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It was shown recently that a PT -symmetric i�3 quantum field theory in 6� � dimensions possesses a

nontrivial fixed point. The critical behavior of this theory around the fixed point is examined and it is

shown that the corresponding phase transition is related to the existence of a nontrivial solution of the gap

equation. The theory is studied first in the mean-field approximation and the critical exponents are

calculated. Then, it is examined beyond the mean-field approximation by using renormalization-group

techniques, and the critical exponents for 6� � dimensions are calculated to order �. It is shown that

because of its stability the PT -symmetric i�3 theory has a higher predictive power than the conventional

�3 theory. A comparison of the i�3 model with the Lee-Yang model is given.
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I. INTRODUCTION

The study of PT -symmetric quantum theory [1] was
originally motivated by the discovery that the eigenvalues
of the quantum-mechanical HamiltonianH ¼ p2 þ ix3 are
real, positive, and discrete [2]. This work naturally led to a
number of studies of the properties of a scalar quantum
field theory having an imaginary cubic self-interaction
term [3]. A very recent study of the renormalization-group
(RG) equations for the PT -symmetric ig�3 quantum field
theory in d ¼ 6� � dimensions shows the existence of a
nontrivial fixed point [4]. This allows for a nonperturbative
renormalization of the theory and suggests that the theory
undergoes a continuous phase transition.

In the present paper we study this transition in detail;
that is, we examine the critical behavior of the theory.
We will see that such a transition is associated with the
existence of a nontrivial solution to the gap equation at a
critical value m2

c of the bare mass m2. The correlation
length (the inverse of the renormalized scalar mass) di-
verges at m2 ¼ m2

c.
In Sec. II we study this transition within the framework

of the mean-field approximation and in Sec. III we obtain
the critical behavior of the theory by calculating the critical
exponents. Next, in Sec. IV we compare the conventional
and the PT -symmetric �3 theories and analyze the rela-
tion between their renormalization and stability properties.
We show that compared with the conventional �3 model,
the PT -symmetric i�3 theory exhibits new and interest-
ing features. Remarkably, the PT -symmetric theory has a
higher predictive power than the�3 theory. This is because
its critical behavior (and therefore its renormalization
properties) is governed by one parameter less than the
conventional theory. We will show that this property is

related to the different stability properties of the two
theories.
Section V goes beyond mean-field analysis. We study

the theory near d ¼ 6 dimensions and calculate the critical
exponents up to Oð�Þ. For d < 6, the fluctuations around
the mean-field configuration become important and the
analysis of the critical behavior requires the use of RG
techniques. With the help of the hyperscaling relations, the
critical exponents are calculated for d ¼ 6� �. Some
conclusions are given in Sec. VI.

II. MEAN-FIELD ANALYSIS

In Ref. [4] a nontrivial fixed point of the RG equations of
thePT -symmetric ig�3 quantum field theory in d ¼ 6� �
dimensions was found. The existence of such a fixed point
suggested the onset of a continuous transition. In this section
we study this transition by performing a mean-field analysis.
The partition function Z½h� of the quantum field theory

in d dimensions is given by

Z½h� ¼
Z

D�e�S½���i
R

ddxh�; (1)

where h is an external field. The action is S½�� ¼R
ddx½ð@��Þ2=2þ Vð�Þ� and the potential is Vð�Þ ¼

m2�2=2þ ig�3=6.
We consider the mean-field approximation to Z½h�, first

searching for a constant-field saddle point and then per-
forming a semiclassical expansion around this configura-
tion. [The exponential in (1) contains an implicit factor of
1=ℏ, and in the semiclassical approximation ℏ is treated as
small, which justifies the use of steepest-descent asymp-
totic techniques [5].] Without loss of generality, we assume
that g > 0.
The constant-field saddle points are given by the gap

equation

m2 ��þ ig ��2=2 ¼ �ih: (2)
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When h ¼ 0, (2) becomes

��ðm2 þ ig ��=2Þ ¼ 0; (3)

which has the two solutions ��1 ¼ 0 and ��2 ¼ 2im2=g. We
must determine which of the saddle points, ��1 or ��2,
contributes to the small-ℏ asymptotic behavior of the
path integral (1).

A. Asymptotic analysis for d ¼ 0

Let us first examine the problem for the simple case
d ¼ 0. The second derivative of the exponential in (1)
at h ¼ 0 is �m2 � ig�. Thus, at � ¼ ��1 the second
derivative is �m2, and at � ¼ ��2 the second derivative
is m2. The sign of the second derivative of the potential
determines the directions of the steepest-descent paths
(constant-phase contours) in the neighborhood of the
saddle points. Thus, if m2 is positive, the down directions
from ��1 are horizontal (parallel to the Re� axis) and the
down directions from ��2 are vertical (parallel to the Im�
axis). However, if m2 is negative, the directions are re-
versed; the down directions from ��2 are horizontal and the
down directions from ��1 are vertical.

It is necessary to deform the original integration path in
(1), which lies on the real axis, into a constant-phase
contour that passes through the appropriate saddle point.
If we let � ¼ uþ iv and note that the phase (the imagi-
nary part of the exponent) at the saddle points vanishes, we
obtain a cubic algebraic equation for the constant-phase
contour: uðgv2=2�m2v� gu6=6Þ ¼ 0. Thus, near 1 the
steepest-descent contours asymptote to the angles �=2,
��=6, and �5�=6 and the steepest-ascent paths asymp-
tote to the angles ��=2, �=6, and 5�=6. Thus, the
uniquely determined steepest-descent contour is a
PT -symmetric (left-right-symmetric) path that terminates
at the angles ��=6 and �5�=6.

Hence, the crucial observation is this: Whenm2 > 0, ��2

lies above ��1 on the Im� axis and the steepest-descent
path passes through ��1 (and not ��2). However, when
m2 < 0, ��2 lies below ��1 on the Im� axis and the
steepest-descent path passes through ��2 (and not ��1).
A phase transition occurs at m2 ¼ 0 where the saddle
points coincide.

B. Asymptotic analysis for d > 0

When d > 0, we consider the Hessian matrix
D�1ðq; pÞ ¼ ��1ðq2Þ�dðpþ qÞ in Fourier space, where

��1ðq2Þ ¼
Z

ddxddye�iqðx�yÞ �2S

��ðxÞ��ðyÞ
�������� ��i

¼ q2 þm2 þ ig ��i:

This is just the inverse tree-level correlator when ��i is the
vacuum. For m2 � 0, D�1ðq; pÞ is positive definite when
evaluated at ��1 ¼ 0. In this case we find that

��1ðq2Þ ¼ q2 þm2: (4)

On the other hand, for m2 < 0, D�1ðq; pÞ is positive defi-
nite when calculated at ��2 ¼ 2im2=g, and we get

��1ðq2Þ ¼ q2 þm2 � 2m2 ¼ q2 �m2: (5)

These results imply that there is a phase transition in the
Euclidean PT -symmetric ig�3 theory, with the two
phases being determined by the order parameter ��, where
��1 ¼ 0 and ��2 ¼ 2im2=g.
We proceed to identify the relevant couplings; in

general, these are the couplings that control the phase
transition. In the ferromagnetic case, the relevant couplings
are the temperature and the external magnetic field [6].
Thus, we look for the two couplings that in our case play
the role that the temperature and the external magnetic
field play in the ferromagnetic case. We begin by defining
the temperature T as

T � 2m2=g; (6)

where the coefficient 2=g in (6) is chosen for later conve-
nience [7]. The critical temperature Tc is obtained with the
help of (3) for the nontrivial saddle point (that is, the
solution to m2 þ ig ��=2 ¼ 0). We seek the limiting value
of T for which �� vanishes, and in our case we have Tc ¼ 0.
Therefore, the reduced temperature is given by

� ¼ T � Tc ¼ 2m2=g: (7)

The external magnetic field (the conjugate field) is just the
parameter h.
From (4) and (5) we see that the excitations above the

trivial vacuum ��1 ¼ 0 and those above the nontrivial one
��2 ¼ 2im2=g have the same mass, M ¼ jm2j1=2, which
goes to zero as we approach the critical point. Moreover, as
we move continuously from positive to negative values of
m2, �� ¼ 2im2=g moves continuously down the negative-
imaginary axis starting from �� ¼ 0 (when m2 � 0). The
presence of such a divergent correlation length (the inverse
of the scalar mass M ¼ 0) and of a continuously varying
order parameter �� are the indications of a continuous
(second-order) phase transition. In RG language, this is
due to the existence of the nontrivial fixed point found in
Ref. [4].
We have shown that at least within the framework of the

mean-field approximation used in this section, the fixed
point found in Ref. [4] governs the transition from the
��1 ¼ 0 phase to the ��2 ¼ 2im2=g phase. In Sec. III we
calculate the critical exponents that govern the behavior of
the theory in the critical region in terms of the parameters h
and �.
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III. CRITICAL EXPONENTS IN THE MEAN-FIELD
APPROXIMATION

In this section we give a quantitative description of the
critical behavior of the model for d > 6 dimensions. We
define and calculate the critical exponents in the mean-field
approximation by following the standard terminology used
for Ising-like models. With the help of (7) we write the
saddle-point equation (2) for h � 0 as

�þ i �� ¼ �2ih=ðg ��Þ; (8)

which has the typical form of a gap equation. From (8) we
can immediately deduce the mean-field exponents� and �.
The exponent � is determined by ��jh¼0 � ��, which gives

� ¼ 1. The quantity � is defined by the relation ��j�¼0 �
h1=�, which implies that � ¼ 2.

To evaluate the exponents �, 	, and 
, we need the two-
point inverse correlator given in (4) and (5) for the �� ¼ 0
and the �� ¼ 2im2=g phases, respectively. The exponent �
is defined by �ðq2Þ � q��2ðq2 ! 1Þ, which implies that
� ¼ 0 in both phases.

To calculate 	 we need the correlation length. The latter
is proportional to the inverse of the renormalized mass M
(the pole of the propagator). In the mean-field approxima-
tion discussed in the present section, M2 ¼ jm2j. For the
phase with nonzero �� ( �� ¼ ��2) we find that ��2 ¼
�m2 � ��2 � �. This implies that the mean-field exponent
	, which is defined by �� ��	, is 	 ¼ 1=2.

Finally, the exponent 
 is obtained as follows. The
susceptivity � is given by � � i� ��=�hjh¼0. By differ-
entiating (2) with respect to h we have m2� ��=�hþ
ig ��� ��=�h ¼ �i, which we evaluate at h ¼ 0 to get
ðm2 þ ig ��Þ� ¼ 1. We thus obtain

� ¼ ðm2Þ�1 � ��1 for T > Tcðm2 > 0Þ;
� ¼ ð�m2Þ�1 � ��1 for T < Tcðm2 < 0Þ:

Therefore, 
, which is defined by the equation �� ��
,
turns out to be 
 ¼ 1.

In this and in the previous section we have studied the
features of the continuous transition of the PT -symmetric
ig�3 theory in the mean-field approximation by calculat-
ing the critical exponents. In the following section we
deepen our understanding of the behavior of the theory in
the critical region. To this end, we compare the conven-
tional and the PT -symmetric theories by relating their
critical behaviors to their stability properties.

IV. RENORMALIZATION AND STABILITY

In Ref. [4] we compared the conventional �3 theory
with the corresponding i�3 PT -symmetric theory near
and at d ¼ 6 dimensions, and the instability of the former
was contrasted with the stability of the latter. Moreover, for
d ¼ 6� � dimensions, the perturbative renormalizability
of the �3 theory (obtained by taking the bare parameters

around the Gaussian fixed point) was compared with the
renormalizability of the PT -symmetric theory. The latter
is nonperturbative because it is realized around a non-
Gaussian fixed point (which collapses onto the Gaussian
fixed point at d ¼ 6).
As shown in Ref. [4], there is a crucial difference

between the RG properties of the conventional and the
PT -symmetric theories. In the former both m2 and g are
relevant directions, but in the latter m2 is the only relevant
direction (g being irrelevant). Accordingly, in Sec. III we
found that to make the nontrivial solution ��2 vanish we
only need to tune the temperature T ¼ 2m2=g towards its
critical value Tc ¼ 0. For generic values of the bare cou-
pling g (which is kept fixed), we must tune only m2

towards zero. This is similar to what happens in conven-
tional �4 theory, where the only relevant direction is m2

and the quartic coupling plays no role in determining the
phase transition. It appears that the instability of the �3

theory gives rise to an additional condition to reach the
critical region.
In this section we examine the origin of the profound

difference between the two theories. To this end, we study
the mean-field (classical) potential of the conventional
theory

Vð�Þ ¼ m2�2=2þ g�3=6: (9)

As in the previous section, without loss of generality we
consider the case g > 0.
This potential is unstable for both the m2 > 0 and

m2 < 0 cases (see Fig. 1). However, if the false vacuum
is sufficiently long lived (that is, if the tunneling time is
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FIG. 1. The potential Vð�Þ ¼ m2�2=2þ g�3=6� 2m6=ð3g2Þ
for g ¼ 6� 10�2 and m2 ¼ �1:8� 10�2 (solid line), m2 ¼
�1:2� 10�2 (dashed line) and m2 ¼ 0 (dotted line). For the
solid and the dashed lines, the vacuum is at �� ¼ �2m2=g while
the intersection with the negative � axis is at � ¼ m2=g. The
area A of the surface included between the � axis and Vð�Þ is
proportional to the lifetime of the false vacuum.
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sufficiently long), the theory can be consistently defined
around this vacuum. For h ¼ 0 the gap equation for the
potential in (9) is �ðm2 þ g�=2Þ ¼ 0. For m2 > 0, the
potential has a minimum at the origin �� ¼ 0 and a maxi-
mum at �� ¼ �2m2=g; for m2 < 0, there is a minimum at
�� ¼ �2m2=g and the maximum is at �� ¼ 0. Defining the
reduced temperature � as

� � m2=g; (10)

we study the continuous phase transition from �� ¼
�2m2=g to �� ¼ 0. We stress that in the PT -symmetric
ig�3 theory (as well as in the conventional g�4 theory) the
scaling region � ! 0 is reached by keeping g finite and
taking the limit m2 ! 0. This is not true for the ordinary
�3 theory.

The potential in (9) for m2 < 0 is given by the solid line
in Fig. 1 [apart from a trivial constant shift Vð�Þ !
Vð�Þ � 2m6=ð3g2Þ]. In the limit m2 ! 0 with g ¼ finite
the potential becomes the dotted line (cubic parabola),
which has an inflection point at �� ¼ 0. In this limit the
vacuum disappears.

Let us define the area A:

A �
Z �2m2=g

m2=g
d�Vð�Þ ¼ 9m8

8g3
(11)

of the surface under the potential function between the
points �� ¼ �2m2=g and � ¼ m2=g (see Fig. 1). Note
that in the limit m2 ! 0 with g ¼ finite the nontrivial
minimum �� ¼ �2m2=g moves toward �� ¼ 0, so A de-
creases. Therefore, the lifetime of the false vacuum, which
is proportional to A, becomes smaller, and the theory is
destabilized. As already mentioned, from the RG view-
point this happens because in addition tom2, g is a relevant
parameter. To reach the continuous phase transition (�!0)
while keeping the theory stable (A ¼ fixed), we must
tune not only m2 but also g. From (10) and (11) we get

m2 �A=�3 and g�A=�4: (12)

This means that in order to reach the continuum limit,
1=m2 and 1=g must be tuned separately to zero with
�!0 according to (12) while keeping A (the vacuum
lifetime) fixed. It is clear that the conventional �3 theory
has an additional relevant direction as compared to its
PT -symmetric counterpart because of the intrinsic insta-
bility of the theory. The PT -symmetric model, being
energetically stable, has only one relevant direction, thus
showing a higher degree of predictive power.

V. CRITICAL EXPONENTS NEAR d¼ 6

In this section we study the critical behavior of the
theory for d < 6. (The mean-field results provide a good
description for d > 6.) We turn our attention to the calcu-
lation of the critical exponents of the PT -symmetric
theory beyond the mean-field approximation considered

in Sec. III. [According to the mean-field analysis of
Sec. III, in the presence of the external source h the two
relevant parameters are � ¼ T � Tc ¼ 2m2=g (the re-
duced temperature) and h itself (the external field).]
As is known from the general theory of critical phenomena,
below the upper critical dimension (d ¼ 6 in this case), the
fluctuations around the mean-field configuration became
important. RG techniques provide an essential tool for
calculating the scaling behavior of the theory. (Note that
although the exponents � and � appear in the work of
Fisher [8] on the Yang-Lee zero problem for the first time,
the evaluation of the other exponents is an original achieve-
ment of this paper.)
Let us consider our theory in d ¼ 6� � dimensions.

The RG equations imply the existence of two nontrivial
fixed points [4]:

h� ¼ 0; m2� ¼ 0; g� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128�3�=3

q
:

To each of these points is associated the phase transition
that we have just described in the mean-field approxima-
tion. (The above analysis was done for g� > 0 but for
g� < 0 the results are analogous.)
According to Ref. [4] the scalings of h, m2, and g with

the running scale t ¼ ln ð�=�0Þ are given by hðtÞ ¼ c1e
g1t,

m2ðtÞ ¼ c2e
g2t, and gðtÞ ¼ g� þ c3e

g3t, respectively,
where

g1¼�4þ4�=9; g2¼�2þ5�=9; g3¼�: (13)

From the above equations we see that the two relevant
parameters are h and � ¼ 2m2=g.
With the help of the hyperscaling relations

� ¼ �dþ g1
g2

; � ¼ � g1
dþ g1

; 
 ¼ 2g1 þ d

g2
;

	 ¼ � 1

g2
; � ¼ 2þ dþ 2g1; (14)

we can calculate from (13) the critical exponents, which
turn out to be

� ¼ 1; (15)


 ¼ 1þ �=3; (16)

� ¼ 2þ �=3; (17)

	 ¼ 1=2þ 5�=36; (18)

� ¼ ��=9: (19)

From (19), the scaling dimension of the scalar field is
½�� ¼ ðd� 2þ �Þ=2 ¼ 2� 5�=9. Note that for � ¼ 0
these exponents coincide with the mean-field values calcu-
lated in Sec. III.
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It is interesting to compare the above RG expressions
with known exact results in d ¼ 1 dimensions (although
one must recognize that the RG analysis is performed in
the framework of the � expansion with � being treated as a
small parameter). To this end we consider the exponents �
and �. From the hyperscaling relations (14) we see that g1
can be eliminated, yielding

� ¼ dþ 2� �

d� 2þ �
: (20)

Inserting into this relation � ¼ � �
9 ¼ � 5

9 from (19) and

setting d ¼ 1, we obtain � ¼ �2:29. This compares well
with the exact value � ¼ �2. While the exponent � is
reasonably well approximated by the RG result, the same is
not true for � (�exact ¼ �1).

VI. CONCLUSIONS

The i�3 model was introduced in Ref. [8] to study the
density of the Lee-Yang zeros of the partition function
Z½H� on the imaginary axis of H (H being the magnetic
field). The ‘‘critical exponents’’ in Ref. [8] are not critical
exponents in the physical sense, but rather they are pa-
rameters governing the mathematical behavior of the func-
tion that gives the asymptotic density of zeros on the H
imaginary axis near the branch point H ¼ 0. If we set
m2 ¼ 0 in our theory, we obtain the Lee-Yang model
studied in Ref. [8], where the exponents � and � already
appear; �, 
, and 	 are given for the first time in (15), (16),
and (18).

In contrast to the Lee-Yang model, our ig�3 theory has a
physical interpretation as a PT -symmetric Euclidean
quantum field theory. Moreover, to show that our theory
undergoes a second-order phase transition at m2 ¼ 0

(that is, to show the renormalizability of the theory) we
have had to investigate its behavior in the neighborhood of
m2 ¼ 0; it was not sufficient to study the theory atm2 ¼ 0.
We emphasize that the physical symmetry of the theory
(that is, the PT symmetry) allows for the presence of the
�2 operator in addition to the linear and cubic terms.
Using RG techniques, we have studied the theory be-

yond the mean-field approximation and have calculated the
critical exponents for d ¼ 6� � dimensions up to Oð�Þ. In
studying the critical behavior of the PT -symmetric ig�3

quantum field theory, we have shown that the phase tran-
sition is associated with the existence of a nontrivial solu-
tion of the gap equation at a critical value m2

c of m2. We
conclude that one can view the Lee-Yang model considered
in Ref. [8] as the critical theory of the PT -symmetric
ig�3 model.
Compared with the conventional �3 model, the

PT -symmetric theory exhibits new and interesting
properties. In particular, it has a higher degree of pre-
dictive power because its critical behavior is governed
by one parameter less than in the �3 theory. We have
shown that this crucial difference is related to the differ-
ent stability properties of the two theories. Thus, from
our work it appears that the renormalization properties
of the PT -symmetric ig�3 model, when compared with
those of the conventional �3 theory, are quite remark-
able and encouraging for further studies and future
applications.
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