skyrme crystal to develop a geometrical method to
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construct multilayer rational map ansitze for the Skyrme
field. This gives fairly simple algebraic expressions for
initial data, which have then been relaxed numerically to
obtain Skyrmions that are either global or local minima of
the energy.

The previously known cubic B = 32 Skyrmion was
constructed afresh using a double rational map ansatz.
A range of novel Skyrmions from B = 24 up to B = 31,
related to this B = 32 Skyrmion, were then obtained by
modifying the outer rational map, so as to remove one unit
of baryon number from any of the eight corners. Further
modifications of the rational map led to new Skyrmions
with B = 20.

For the first time, a three-layer rational map ansatz has
been used. This successfully generated the cubic B = 108
Skyrmion, the first Skyrmion with baryon number B > 100
to be found. Corner cutting gave stable solutions in the
range B = 100 to B = 107.

Using another approach, we have found what may be
the lowest-energy Skyrmion with B = 24. This was
constructed by gluing together, with twists, six B =4
cubic Skyrmions into a ring and relaxing them.

All our computations were done at m = 1 because it
gives a good fit to nuclei around carbon-12. The stability of
Skyrmions between B = 8 and B = 22 is known to be
affected if m is reduced to zero. We have made some
preliminary investigations of the effect on our new solu-
tions of changing m. For baryon numbers 24 and above,
there is no qualitative change to the structure of the
Skyrmions for moderate variations of m between 0.5 and
1.5. Further investigation is needed to better understand the
effects at lower baryon numbers.

The next step would be to consider a quantization of the
newly found Skyrmions in order to get further nuclear
spectra from the Skyrme model. Nuclear spectra calcula-
tions are currently limited to baryon numbers no higher
than 16 [7,21].
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APPENDIX: NUMERICAL METHODS

All of the Skyrme field relaxations were done with the
numerical methods developed in Ref. [18], with some
extensions. The numerics are based on an (N + 1)? cubic
grid with lattice constant 4, on which the Skyrme energy
from Eq. (1.3) was discretized using sixth-order finite
differences. This particular discretization order was chosen
because it gives the highest precision per computation
time.

To find the minimum of the discretized energy, a non-
linear conjugate gradient (NLCG) method was chosen
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[22]. NLCG can be seen as a geometrically enhanced
version of gradient descent. The latter is a very slow
method, in particular when the Hessian is of poor condi-
tion. NLCG converges much faster.

Another way to find minima of the energy is to compute
the time development using a version of the dynamical
Skyrme field equations. The advantage is that the field will
accelerate towards an energy minimum, but the disadvant-
age is that it will then overshoot if no measures are taken.
The simplest remedy is to take out kinetic energy by
introducing a friction term, but this eliminates the real
advantage over gradient descent. A more advanced method
is to take out all the kinetic energy whenever the potential
energy is increasing.

One may ignore nonlinear terms with time derivatives in
the Skyrme field equation in this process, which gives a
simpler, if not quite correct time development. This does
not matter, as long as the Lagrangian includes the correct
static energy. The time development will still converge to
minima of the energy [23]. This method gives rapid con-
vergence and has been used to compute many Skyrmions,
both previously [24] and here.

Starting close to an energy minimum, the NLCG
method converges sufficiently rapidly, in our experience.
From further away, time development is often faster at
producing the required structural changes to the field.
This is expected, because far away from a quadratic mini-
mum NLCG is not much better than simple gradient de-
scent methods, and these tend to zigzag.

All numerical methods were implemented in C with
thread-level parallelization for computing gradients.
Initial field configurations were generated using PYTHON
scripts. Usually, an initial field configuration was com-
puted on an N = 40 grid with lattice spacing h = 0.2.
This makes rapid exploration of the solution space pos-
sible: the computation time to generate relaxed solutions
on current desktop PCs is a few hours. One should make
sure all major relaxation is finished and no structural
changes are going on before making further refinements
to improve energy estimates.

A common method to allow for lattice effects is to
correct energies by a factor of B/B,,, so that

E= B E
Bnum num»

(AT)
where E,, is the numerical energy, and B, is the baryon
number obtained as the numerically evaluated integral of
the baryon density (1.4) using the same discretization
scheme as for the energy. B is the (true) integer baryon
number and E is the corrected energy estimate. This
method was often used to estimate Skyrmion energies
[24], and works surprisingly well in the massless pion
case, because the numerical calculations appear to
underestimate both the energy and the baryon number by
a very similar factor. However, it does not work well for
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Skyrmions with massive pions. The reason is that the
pion mass contribution to the energy is not similarly
underestimated by numerics, probably because it does
not contain any derivatives. One could try to develop a
new extrapolation method, separating derivative and
nonderivative energy contributions, but we have not
tried this.

Instead, to get accurate Skyrmion energies, we gradually
increased N and gradually decreased #, so that the effects

PHYSICAL REVIEW D 87, 085034 (2013)

of both could be estimated and an extrapolation to the
continuum limit made. This gives both a good energy
estimate and an idea of the precision. The Skyrmion en-
ergies are presented in Table [; the accuracy is +0.01. This
method works well for massive pions because the Skyrme
field decays quickly [exponentially as exp(—mlx]|),
with m = 1 here], but would be less useful for massless
pion computations, as the Skyrme field decays only
algebraically.
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