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In four-dimensional theories with massless particles, one-loop amplitudes can be expressed in terms of

a basis of scalar integrals and rational terms. Since the scalar bubble integrals are the only UV divergent

integrals, the sum of the bubble coefficients captures the one-loop UV behavior. In particular, in a

renormalizable theory the sum of the bubble coefficients equals the tree-level amplitude times a

proportionality constant that is related to the one-loop beta function coefficient �0. In this paper, we

study how this proportionality is achieved from the viewpoint of on-shell amplitudes. For n-point MHV

amplitude in (super) Yang-Mills theory, we demonstrate the existence of a hidden structure in each

individual bubble coefficient which directly leads to systematic cancellations within the sum of them. The

origin of this structure can be attributed to the collinear poles within a two-particle cut. Due to the

cancellation, the one-loop beta function coefficient can be identified as a sum over the residues of unique

collinear poles in particular two-particle cuts. Using CSW recursion relations, we verify the generality of

this statement by reproducing the correct proportionality factor from such cuts for n-point split-helicity

NkMHV amplitudes.
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I. INTRODUCTION AND SUMMARY OF RESULTS

In four spacetime dimensions, integral reduction tech-
niques [1–3] allow one to express one-loop gauge theory
amplitudes in terms of rational functions and a basis of
scalar integrals that includes boxes I4, triangles I3, and
bubbles I2 [2,4,5]:

A1-loop¼X
i
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i
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k
2þ rationals: (1.1)

Here the index i (j or k) labels the distinct integrals
categorized by the set of momenta flowing into each corner
of the box (triangle or bubble). In this basis, the scalar
bubble integrals Ii2 are the only ultraviolet divergent inte-
grals in four dimensions. Moreover, the UV divergences of
the bubble integrals take the universal form

Ii2 ¼
1

ð4�Þ2
1

�
þOð1Þ (1.2)

for all i. Thus the sum of bubble coefficients contains
information on the ultraviolet behavior of the theory at
one loop.

In field theory, renormalizability requires that the ultra-
violet divergences of the theory at one loop can be removed
by inserting a finite number of counterterms to the corre-
sponding tree diagrams for the same process. We can also
understand this renormalizability from the amplitude point
of view. In terms of amplitudes, renormalizability implies
that the ultraviolet divergence at one loop must be propor-
tional to the tree amplitude. As we will see in detail below,
this proportionality between tree amplitudes and the

bubble coefficients, which encapsulate UV behavior of
the theory, in renormalizable theories is cleanly illustrated
in pure-scalar QFTs. In�4 theory, the bubble coefficient of
the 4-point one-loop amplitude evaluates to the 4-point tree

amplitude . However, in �5 theory, the bubble

coefficient of the simplest one-loop amplitude evaluates to

a new 6-point amplitude . Similarly, this new

6-point tree amplitude will generate higher-point tree
structures at higher loops, which is the trademark of a
nonrenormalizable theory.
This observation connects renormalizability with the

one-loop bubble coefficient: in a renormalizable theory,
the sum of bubble coefficients is proportional to the tree
amplitude

C2 �
X
i

Ci
2 / Atree; (1.3)

where the sum i runs over all distinct bubble cuts, and we
use the calligraphic C2 to denote the sum of the bubble
coefficients. This proportionality relation takes a very sim-
ple form in (super) Yang-Mills [(S)YM] theory with all
external lines being gluons [6–8] (see Ref. [9] for a detailed
discussion)

C2¼��0A
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6
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�
; (1.4)

where �0 is the coefficient of the one-loop beta function
and nv, nf, ns are numbers of gauge bosons, fermions, and

scalars, respectively. From the amplitude point of view,
Eq. (1.4) appears to be a miraculous result as each
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individual bubble coefficient is now a complicated rational
function of Lorentz invariants. For example, it is shown in
Refs. [9,10] that for the helicity amplitude A4ð1þ2�3þ4�Þ
inN -fold super Yang-Mills theory, the bubble coefficients
of the two cuts are

Cð23;41Þ
2 ¼ �ðN � 4Þ h12ih34ih13ih24iA

tree
4 ð1þ2�3þ4�Þ; and

Cð12;34Þ
2 ¼ �ðN � 4Þ h14ih23ih13ih24iA

tree
4 ð1þ2�3þ4�Þ:

However, the sum of these two bubble coefficients is exactly

proportional to the tree amplitude: Cð23;41Þ
2 þ Cð12;34Þ

2 ¼
�ðN � 4ÞAtree

4 ð1þ2�3þ4�Þ ¼ ��0A
tree
4 ð1þ2�3þ4�Þ by

the Schouten identity. For an arbitrary n-point amplitude,
Eq. (1.4) implies cancellation among a large number of
these rational functions, in the end yielding a simple con-
stant multiplying Atree

n . The fact that the proportionality in
Eq. (1.4) holds for any renormalizable theory hints at pos-
sible hidden structures in the sum of the bubble coefficients.
Note that for gauge theories with nonadjoint matter fields,
the individual bubble coefficients will also depend on
higher-order Casimir invariants [10]. Renormalizability
then requires all the higher-order invariants to cancel in
the sum, leaving behind only the quadratic Casimir
trRðTaTbÞ. In this paper, we seek to partially expose hidden
structure of the bubble coefficients that leads to the propor-
tionality to the tree amplitude.

Following Refs. [8,11], we extract the bubble coefficient
by identifying it as the contribution from the pole at infinity
in the complex z plane of a BCFW deformation [12] of the
two internal momenta in the two-particle cut, where the

complex deformation is introduced on the internal mo-
menta. We begin with scalar theories as a warm-up. Here
the contributions to bubble coefficients are tractable using
Feynman diagrams in the two-particle cut. For scalar �n

theories, we demonstrate that the bubble coefficient only
receives contributions from one-loop diagrams that have
exactly two loop propagators. For each diagram, the
contribution is proportional to a tree diagram with a new
2ðn� 2Þ-point interaction vertex. Renormalizability requires
n ¼ 2ðn� 2Þ, so this implies the familiar result, n ¼ 4.
Feynman diagrams become intractable in gauge theories

and it is simpler to use helicity amplitudes in the cut. In
(super) Yang-Mills theory, we study general MHV n-point
amplitudes and find that for each two-particle cut, the
bubble coefficient can be separated into four separate
terms. Each term stems from the four distinct singularities,
which appear as the loop momenta become collinear to one
of the adjacent external legs indicated in Fig. 1(a). We
show that these singularities localize the Lorentz invariant
phase space (dLIPS) integral to residues at four separate
poles. Once given in this form, we find the following.
(i) For each collinear residue in a generic cut, there is a

residue in the adjacent cut that has the same form but
with opposite sign. When we sum over all channels,
residues stemming from common collinear poles
(CCP) in adjacent channels cancel pairwise, as in-
dicated in Fig. 1. The sum therefore telescopes to
four unique poles that come from four distinct ‘‘ter-
minal cuts.’’ Here we define a terminal cut as the
two-particle cut which contains at least one 4-point
tree amplitude on one side of the cut. The poles of
interest correspond to the point in the phase space
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FIG. 1 (color online). A schematic representation of the cancellation of common collinear poles (CCP). The bubble coefficient of the
cut in figure (a) receives contributions from the four collinear poles indicated by colored arrows. Each collinear pole is also present,
with the opposite sign residues, in the corresponding adjacent cut indicated in figures (b), (c), (d), and (e), respectively. In the sum of
bubble coefficients such contributions cancel in pairs.
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where the two on-shell loop momenta become
collinear with the two external scattering states in
the 4-point subamplitude. We will refer to these
poles as ‘‘terminal poles.’’

(ii) Focusing on the terminal poles we find that their
contributions to the bubble coefficients are nontri-
vial only if the helicity configuration of the particles
crossing the cut is ‘‘preserved,’’ i.e., the loop helic-
ity configuration is the same as the external lines on
the 4-point tree amplitude as shown in Fig. 2. Thus
the beta function of (super) Yang-Mills theory is
given by the residues of the helicity conserving
terminal poles.

For MHV amplitudes, we show that there are two non-
vanishing terminal poles whose residues are identical and
equal to 11=6Atree

n . Summing the two then gives the desired
result C2 ¼ 11=3Atree

n for the pure Yang-Mills (YM) theory,
in agreement with Eq. (1.4). The relation (1.4) is also
derived in the super Yang-Mills theory where C2 ¼
�ðN � 4ÞAtree

n for N ¼ 1, 2.
For general NkMHV split-helicity amplitudes in pure

Yang-Mills theory, we also show that the residue of each
helicity conserving terminal pole give 11=6Atree

n . We dem-
onstrate this by using the CSW [13] representation for the
NkMHV tree amplitudes appearing in the two-particle cut.
The fact that these terminal cuts give the correct propor-
tionality factor indicates that these are indeed the only
nontrivial contributions to the sum of bubble coefficients.
This also hints that systematic cancellation in the sum of
the bubble coefficients should be a property of Yang-Mills
amplitude for the general helicity configuration. We give
supporting evidence by using the collinear splitting func-
tion to show that the residues of CCP in a two-particle cut
for generic gauge theories are indeed identical with oppo-
site signs.

Our paper is organized as follows. In Sec. II, we com-
pute the bubble coefficients for theories of self-interacting
scalar fields, and rederive the well-known renormalizabil-
ity conditions. We proceed to analyze (super) Yang-Mills
theories with emphasis on the cancellation of CCP in
Sec. III. We will use super Yang-Mills MHV amplitudes
as the simplest demonstration of such cancellation. Similar
results occur for MHVamplitudes in Yang-Mills as well. In

Sec. IV, we give an argument for the cancellation of CCP
for generic external helicity configurations by showing,
using splitting functions of the tree amplitude in the cut,
that the residue of collinear poles of the entire cut is indeed
shared with an adjacent channel. We present further evi-
dence in Sec. V by explicitly proving that the forward limit
poles for split-helicity NkMHV amplitudes indeed give the
complete rhs of Eq. (1.4), implying complete cancellation
of all other contributions.

II. BUBBLE COEFFICIENTS IN SCALAR
FIELD THEORIES

As a toy model, we consider scalar theories with single
interaction vertex �k�

k in this section. It was shown in
Ref. [8], following previous work in Ref. [11], that the
bubble coefficient for a given two-particle cut can be
calculated as

Cði;jÞ
2 ¼ 1

ð2�iÞ2
Z

dLIPS½l1; l2�
Z
C

dz

z
Ŝði;jÞn ; (2.1)

where ði; jÞ indicates the momentum channel P ¼ piþ1 þ
� � � þ pj of the cut as shown in Fig. 7, Ŝði;jÞn ¼ Âtree

L ðjl̂1i;
jl̂2�ÞÂtree

R ðjl̂1i; jl̂2�Þ, and dLIPS ¼ d4l1d
4l2�

ðþÞðl21Þ�ðþÞ�
ðl22Þ�4ðl1 þ l2 � PÞ. Here Âtree

L;R in (2.1) are the amplitudes

on either side of the cut; hats in (2.1) indicate a BCFW shift
[12] of the two cut loop momenta:

l̂1ðzÞ ¼ l1 þ qz; l̂2ðzÞ ¼ l2 � qz; with

q � q ¼ q � l1 ¼ q � l2 ¼ 0:
(2.2)

We integrate the shift parameter z along a contour C that
goes around infinity, which evaluates to the residue at the
z ¼ 1 pole of the integrand.1

In a scalar theory, the only z dependence in BCFW-
shifted tree amplitudes comes from propagators which
depend on one of the two loop momenta. Under BCFW
deformations, propagators of this type scale as �1=z for
large z. Diagrams containing such propagators die off as
1=z or faster. The only nonvanishing contribution to the
bubble coefficient comes from diagrams with the two
shifted lines on the same vertex [14]. In this case there is
neither z dependence nor dependence on l1, or l2 in the
double cut and (2.1) evaluates to

Cði;jÞ
2 ¼ � 1

2�i

Z
dLIPSAtree

L Atree
R ¼ Atree

L Atree
R ; (2.3)
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FIG. 2. The terminal channels that give nontrivial contribution
to the sum of bubble coefficients. Note the helicity configurations
of the loop legs of the n-point tree amplitude are identical with
the two external legs on the 4-point tree amplitude in the cut.

1The BCFW shifts of the two-particle cut allow one to explore
all possible on-shell realizations of a double cut for a given set of
kinematics. The presence of finite-z poles indicates the existence
of additional propagators, which are the contributions of box or
triangle integrals to the double cut. The contribution from the
bubble integrals then corresponds to poles at z ¼ 1, hence the
choice of contour.
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where Atree
L;R are the unshifted amplitudes on either side of

the cut as in Fig. 4, and we have used 1
2�i

R
dLIPSð1Þ ¼ �1

(Appendix A). The bubble coefficient (1.3) is a sum over
all cuts.

At 4-point, the tree amplitude is Atree
4 ¼ �4. There are

two cuts of the one-loop 4-point amplitudes, namely the s
and t channels. Then (2.3) gives

C2 ¼ Atree
4 ð1; 2; l̂1; l̂2Þ � Atree

4 ð�l̂2;�l̂1; 3; 4Þ
þ Atree

4 ð4; 1; l̂1; l̂2Þ � Atree
4 ð�l̂2;�l̂1; 2; 3Þ

¼ �2
4 þ �2

4 ¼ 2�4A
tree
4 : (2.4)

This analysis extends to all n in�4 theory: each bubble cut
with nonvanishing large-z pole will be precisely of this
form. Evaluating the pole at infinity, and integrating over
phase space reproduces a tree diagram. A semidetailed
analysis reveals that, somewhat unsurprisingly, the tree
diagrams generated in this way correctly reproduce (a
result which is) proportional to the original tree amplitude,

CðnÞ
2 j�4 ¼ 3ðn� 2Þ

2
�4A

n
tree: (2.5)

A sketch of how this procedure is implemented, in practice,
is depicted in Fig. 3.

One can do a similar analysis to the Yukawa theory with
complex scalars. Here, Yukawa theory has asymptotic
states of nonzero helicity; the analysis is somewhat aided
through explicit use of tree-level helicity amplitudes, as
opposed to an approach based solely on Feynman dia-
grams. Similar results hold. Details of this analysis are
omitted here as Yukawa theory is well understood.

Crucial new aspects of and critical uses for integral
reduction in conjunction with spinor-helicity technology
manifest themselves in purest form in (S)YM. Use of
spinor-helicity technology to describe tree amplitudes on
either side of the bubble cut forces all gluons (and their
supersymmetric cousins) to be on shell, and eliminates
unphysical degrees of freedom from the calculation. As
we shall see presently, this vastly simplifies calculations
of the one-loop beta function in QCD [YM and (S)YM
as well].

III. BUBBLE COEFFICIENTS FOR MHV (SUPER)
YANG-MILLS AMPLITUDE

When we consider the (super) Yang-Mills theory, the
proportionality between the sum of bubble coefficients and
the tree amplitude becomes extremely nontrivial. Here,
individual bubble coefficients are generically complicated
rational functions of spinor inner products as illustrated for
the h�1�2�3�4i case in the Introduction. In general, only
after summing all the bubble coefficients and repeated use
of Schouten identities will the result reduce to a simple
constant times Atree

n . Thus from the amplitude point of
view, this proportionality is a rather miraculous result.
In this section we show that the cancellation is in fact

systematic. To see this, we show that for MHVamplitudes,
the dLIPS integration will be localized by the collinear
poles of the tree amplitude on both sides of the two-particle
cut. For a generic cut, there are four distinct collinear poles
involving the loop legs, each of which is also present in an
adjacent cut, as illustrated in Fig. 5. It can be shown that the
residues of these two adjacent cuts on their common

FIG. 4. For pure �k theory, the only one-loop diagrams that give nontrivial contribution to the bubble integrals are those with only
two loop propagator. The contribution to the bubble coefficient is simply the product of the tree diagrams on both sides of the cut
connected by a new 2ðk� 2Þ vertex.
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FIG. 3 (color online). For any given tree diagram in the�4 theory, each vertex can be blown up into 4-point one-loop subdiagrams in
three distinct ways, while preserving the tree graph propagators. Each case contributes a factor of �4 times the original tree diagram to
the bubble coefficient. In this figure we show the example of 6-point amplitude.
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collinear pole h�; ii ! 0 are exactly equal and with oppo-
site sign. By separating the bubble coefficient into four
different terms corresponding to contributions from four
different poles, the cancellation between CCP in the sum of
bubble coefficients is manifest.

Cancellation stops at ‘‘terminal cuts’’ where a 4-point
tree and an n-point tree appear on opposites sides of the
cut. The uncanceled terms in these terminal cuts corre-
spond to the residues of collinear poles where the two loop
momenta become collinear with the external momenta of
the two external legs on the 4-point amplitude, as illus-
trated in Fig. 6. Explicitly, for adjoint fields (vectors,
fermions, and scalars), we see the sum of these ‘‘terminal
poles’’ is

� �0A
tree
n ð1þ . . . a�; . . . ; b� . . .nþÞ

¼
�
11

3
nv � 2

3
nf � 1

6
ns

� ha; bi4
h1; 2i � � � hi; iþ 1i � � � hn; 1i ;

(3.1)

for MHV amplitudes with n� 2 positive-helicity gluons
and negative-helicity gluons a and b [15]. In the following,
we will demonstrate this for n-point MHV amplitudes in
N ¼ 1, 2 super Yang-Mills theory. This systematic can-
cellation is also present for pure Yang-Mills MHV ampli-
tudes (explicitly shown in Appendix B).

Before going further, we pause to note an important
distinguishing feature between the bubble coefficients in
scalar QFT and in (S)YM. Specifically, the proportionality
constant in (super) Yang-Mills is independent of the

number of external legs: it is just -�0, the coefficient of
the one-loop beta function. To see this note that for (super)
Yang-Mills theory, there are diagrams with one-loop bub-
bles in the external legs. These massless bubbles do not
appear in Eq. (1.1), as they are set to zero in dimensions
regularization, reflecting the cancellation between collin-
ear IR and UV divergences. However, when one is only
considering the pure UV divergence of the amplitude, one
must take into account the existence of the UV divergences
in the external bubble diagrams, which are simply the same
as that of the infrared divergences in the external bubbles
but with a relative minus sign. Thus we have

AnjUV div: ¼
�X

CbubbleIbubble

�
UV

þ UVext: bubbles

¼
�X

CbubbleIbubble

�
UV

� IRext: bubbles: (3.2)

For n-gluon one-loop amplitudes, the collinear IR diver-
gences take the form [6]

IR: A
1-loop
n;collinear ¼ � g2

ð4�Þ2
1

�

n

2
�0A

tree
n : (3.3)

At leading order in � ! 0, the UV divergence is [6]

UV: A1-loop
n;UV ¼ þ g2

ð4�Þ2
1

�

�
n� 2

2

�
�0A

tree
n : (3.4)

Thus the bubble coefficients (total UV divergence) in
purely gluonic one-loop amplitudes are

X
i

Ci
2 ¼ A

1-loop
n;UV þ A

1-loop
n;collinear ¼ ��0A

tree
n ¼ 11

3
Atree
n :

(3.5)

At one loop, �4 scalar field theory lacks these collinear
divergences on external legs, and no UV/IR mixing occurs,
hence pure scalar bubble coefficients scale with n�2

2 , the

number of interaction vertices.

A. Extracting bubble coefficients in
(N ¼ 0, 1, 2 super) Yang-Mills

The bubble coefficient for a given two-particle cut of a
one-loop (S)YM amplitude is computed in essentially the
same way as for scalar field theory. However, as empha-
sized in the Introduction, unlike the case for scalar QFT
extracting this through Feynman diagrams is rather intrac-
table. Roughly in YM this is because BCFW shifts of the
two internal on-shell gluon lines in the double cut intro-
duces z dependence in local interaction vertices and polar-
ization vectors. These difficulties are only amplified in
(N � 0) SYM.
It is more efficient to directly express the left-hand and

right-hand amplitudes as entire on-shell objects through
the use of the spinor-helicity formalism. Here the dLIPS
integration over allowed on-shell momenta is conveniently

n
1

i−1 n−1

FIG. 6 (color online). The ‘‘terminal’’ pole that contributes to
the bubble coefficient. Such poles appear in the two-particle cuts
that have two legs on one side of the cut and one of the legs has
to be a minus helicity. Note that, at this point in phase space,
l1 ¼ �pn�1 and l2 ¼ �pn.

1 n

i+1

1

i−1

n

i i

FIG. 5 (color online). An illustration of the cancellation be-
tween adjacent channels. The contribution to the bubble coeffi-
cient coming from the dLIPS integral evaluated around the
collinear pole hl1ii ! 0 indicated by the (red) arrows of the
two diagrams cancels as indicated in Eq. (3.18).
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converted into an integration over spinor variables which
automatically solve the delta functions,Z

d4l1d
4l2�

ðþÞðl21Þ�ðþÞðl22Þ�4ðl1 þ l2 � PÞgðjl1i; jl2iÞ

¼
Z

~�¼ ��
P2 h�; d�i½~�; d~��

h�jPj~��2 gðj�i; Pj~��Þ; (3.6)

where we have identified jl1i ¼ j�i, jl2i ¼ Pj~��, and R~�¼ ��

indicates we are integrating over the real contour (real

momenta).2 The Ŝði;jÞn in (2.1) takes the form

Ŝ
ði;jÞ
n ¼ Ŝði;jÞ

n;0 � X
state sum

Âtree
L ðjl̂1i; jl̂2�ÞÂtree

R ðjl̂1i; jl̂2�Þ;

(3.7)

in the Yang-Mills theory. Note that to fully integrate out the
bubble coefficients’ dependence on the internal lines, we
sum over all possible states in the loop.

Further, extraction of simple bubble coefficients is aided
by on-shell supersymmetry (SUSY).3 Here amplitudes
and state sums are promoted to superamplitudes and
Grassmann integrals

Ŝði;jÞn ¼ Ŝði;jÞ
n;N � X

�

Z
dN	l1d

N	l2Â
tree
L�Â

tree
R �� ;

N ¼ 1; 2;
(3.8)

where � labels the different pairs of multiplets that the
loop legs l1 and l2 belong to. Following Ref. [9], on-shell
states are encoded into two separate on-shell superfields,
� and �, that contain states in the ‘‘positive-’’ and
‘‘negative-helicity’’ sectors. In this language, f�g ¼
fð�;�Þ; ð�;�Þ; ð�;�Þ; ð�;�Þg. The �� is the conjugate
configuration of �.

Crucially, to preserve SUSY the bosonic BCFW shift
(2.2) must be combined with a fermionic shift of the
Grassmann variables 	a [8,16]

jbl1ðzÞi ¼ jl1i þ zjl2i; jbl2ðzÞ� ¼ jl2� � zjl1�; (3.9a)

	̂l2a
¼ 	l2a þ z	l1a; a ¼ 1; . . . ;N : (3.9b)

Note the bosonic shift (3.9a) is identical to the shift (2.2)
when cast in terms of the spinor-helicity variables; it is
referred to as an ½l2; l1i shift.

Combined supershifts (3.9) of any tree amplitude of the
N ¼ 4 SYM fall off as 1=z for large z. In (S)YM theory
withN ¼ 0, 1, 2 supersymmetry, it was shown [9] that the
super-BCFW shifts ½�;�i, ½�;�i, and ½�;�i fall off as
1=z at large z while the ½�;�i supershift grows as z3�N

for large z. ForN ¼ 0 pure Yang-Mills, this reduces to the

familiar observation that for shifts ½�;�i, ½�;þi, and
½þ;þi the amplitudes fall off as 1=z, while the ½þ;�i
shifts grow as z3 [12,17].
Carrying out the z integral gives

Cði;jÞ
2 ¼ � 1

2�i

Z
dLIPS½l1; l2�½Ŝði;jÞ

n;N �Oð1Þ as z!1;

N ¼ 0; 1; 2;
(3.10)

where ½Ŝði;jÞ
n;N �Oð1Þ as z!1 is the residue of Ŝði;jÞ

n;N at the

z ! 1 pole.
Double cuts with internal states � 2 fð�;�Þ; ð�;�Þg

shown in cut (a) of Fig. 8 scale as

Ŝ ½Cut ðaÞ�
n;N � 1

z
� 1

z
� 1

z2
as z ! 1: (3.11)

Cuts of this type do not contribute to the bubble coefficient.
On the other hand, cuts with internal states � 2
fð�;�Þ; ð�;�Þg, such as cut (b) in Fig. 8, always involve
a shift that acts as ½�;�i on one subamplitude and as
½�;�i on the other. This gives

Ŝ ½Cut ðbÞ�
n;N � 1

z
� z3�N � z2�N as z ! 1: (3.12)

Note that (3.12) indicates that there can be nonvanishing
Oð1Þ terms and hence contributions to the sum of the
bubble coefficients in N ¼ 0, 1, 2 SYM but not in the
N ¼ 4 SYM theory. This is consistent with the known
nonvanishing one-loop � functions in N ¼ 0, 1, 2 SYM
theories as well as the UV finiteness of N ¼ 4 SYM.

FIG. 8. Illustration of two internal helicity configurations of
the cut loop momenta. (a) Cuts with � 2 fð�;�Þ; ð�;�Þg die
off, and have no pole, as z ! 1. (b) Cuts with � 2
fð�;�Þ; ð�;�Þg have a pole at z ! 1.

j

i i+1

j+1

l1

l2

P

FIG. 7. A two-particle cut for a generic n-point amplitude.

2The explicit evaluation of integrals in Eq. (3.6) using the
holomorphic anomaly [8,9,13] is reviewed in Appendix A.

3The calculations for the simplest bubble coefficients are
simpler in N ¼ 1, 2 SYM than in YM. To see this, compare
nonadjacent MHV bubble computations in SYM (Sec. III B) and
in YM (Appendix B).
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We can also investigate the contribution to the bubble
coefficients from particular states crossing the two-particle
cut. These contributions can be projected out by acting
with appropriate Grassmann integrations/derivatives on the
above superamplitudes. By analyzing the large-z behavior
of the integration measure, as shown in Ref. [9], we get the
large-z behavior of the bubble coefficient of certain inter-
nal states. The implication for QCD with one flavor of
fermions can simply be deduced fromN ¼ 1 super Yang-
Mills, where there are no scalars in the multiplet. For
example, a simple computation shows that a double cut
of an internal negative-helicity gluino and an internal
negative-helicity gluon exiting (entering) one of the two
tree amplitudes does not contribute to the bubble coeffi-
cients in N ¼ 1 SYM theory. Then following Ref. [18],
this result is also true in QCD with one flavor of fermions.
Note that the difference between fundamental and adjoint
fermions is irrelevant for this analysis since we are inter-
ested in color-ordered amplitudes and the large-z behavior
of the cut holds for individual internal helicity configura-
tions and not the sum.

B. MHV bubble coefficients in N ¼ 1, 2
super Yang-Mills theory

It was shown in Ref. [9], that for the MHVamplitudes in
N ¼1, 2 super Yang-Mills theory, the Oðz0Þ part of the
BCFW-shifted two-particle cut Ŝði;jÞ

fa;bg;N depicted in Fig. 9

is given by

Ŝ ði;jÞ
fa;bg;N jOðz0Þ ¼ ðN � 4ÞAtree

n

hi; iþ 1ihj; jþ 1i
ha; bi2

� ha; �i2hb; �i2
hj; �ihjþ 1; �ihi; �ihiþ 1; �i ;

(3.13)

where fa; bg indicates the positions of the two sets of
external negative-helicity states (within the � multiplets).

We have set jl2i ¼ j�i. Since Ŝði;jÞ
fa;bg;N is purely holomor-

phic in �, we can straightforwardly use Eq. (A2) to rewrite
the dLIPS integral (3.6) as a total derivative, and the bubble
coefficient is given as

Cði;jÞ
2fa;bg ¼

�1

2�i

I
~�¼�

P2
iþ1;j

h�; d�i½~�; d~��
h�jPiþ1;jj~��2

Ŝði;jÞ
fa;bg;N jOðz0Þ

¼ 1

2�i

I
~�¼�

h�; d�id~� _�

@

@~� _�

�
� ½~�jPiþ1;jj�i
h�jPiþ1;jj~��h�;�i

Ŝði;jÞ
fa;bg;N jOðz0Þ

�
; (3.14)

where j�i is an auxiliary reference spinor. In this section,

for convenience, we label the bubble coefficients Cði;jÞ
2fa;bg in

the same way as the two-particle cut Ŝði;jÞ
fa;bg;N . There are

two kinds of poles inside the total derivative: the four

collinear poles of Ŝði;jÞ
fa;bg;N in Eq. (3.13) and the spurious

pole 1=h�;�i. The spurious pole can be simply removed by
the ha; �i2hb; �i2 factor in the numerator of Eq. (3.13) if we
choose the auxiliary spinor j�i to be jai or jbi. Thus with
this choice of reference spinor, the contributions to the
bubble coefficient come solely from the collinear poles in

Ŝði;jÞ
fa;bg;N jOðz0Þ.
From Eq. (3.13) we see that there are four collinear poles

in Ŝði;jÞ
fa;bg;N jOðz0Þ, each corresponding to � becoming col-

linear with the adjacent external lines of the cut. Careful
readers might find this puzzling, as the MHV tree ampli-
tudes on both sides of the cut only have collinear poles of
the form hl1; ii, hl1; iþ 1i, hl2; ji, and hl2; jþ 1i. Recalling
that here j�i ¼ jl2i, one would instead expect collinear
poles of the form ½�jPiþ1;jjii, ½�jPiþ1;jjiþ 1i, h�; ji, and
h�; jþ 1i. The resolution is that Eq. (3.13) is obtained by
shifting hl1; ii ! hl1; ii þ zhl2; ii and expanding around
z ! 1, thus introducing the hl2; ii poles:

1

hl1ðzÞ; ii
��������z!1

¼ 1

zhl2; ii þO
�
1

z2

�
: (3.15)

Since these poles originated from hl1ðzÞ; ii, we will abuse
the terminology, as well as the figures, and still refer to
them as collinear poles.4

To better track the contributions of the collinear poles,
we rewrite the integrand as follows:

Ŝði;jÞ
fa;bg;N jOðz0Þ ¼ ðN � 4ÞAtree

n

ha; �ihb; �i2hi; iþ 1i
ha; bi2hi; �ihiþ 1; �i

�
�ha; jþ 1i
hjþ 1; �i �

ha; ji
hj; �i

�

¼ ðN � 4ÞAtree
n

ha; �ihb; �i2hj; jþ 1i
ha; bi2hj; �ihjþ 1; �i

�
�ha; iþ 1i
hiþ 1; �i �

ha; ii
hi; �i

�
; (3.16)

l1

l2

(i) (i+1)

(a)

(j+1) ( j)

(b)

FIG. 9. The two-particle cut that gives Ŝði;jÞ
fa;bg;N .

4In fact, this is not as much of an abuse as it may seem. Note
that evaluating the pole at z ! 1 is equivalent to evaluating the
pole at the origin minus the poles at finite z. The former would be
a true collinear pole, while the latter would be a collinear pole
with shifted l1.
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where the two equivalent representations focus on different
adjacent collinear poles in the parentheses. The represen-
tation in Eq. (3.16) allows us to compute the bubble coef-
ficient in a manner that manifests the relation between
collinear poles in adjacent channels. With auxiliary spinor
j�i in Eq. (3.14) chosen to be jai, the bubble coefficient is

Cði;jÞ
2fa;bg ¼ Cði;jÞ

2fa;bgð�� jþ 1Þ þ Cði;jÞ
2fa;bgð�� jÞ

þ Cði;jÞ
2fa;bgð�� iþ 1Þ þ Cði;jÞ

2fa;bgð�� iÞ:

Here we have used (�� j) to indicate the contribution
from the collinear pole h�; ji. For convenience, we will
refer to (�� j) and (�� jþ 1) collinear poles as
‘‘j-channel poles,’’ and (�� i) and (�� iþ 1) poles as
‘‘i-channel poles.’’ A graphical illustration of Eq. (3.18) is
given in Fig. 10

Before proceeding, we point out a very important ob-
servation. Comparing the first line of Eq. (3.16) for

Ŝði;jÞ
fa;bg;N jOðz0Þ with that for Ŝði;j�1Þ

fa;bg;N jOðz0Þ,

Ŝði;j�1Þ
a;b jOðz0Þ ¼ ðN � 4ÞAtree

n

ha; �ihb; �i2hi; iþ 1i
ha; bi2hi; �ihiþ 1; �i

�
�ha; ji
hj; �i �

ha; j� 1i
hj� 1; �i

�
;

we immediately see that terms containing the common
collinear pole of the two adjacent cuts, i.e., 1=hj; �i, are
exactly the same but crucially have opposite signs. This
applies to all of the other terms in Eq. (3.16): each residue
in the sum has a counterpart in the adjacent channel, as
illustrated in Fig. 1.

At this point, one is tempted to conclude that the con-
tribution to the bubble coefficient from common collinear

channels cancels. However there is one subtlety. In

Eq. (3.14), besides Ŝði;jÞ
fa;bg;N jOðz0Þ, there is an extra factor

in the total derivative that depends on the total momentum
of the two-particle cut, Piþ1;j, which will be distinct for the

adjacent cuts. Luckily these distinct factors become iden-
tical on the common collinear pole:

½~�jPiþ1;jjai
h�jPiþ1;jj~��h�; ai

��������h�;ji¼½~�;j�¼0

¼ ½~�jPiþ1;j�1jai
h�jPiþ1;j�1j~��h�; ai

��������h�;ji¼½~�;j�¼0
; (3.17)

where jh�;ji¼½ ~�;j�¼0 indicates that the loop momentum is

evaluated in the limit where it is collinear with j.5

Because the extra factors are identical on the CCP, we
now conclude that the contribution of the CCP to the
bubble coefficient indeed cancels between adjacent chan-
nels. This can also be concretely checked against the result
from the direct evaluation of the dLIPS integral:6

Cði;j�1Þ
2fa;bg ð�� jÞ ¼ �ðN � 4ÞAtree

n

hi; iþ 1i
ha; bi2

� hajPiþ1;j�1jj�
hjþ 1jPiþ1;j�1jj�

ha; jihb; ji2
hi; jihiþ 1; ji ;

Cði;jÞ
2fa;bgð�� jÞ ¼ ðN � 4ÞAtree

n

hi; iþ 1i
ha; bi2

hajPiþ1;jjj�
hjjPiþ1;jjj�

� ha; jihb; ji2
hi; jihiþ 1; ji :

Adding these two equations, we find

Cði;jÞ
2fa;bgð�� jÞ þ Cði;j�1Þ

2fa;bg ð�� jÞ

¼ ð4�N ÞAtree
n

hi; iþ 1i
ha; bi2

ha; jihb; ji2
hi; jihiþ 1; ji

�
�
�hajPiþ1;jjj�

hjjPiþ1;jjj� þ
hajPiþ1;j�1jj�
hjjPiþ1;j�1jj�

�
¼ 0; (3.18)

thus verifying our claim.
Since the four collinear poles for a generic two-particle

cut are shared by four different adjacent channels as shown
in Fig. 1, this immediately leads to the result that although
the bubble coefficient for a generic two-particle cut is
given by complicated rational functions, as shown in
Eq. (3.18), in summing over all two-particle cuts there is
a pairwise cancellation of CCP, and thus a majority of
bubble coefficients do not contribute to the final result.

j+1

i i+1

j

2,a,b

(i, j)

(j-channel poles)

(i-channel poles)

2,a,b

(i, j)

2,a,b

(i, j)

2,a,b

(i, j)

FIG. 10 (color online). A graphical representation of Eq. (3.18).
The bubble coefficient of a given channel is separated into four
terms, each having a different collinear pole as the origin of the
holomorphic anomaly that gives a nonzero dLIPS integral. The
four-contributions can be grouped into two channels: the i
channel and the j channel.

5Since the contour of the dLIPS integral is taken to be real,
~� ¼ ��, the collinear pole 1=h�; ji freezes the loop momenta to
satisfy h�; ji ¼ ½~�; j� ¼ 0.

6Explicit evaluation of this integral via the holomorphic
anomaly [8,9,13] is reviewed in Appendix A.
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The cancellation of CCP in adjacent channels leads to
systematic cancellation in the sum of bubble coefficients
and the sum telescopes. However, there are ‘‘terminal
cuts’’ which contain unique poles that are not canceled.
Below, we demonstrate that these so-called ‘‘terminal
poles’’ constitute the sole contribution to the overall bubble
coefficient. First we focus on the simplest case, namely the
two external ‘‘negative-helicity’’� lines a, b are adjacent.
The general case is treated in Sec. III B 2.

1. Adjacent MHV amplitudes

We consider split-helicity MHVamplitudes where the�
lines a, b are adjacent, i.e., b ¼ a� 1. The systematic
cancellation is illustrated in Fig. 11, where the dashed lines
indicate pairs of CCP that cancel in the sum. Note that
there are no contributions from the collinear poles where
the loop leg is collinear with the� lines, a and a� 1. This
is because the residues of such poles are zero, as can be
seen in Eq. (3.16) and explicitly checked in Eq. (3.18). One
immediately sees that the summation is reduced to the two
terminal poles. These are identified as poles in two-particle
cuts with a 4-point tree amplitude on one side (and an
n-point tree on the other), where the two loop momenta
become collinear with the two external legs of the 4-point
tree amplitude. A straightforward evaluation of the contri-
bution of these two terminal poles yields the result for the
sum of all bubble coefficients:

C2fa;a�1g ¼ Cða�3;a�1Þ
2fa;a�1g ð�� a� 2Þ þCðaþ1;a�1Þ

2fa;a�1g ð�� aþ 1Þ
¼ �ðN � 4ÞAtree

n þ 0¼��0Atree
n ; (3.19)

with �0 ¼ ðN � 4Þ. Note that Cðaþ1;a�1Þ
2fa;a�1g ð�� aþ 1Þ ¼ 0

is a result of our choice of reference spinor j�i ¼ jai in
deriving Eq. (3.18). Were we to make the other natural
choice, j�i ¼ jbi ¼ ja� 1i, we would instead have

Cða�3;a�1Þ
2fa;a�1g ð�� a� 2Þ ¼ 0 and Cðaþ1;a�1Þ

2fa;a�1g ð�� aþ 1Þ ¼
��0Atree

n .
For example, take the 6-point MHVamplitude with legs

1 and 6 to be negative-helicity lines. The sum of bubble
coefficients is given as

C2f1;6g ¼ Cð2;6Þ
2f1;6gð�� 2Þ þCð2;6Þ

2f1;6gð�� 3Þ þCð3;6Þ
2f1;6gð�� 3Þ

þCð3;6Þ
2f1;6gð�� 4Þ þCð4;6Þ

2f1;6gð�� 4Þ þCð4;6Þ
2f1;6gð�� 5Þ

¼ Cð2;6Þ
2f1;6gð�� 2Þ þCð4;6Þ

2f1;6gð�� 5Þ ¼ ��0Atree
n :

(3.20)

We see that there are two pairs of common collinear poles,
�� 3 and �� 4. The pairs cancel each other in the sum
and one arrives at the two terminal pole which evaluates to
the desired result. The cancellation is illustrated in Fig. 12.
Thus we have demonstrated that one of the terminal

poles vanishes and the sum of bubble coefficients for
adjacent MHV amplitudes for arbitrary n are given by a
single terminal pole.

2. Nonadjacent MHV amplitudes

The above case with the two� lines a, b being adjacent
is simple because the j-channel poles [see below (3.16)]
were absent. For MHV amplitudes with a, b being non-
adjacent, the j-channel poles are now nonzero, and all the
four collinear poles contribute in Eq. (3.18). The sum of
bubble coefficients can be conveniently separated into a
summation of the i-channel poles, and a summation of the
j-channel poles. Cancellation of CCP in both channels
again reduces the summation to the terminal poles. For
simplicity, we set a ¼ 1 and 1< b. We denote the terminal
cut in the summation of i-channel poles by it, j, and
similarly for the terminal cut of the j-channel poles by

a
a−1

a−3
a−2

+ ... ++ +

a a−1

a+3 a+4

a
a−1

a+1
a+2

a
a−1

a+2
a+3

FIG. 11 (color online). A schematic representation of the cancellation of CCP for adjacent MHVamplitude for SYM. Each colored
arrow represents a collinear pole that contributes to the bubble coefficient. Pairs of dashed arrows in the same color cancel. Only those
represented by the solid arrows one on the two ends remain; they are the only nontrivial contribution to the overall bubble coefficient.

+ +
1

6

2

3

1

3
4

5
2

6

5

4

1

2

3

4

6

5

FIG. 12 (color online). A schematic representation of the cancellation of CCP for adjacent 6-point MHVamplitude. The dashed lines
are common collinear poles, which cancel pairwise.
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i, jt. The contribution of these uncanceled poles are iden-
tified as

(i) i channel:

Cðit;jÞ
2f1;bgð�� itÞ

for j ¼ n; it ¼ 2

for b � j < n; it ¼ 1
;

Cðit;jÞ
2f1;bgð�� it þ 1Þ for j ¼ b; it ¼ b� 2

for b < j � n; it ¼ b� 1
;

(ii) j channel:

Cði;jtÞ
2f1;bgð��jtÞ

for i¼b�1; jt¼bþ1

for 1� i<b�1; jt¼b
;

Cði;jtÞ
2f1;bgð��jtþ1Þ for i¼1; it¼n�1

for 1<i�n�1; jt¼n
:

In identifying the terminal poles, one has to take into
account that, when summing over the i-channel poles,
the value of j affects the possible values that i can take

(and vice versa for the summation of j-channel poles). For
a detailed discussion of the above result, we refer the
reader to Appendix B where we perform a similar analysis
for nonadjacent MHV amplitudes in pure Yang-Mills. As
discussed in Sec. III B 1, the collinear poles where the loop
momenta become collinear with a � line have vanishing
residues. In the present context, this refers to (�� 1) and
(�� b). Thus there are only four contributing terms in the
sum of bubble coefficients

C2f1;bg ¼ Cð2;nÞ
2f1;bgð�� 2Þ þ Cðb�2;bÞ

2f1;bg ð�� b� 1Þ
þ Cðb�1;bþ1Þ

2f1;bg ð�� bþ 1Þ þ Cð1;n�1Þ
2f1;bg ð�� nÞ:

(3.21)

Extracting the corresponding expressions from Eq. (3.18),
one finds that the first and last terms vanish. This is again
due to the choice of reference spinor j�i ¼ jai.7 Thus the
only contributions to the sum of bubble coefficients

come from Cðb�1;bþ1Þ
2f1;bg ð�� bþ 1Þ and Cðb�2;bÞ

2f1;bg ð��b�1Þ,
which sum to

C2f1;bg ¼ Cðb�1;bþ1Þ
2f1;bg ð�� bþ 1Þ þ Cðb�2;bÞ

2f1;bg ð�� b� 1Þ ¼ ð4�N ÞAtree
n

h1; b� 1ihb; bþ 1i þ hb� 1; bih1; bþ 1i
hb� 1; bþ 1ih1; bi

¼ �ðN � 4ÞAtree
n : (3.22)

This agrees with Eq. (1.4) with �0 ¼ ðN � 4Þ.
In conclusion, for both adjacent and nonadjacent MHV

amplitudes in N ¼ 1, 2 super Yang-Mills theory, the
cancellation of CCP in the sum of bubble coefficients
implies that for n-point (non)adjacent MHV amplitudes,
only (two) one term in the sum of bubble coefficients gives

a nontrivial contribution �0Atree
n . Thus the on-shell

formalism achieves Eq. (1.4) in a systematic and simple
way.

C. MHV bubble coefficients for pure Yang-Mills

The observed structure of cancellations for N ¼ 1, 2
super Yang-Mills theory is present in pure Yang-Mills as
well. However, it is more involved to derive this since the
Oðz0Þ part of the BCFW-shifted two-particle cut contains
higher-order collinear poles. Nevertheless, adjacent chan-
nels again share these higher-order CCP, and their contri-
bution to the sum of bubble coefficient also cancels.
The cancellation of CCP renders the summation down
to the terminal poles, which evaluate to 11=6Atree

n . We
present the detailed derivation of this in Appendix B.

b+1

b−2

b

b−1

−
−

+ +
+

+

a−

(a)

2

1 1

2
2

−

+

a−

a−1

a−1

a−1

b−

+

+

+

(b)

FIG. 13. The two terminal cuts for a given helicity configuration for the loop legs. For the choice of reference spinor j�i ¼ jai only
diagram (a) is nonvanishing. If one instead chooses j�i ¼ jbi, then it is diagram (b) that gives the nontrivial contribution.

7If we were to use the other natural choice, j�i ¼ jbi, we
would arrive at the result that the second and third terms of
Eq. (3.21) vanish. This apparent dependence of a particular
double cut on the reference spinor is illusory: with care, one
can cancel the full j�i dependence from each individual bubble
coefficient. However, this cancellation comes at the expense of
the manifest a $ b symmetry present in the uncanceled form.
This asymmetry causes one term to seemingly vanish while the
other gives the full bubble coefficient.
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Here we would like to give a brief discussion on the nature
of the terminal poles in pure Yang-Mills theory.

As discussed above, the terminal cuts are those where
there is a 4-point tree amplitude on one side of the two-
particle cut. The uncanceled terminal poles can be identi-
fied as the poles that arise when the loop momenta become
collinear with the pair of external legs of this 4-point tree
amplitude. For pure Yang-Mills, summing over the internal
helicity configurations before taking the dz and dLIPS
integrals obscures the nature of the cancellation.

Additional structure reveals itself if we first evaluate the
contributions to the bubble coefficient for a given set
of internal states, aka gluon helicity configuration, and
then sum over internal states/helicities. Specifically, these
double-forward terminal poles are nonzero only when the
internal helicities of the loop legs leaving the n-point tree
on one side of the cut match with the helicities of the pair
of external lines in the 4-point tree on the other side of the
cut (see Fig. 13). These ‘‘helicity-preserving’’ double poles
(which will henceforth be called ‘‘double-forward poles’’)
give the entire bubble coefficient.

Consider the internal helicity configuration ðlþ1 ; l�2 Þ as
shown in Figs. 8(b) and 13. There are two ‘‘helicity-
preserving’’ terminal cuts: Figs. 13(a) and 13(b). Choosing
the reference spinor j�i ¼ jai, Fig. 13(b) vanishes, and
Fig 13(a) evaluates to 11=6Atree

n , see Eq. (B25). If one
were to make the other choice for the reference spinor,
j�i ¼ jbi, we would instead have Fig. 13(a) vanishing,
and Fig. 13(b) giving 11=6Atree

n . In fact, the helicity-
preserving property of the contributing poles can also be
seen for theN ¼ 1, 2 super Yang-Mills theory, where one
simply substitutes the þ and � helicity in the previous
discussions with � and � lines. This fact was obscured
previously as the different internal multiplet configurations
were summed to obtain the simple form of the two-particle
cut in Eq. (3.13).

Thus we conclude that in the pure Yang-Mills theory the
sum of bubble coefficients is simply given by the contri-
bution of terminal poles where the helicity configuration is
preserved, and where the loop momenta become collinear
with the pair of external legs within the 4-point amplitude.
For simplicity we will call these double-forward poles, due
to the nature of the kinematics. In Sec. V we will show
that for split-helicity NkMHV bubble coefficients, these
double-forward poles again produce the correct sum for the
bubble coefficient, thus indicating complete cancellation
among the remaining contributions. But before indulging
in that story let us present a general argument for the
cancellation of CCP.

IV. TOWARDS GENERAL CANCELLATION OF
COMMON COLLINEAR POLES

In the above, we have shown that Eq. (1.4) can be largely
attributed to the fact that the bubble coefficient for a given
cut secretly shares the same terms with its four adjacent

cuts, leading to systematic cancellations between them. We
have proven this for n-point MHV amplitudes in both
N ¼ 1, 2 super Yang-Mills as well as pure Yang-Mills
theories (Appendix B). One can also consider adjoint
scalars and fermions minimally coupled to gluons. Since
at one loop, we can separate contributions from different
spins inside the loop as

fermions! ðN ¼ 1SYMÞ� ðYMÞ
scalar! ðN ¼ 2SYMÞ� ðN ¼ 1SYMÞ� ðfermionsÞ;

(4.1)

proof of cancellation of CCP for each of the theories (for
MHV scattering) on the rhs of Eq. (4.1) implies that such
cancellation occurs for each spin individually.
We would like to show this holds for NkMHV ampli-

tudes. Unfortunately, for NkMHV amplitudes, multipar-
ticle poles of tree amplitudes on either side of the cut
contribute to the bubble coefficient, and the analysis be-
comes more complicated: cancellation of CCP is no longer
sufficient to show terminal poles dominate the bubble
coefficient. Nonetheless, we believe that the cancellation
between CCP persists for arbitrary helicity configuration.
As an indication, we demonstrate that the residues of CCP
for adjacent cut always have the same form and opposite
signs, for any helicity configuration.
Collinear limits of tree-level amplitudes in Yang-Mills

theory, with ka ¼ zkP, kb ¼ ð1� zÞkP, factorize as
Atree
n ð. . . ; a�a ; b�b ; . . .Þ
! X

�¼�
Splittree��ðz; a�a ; b�bÞAtree

n�1ð. . . ; P�; . . .Þ; (4.2)

where the factor Splittree�� ðz; a�a ; b�bÞ is the gluon splitting
amplitude. Its form for various helicity configurations are
given by [15,19]

Splittree� ða�; b�Þ ¼ 0;

Splittree� ðaþ; bþÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp habi

;

Splittreeþ ðaþ; b�Þ ¼ ð1� zÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp habi

;

Splittree� ðaþ; b�Þ ¼ � z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞp ½ab�

:

(4.3)

Without loss of generality, we focus on the common
collinear pole depicted in Fig. 5, in adjacent cuts ð1 . . .
i� 1ji . . .nÞ and ð1 . . . ijiþ 1 . . . nÞ. In other words,

we study the collinear region with lðiÞ1 ¼ 
ðiÞki and

lðiþ1Þ
1 ¼ 
ðiþ1Þki.

8 The two integrands become

8Strictly speaking, the condition hl1ii ¼ 0 only requires �l1 �
�i. However since the dLIPS integration contour is along ~� ¼ ��,
the condition is equivalent to l1 � ki.
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Cutð1::i�1ji::nÞjhl1ii
¼ Aiþ1ð1; . . . ; i� 1; 
ðiÞi; lðiÞ2 ÞX

�¼�
Splittree��

� An�iþ2ð�lðiÞ2 ; ð1� 
ðiÞÞi; iþ 1; . . . ; nÞ; (4.4)

for cut ð1 . . . i� 1ji . . . nÞ, and
Cutð1...ijiþ1...nÞjhl1ii

¼ X
�¼�

Splittree��Aiþ1ð1; . . . ; ð1þ 
ðiþ1ÞÞi; lðiþ1Þ
2 Þ

� An�iþ2ð�lðiþ1Þ
2 ;�
ðiþ1Þi; iþ 1; . . . ; nÞ; (4.5)

for cut ð1 . . . ijiþ 1 . . .nÞ. The parameter 
ðiÞ can be fixed

by the on-shell condition on lðiÞ2 since in the cut ð1 . . .
i� 1ji . . . nÞ, lðiÞ2 ¼Pi�1þ
ðiÞki. Similar constraints from

the cut ð1 . . . ijiþ 1 . . .nÞ fix 
ðiþ1Þ. This leads to


ðiÞ ¼ P2
i�1

2ki � Pi�1

¼ 
ðiþ1Þ þ 1 ! lðiÞ2 ¼ Pi�1 þ 
ðiÞki

¼ Pi þ 
ðiþ1Þki ¼ lðiþ1Þ
2 :

Substituting these results back into Eqs. (4.4) and (4.5), we
see that the product of tree amplitudes is identical at their
common collinear pole. Furthermore, by identifying the
kinematic variables in the splitting amplitudes for each
cut as

ð1 . . . i� 1ji . . . nÞ: ka ¼ ki; kb ¼ �
ðiÞki; z ¼ 1

1� 
ðiÞ

ð1 . . . ijiþ 1 . . . nÞ: k0a ¼ ki; k
0
b ¼ 
ðiþ1Þki; z0

¼ 1

1þ 
ðiþ1Þ ¼
1


ðiÞ
;

we see that the splitting amplitudes for the two cuts are
identical with a relative minus sign.9

The above analysis confirms that Eqs. (4.4) and (4.5) are
indeed identical up to a minus sign. Thus the residue of the
entire two-particle cut on the common collinear poles is
identical and with opposite sign. This, however, does not
directly lead to a proof of cancellation of CCP for bubble
coefficients. This is because to extract the bubble coeffi-
cient, the two-particle cut must be translated into a total
derivative in order for one to use holomorphic anomaly
generated by the collinear poles to isolate the dLIPS
integral. It is not guaranteed that after translating the two
cuts into a total derivative form, the residues on the CCP
will still be equal and opposite.

V. NkMHV BUBBLE COEFFICIENTS

The cancellation of CCP, even if it holds for generic
helicity configurations, is clearly not sufficient for

simplifying the sum of bubble coefficients for NkMHV
amplitudes. The complications arise from the presence of
multiparticle poles of the tree amplitudes in the two-
particle cut. It is conceivable that there exists a similar
cancellation of common multiparticle poles, since a trivial
example would be the cancellation of CCP, considering the
fact that collinear poles are secretly multiparticle poles via
momentum conservation. Here we instead ask a more
direct question: does the contribution of the double-
forward poles to the bubble coefficient directly give
11=6Atree for n-point NkMHV amplitude?
To facilitate our analysis, we will use the CSW represen-

tation [13,20,21] for the split-helicity NMHV tree
amplitude ð� ��þ � � �þÞ. We will show that at the
double-forward poles, the contribution from each individ-
ual CSWdiagram evaluates to 11=6 times the original CSW
diagram whose loop momenta are replaced by the corre-
sponding external lines. Summing the different diagrams
one simply recovers 11=6 times the CSW representation of
the tree amplitude. Using induction, we prove that this is
still true for all n-point split-helicity NkMHV amplitudes.

A. Double-forward poles in terminal cuts of
A1-loop

n ð���þ� � �þÞ
The split-helicity configuration for NMHVamplitudes is

the simplest to analyze. The CSW form for n-particle
NMHV scattering, with adjacent negative-helicity gluons
is given by the following 2ðn� 3Þ terms [13]:

Að1�; 2�; 3�; 4þ; . . . ; nþÞ

¼ Xn
i¼4

h1; 2i3
hP3;i; iþ 1i � � � hP; 2i

1

P2
3;i

hP3;i; 3i3
h3; 4i � � � hi; P3;ii

þXn
i¼4

h1; P2;i�1i3
hP2;i�1; ii � � � hn; 1i

1

P2
2;i�1

� h2; 3i3
hP2;i�1; 2i � � � hi� 1; P2;i�1i ; (5.1)

where jPi;ji � Pi;jj~	�, and ~	 is an auxiliary spinor.

For helicity configuration ðl�1 ; lþ2 Þ, the terminal cuts are
shown in Fig. 14. We first focus on cut (a), which is given

by A4ðl̂þ1 ;3�; 4þ; l̂�2 Þ � Anðl̂þ2 ; 5þ; . . . ; nþ; . . . ; 1�; 2�; l̂�1 Þ.
Cut (b) in Fig. 14 evaluates in exactly the same way. We
use the CSW expansion on the n-particle NMHV subam-
plitude as indicated in Fig. 15:

½cut ðaÞ�jdf ¼ ½diagðaÞ þ diagðbÞ þ diagðcÞ�jdf: (5.2)

Notice for Figs. 15(a) and 15(b), the loop legs are on the
same MHV vertex and hence the CSW propagator 1=P2

does not depend on z. This implies that from the point of
view of extracting the pole at z ! 1 and performing the
dLIPS integration, only the MHV vertex on which the loop
legs are attached is relevant. Hence the evaluation of the
double-forward poles is simply evaluating the contribution

9For consistency, we take the positive branch of the square
root.
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of that for a MHV amplitude with one on-shell leg identi-
fied with CSW propagator leg multiplied by the remaining
CSW vertices which behave as spectators to the dLIPS
integration. This realization makes the computation trivial,
as we know the double-forward pole contributes 11=6
times the tree amplitude. This implies that here the result
would simply be 11=6 times the corresponding CSW tree
diagram. One can thus straightforwardly obtain

½diagðaÞ þ diagðbÞ�jdf
¼ 11

6

�Xn
i¼4

h1; 2i3
hP3;i; iþ 1i � � � hP; 2i

1

P2
3;i

hP3;i; 3i3
h3; 4i � � � hi; P3;ii

þXn
i¼5

h1; P2;i�1i3
hP2;i�1; ii � � � hn; 1i

1

P2
2;i�1

� h2; 3i3
hP2;i�1; 2i � � � hi� 1; P2;i�1i

�
; (5.3)

where jdf indicates the contribution from the double-

forward pole. There is another type of contribution, as

shown in Fig. 15(c), where the CSW propagator depends
on z and we need a careful analysis as follows.

Denoting jP̂i ¼ P̂j~	�, which accounts for the z depen-
dence of the CSW propagator, the cut integrand is given by

diagðcÞ ¼ h1; P̂i3
hP̂; l2ihl̂2; 5i � � � hn; 1i

1

P̂2

h2; l̂1i3
hP̂; 2ihl̂1; P̂i

� h3; l̂2i4
h3; 4ih4; l2ihl2; l̂1ihl̂1; 3i

; (5.4)

where P̂ ¼ p2 þ l̂1. We call this the ‘‘hard’’ term. The
other 2n� 5 terms we call the ‘‘easy’’ terms. For simplic-
ity, we first strip off the corresponding tree factor, i.e., the
i ¼ 4 term in the second line of Eq. (5.1),

T2;3 ¼ h1; P2;3i3
hP2;3; 4ih4; 5i � � � hn; 1i

1

P2
2;3

h2; 3i3
hP2;3; 2ih3; P2;3i (5.5)

from the terminal dLIPS integrand in Eq. (5.4). This
yields
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FIG. 15. Representing the tree amplitude in the terminal cuts with CSW expansion. Note that the loop legs are attached to the same
MHV vertex for diagrams (a) and (b). The dLIPS integration for these diagrams is exactly the same as that computed for adjacent
MHV bubbles.
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FIG. 14. The terminal cuts of the split-helicity NMHV amplitude that contain the two helicity-preserving double-forward poles.
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diagðcÞ ¼ T2;3

� h1; P̂i3hP2;3; 4ih4; 5i
h1; P2;3i3hP̂; l2ihl2; 5i

P2
2;3

P̂2

h2; l̂1i3
hP̂; 2ihl̂1; P̂i

� hP2;3; 2ih3; P2;3ih3; l2i4
h2; 3i3h3; 4ih4; l2ihl2; l̂1ihl̂1; 3i

�
: (5.6)

We would like to put this into a form where we can readily
take the large-z pole followed by the dLIPS integral about
the double-forward pole. To simplify the analysis, we work
out the explicit form of the spinor-inner products:

jP̂i ¼ ðp2 þ l̂1Þj~	� ) fhl̂1; P̂i ¼ hl̂1; 2i½2; ~	�; hl2; P̂i
¼ hl2; 2i½2; ~	� þ hl2; l̂1i½l1; ~	�; h2; P̂i
¼ h2; l̂1i½l1; ~	�; h1; P̂i ¼ h1; l̂1i½l1; ~	� þ h1; 2i½2; ~	�g;

jP2;3i ¼ ðp2 þ p3Þj~	� ) fh3; P2;3i ¼ h3; 2i½2; ~	�; hl2; P2;3i
¼ hl2; 2i½2; ~	� þ hl2; 3i½3; ~	�; h2; P2;3i
¼ h2; 3i½3; ~	�; h1; P2;3i
¼ h1; 3i½3; ~	� þ h1; 2i½2; ~	�g: (5.7)

Applying Eq. (5.7) to Eq. (5.6), canceling all common
factors, and setting j~	� ¼ j2�,10 we find
diagðcÞ

¼ T2;3

h1l̂1i3h4;5ih3; l2i4
h13i3hl̂1l2i2hl2;5ih4; l2ihl̂1;3i

¼ T2;3

�� h3;4i
hl2;4i �

h3;5i
hl2;5i

� hl̂1; l2i
hl̂1;3i

�
�1þ h1; l2ihl̂1;3i

h1;3ihl̂1; l2i
�
3
�
:

(5.8)

Expanding around z ! 1, one finds

diagðcÞjz!1 ¼ T2;3

�� h3; 4i
hl2; 4i �

h3; 5i
hl2; 5i

��
3
h1; l2i
h1; 3i

� 3
h1; l2i2hl1; 3i
h1; 3i2hl1; l2i

þ h1; l2i3hl1; 3i2
h1; 3i3hl1; l2i2

��
:

The double-forward pole corresponds to the hl2; 4i pole. A
straightforward evaluation of the residue gives

diagðcÞjdf ¼ T2;3

Z
dLIPS

h3; 4i
hl2; 4i

�
3
h1; l2i
h1; 3i � 3

h1; l2i2hl1; 3i
h1; 3i2hl1; l2i

þ h1; l2i3hl1; 3i2
h1; 3i3hl1; l2i2

�

¼
�
3� 1� 3� 1

2
þ 1� 1

3

�
T2;3 ¼ 11

6
T2;3:

In summary, we find that the double-forward pole of the terminal cuts sum to give

½diagðaÞ þ diagðbÞ þ diagðcÞ�jdf ¼ 11

6

�Xn
i¼4

h1; 2i3
hP3;i; iþ 1i � � � hP; 2i

1

P2
3;i

hP3;i; 3i3
h3; 4i � � � hi; P3;ii

�

þ 11

6

�Xn
i¼5

h1; P2;i�1i3
hP2;i�1; ii � � � hn; 1i

1

P2
2;i�1

h2; 3i3
hP2;i�1; 2i � � � hi� 1; P2;i�1i

�

þ 11

6

� h1; P2;3i3
hP2;3; 4ih4; 5i � � � hn; 1i

1

P2
2;3

h2; 3i3
hP2;3; 2ih3; P2;3i

�

¼ 11

6
Að1�; 2�; 3�; 4þ; . . . ; nþÞ: (5.9)

Thus indeed the double-forward limit of Fig. 14(a) gives
the expected proportionality factor from the sum of bubble
coefficients, suggesting complete cancellation of contribu-
tions from all the other channels and poles.

We see that using the CSW representation for NMHV
tree amplitudes reveals the following structure: the
double-forward poles in the terminal cut contribute a
factor 11=6 for each CSW tree diagram. Note that all
but one term, Fig. 15(c), goes through trivially as the

dLIPS only sees one MHV vertex in the NMHV tree
amplitude. There is a more straightforward way of under-
standing the factor of 11=6 in Fig. 15(c), which goes as
follows.
Consider the same calculation for the split-helicity

NMHV 5-point amplitude. Since this is secretly a 5-point
MHV amplitude we know that the forward poles for a
given internal helicity configuration evaluate to 11=6�
MHV, as proven previously. Now consider the same evalu-
ation using the CSW representation. Since Figs. 15(a) and
15(b) automatically yield 11=6 times the corresponding
CSW tree diagram, Fig. 15(c) must give 11=6 times its
corresponding CSW tree diagram, T2;3.

10This ordering of steps is important: this cancels an apparent
factor of ½2; ~	� in the denominator of Eq. (5.6).
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Now, for higher-point NMHV amplitudes, Fig. 15(c) is
modified by additional plus helicity legs on one of the
MHV vertices, as indicated in Fig. 16. From the point of
view of expanding around the pole at z ! 1 and the dLIPS
integral, these additional plus helicity legs are simply
spectators and do not participate. Thus the evaluation of
Fig. 15(c) ‘‘must’’ be 11=6 T2;3 as explicitly shown above.

Note that this way of understanding the result of the
double-forward poles allows us to generalize to NkMHV.

B. Recursive generalization to NkMHV
bubble coefficients

We are now ready to give inductive proof that the residue
at the double-forward poles gives the entire bubble coeffi-
cient, 11=3� Atree

n , for general split-helicity NkMHV am-
plitudes. The proof is as follows.

(i) Using the CSW representation of NkMHV ampli-
tude, the diagrams that appear inside the terminal cut
can be categorized by the number of z-dependence
CSW propagators. For a given k there will be at most
k propagators that have nontrivial z dependence.
Diagrams that have p < k, z-dependent CSW propa-
gators will be diagrams that have already appeared in
the analysis for NpMHV amplitudes, hence are
known to give 11=6 times the corresponding CSW
tree diagram.

(ii) There will be a unique diagram that has k,
z-dependent, CSW propagators. To evaluate this
diagram, we note that the kþ 4-point split-helicity
NkMHV amplitude is the same as a kþ 4-point
adjacent MHV amplitude, for which we know that
the forward limit poles give 11=6Atree

n . In the CSW
representation, since all other diagrams already
evaluate to 11=6 times the corresponding tree dia-
gram, as discussed in the previous step, this final
diagram must as well.

(iii) For arbitrary n, one simply adds additional
positive-helicity legs to MHV vertices. These extra
states do not participate in the expansion around the
pole at z ! 1 or in the dLIPS integral. The modi-
fication only appears as an overall factor, and thus
proves that for general n this last diagram also

evaluates to 11=6 times the corresponding CSW
tree diagram.

(iv) Summing all the CSW diagrams in the double cut,
we obtain 11=6� Atree

n for the forward pole contri-
bution to the bubble coefficient from the terminal
cut.

(v) The other internal helicity configuration evaluates in
the same way, on the other helicity-preserving
double-forward terminal pole, yielding C2 ¼
11=3� Atree

n

We use the N2MHV amplitude to illustrate the above
steps. TheCSW representation for theN2MHV terminal cut
is given in Fig. 17. Figures 17(a) and 17(b) have no
z-dependent CSW propagators, and hence from the point
of view of extracting the constant piece at z ! 1 and
integrating over dLIPS, the two leftmost MHV vertices
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FIG. 16. Figure 15(c) for the 5-point amplitude. Going from 5-point to arbitrary n-point simply corresponds to adding additional plus
helicity legs on the bottom MHV vertex. Since this modification affects neither extraction of constant term for z ! 1 nor evaluation of
the dLIPS integral, the 11=6 factor obtained at 5-points holds for arbitrary n.
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FIG. 17. The CSW representation of the terminal cut for
N2MHV amplitude. The evaluation of diagrams (a) and (b) is
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amplitude.
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are just spectators and the evaluation is on the rightmost
MHV vertex on the left-hand side of the cut. Thus the
evaluation of Figs. 17(a) and 17(b) is identical to the evalu-
ation of the adjacent MHVamplitudes. For Figs. 17(c) and
17(d), there is one z-dependent CSWpropagator. TheMHV
vertex where 1� sits is again a spectator and the evaluation
is identical to that of Fig. 15(c) for the NMHV amplitude,
and hence evaluates to 11=6 times the corresponding CSW
tree diagram. Finally, for the unique Fig. 17(e), we use the
argument that for n ¼ 6, this is simply theMHV amplitude,
from which we deduce that this term must also evaluate to
11=6 times the corresponding tree diagram. This result will
not be modified for n > 6, and hence completes the proof.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we study the proportionality between the
sum of bubble coefficients and the tree amplitude, which is
required for renormalizability. For theories where
Feynman diagram analysis is tractable, such as scalar
theory and pure scalar amplitudes of Yukawa theory, we
find that the bubble coefficient only receives contributions
from a small class of one-loop diagrams. The contribution
of each diagram is proportional to a tree diagram, and
hence summing over all one-loop diagrams that give non-
trivial contributions is equivalent to summing over tree
diagrams. Crucially, these new tree diagrams are not nec-
essarily present in the original tree amplitude of the theory.
Through restricting our attention to theories where these
new tree structures match those in the original tree ampli-
tude, we accurately reproduce the known renormalization
conditions derived from power counting analysis.

For (super)Yang-Mills theory, we show that the bubble
coefficient for MHVamplitudes can be organized in terms
of their origin as collinear poles, which are responsible for
the nontrivial contribution to the dLIPS integration in the
two-particle cuts. This representation reveals the existence
of systematic cancellation in the sum of bubble coefficient.
In particular, the residues of CCP cancel, and the sum
telescopes down to unique terminal poles. These are poles
that arise from cuts that have at least a 4-point tree ampli-
tude on one side of the cut, and the helicity configuration of
the internal legs must match that of the two external legs on
the 4-point tree amplitude, as shown in Fig. 2. We con-
jecture that these double-forward poles are the only non-
trivial contribution to the sum of bubble coefficients for
any helicity configuration. As further evidence, we explic-
itly prove that for split-helicity n-point NkMHV ampli-
tudes, the contribution of each terminal pole indeed gives
11=6 times the tree amplitude.

For more generic external helicity configurations, it will
be interesting to see how the contributions from the multi-
particle poles cancel with each other. An even more interest-
ing example would be gravity. It is well known that pure
gravity is one-loop finite [22]. The bubble coefficient is
nonvanishing for generic two-particle cuts, and hence

massive cancellation must occur. The lack of color ordering
for gravity amplitudes indicates the pole structure that gives
rise to the nontrivial contributions for the dLIPS integral is
more complicated than Yang-Mills: presumably new cancel-
lation mechanisms are required even for MHVamplitudes.
We demonstrate that the UV divergence of the one-loop

gauge theory amplitude is completely captured by the
residues of a set of unique collinear poles, i.e., it is con-
trolled by a residue at finite loop momentum value. If the
same holds for gravity, then through KLT relations [23] the
residue of gravity is intimately tied to gauge theories, and it
will be interesting to see how the relationship allows
cancellation among terminal residues, leading to the
known finiteness result for gravity and its relationship to
BCJ duality [24,25]. Note that the study of tensor bubbles
has previously revealed improved UV behavior for gravity
amplitudes compared to naive power counting from
Einstein-Hilbert action [26]. Even though it is well known
that gravity is finite at one loop, a careful analysis of how
finiteness is achieved for generic amplitudes may shed
light on additional structure, as we have successfully
achieved for (super) Yang-Mills amplitudes.
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APPENDIX A: dLIPS INTEGRALS VIA
THE HOLOMORPHIC ANOMALY IN

FOUR DIMENSIONS

Following Refs. [8,9,13], we can calculate integrals of
the following form:I

~�¼ ��
P2 h�; d�i½~�; d~��

h�jPj~��2
Q

n
i¼1½ai; ~��
h�jPj~��n gð�Þ; where

gð�Þ ¼
Q

m
j¼1hbj; �iQ
m
k¼1hck; �i

; (A1)

where the integral over phase space (dLIPS integral) is
really a contour integral over two complex numbers. Two
cases are important here: n ¼ 0 for scalar and Yukawa
theory, and n ¼ 2 for gauge theories. Note:
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P2 ½~�; d~��
h�jPj~��2 ¼ �d~� _� @

@~� _�

� ½~�; ~	�P2

h�jPj~��h�jPj~	�
�

¼ �d~� _� @

@~� _�

� ½~�jPj�i
h�jPj~��h�;�i

�
; (A2)

where we have introduced reference spinors j~	� ¼ Pj�i in
order to express the dLIPS integration measure as a total
derivative. We further note that integrands of the form (A1)
can be reduced to this basic measure through repeated
differentiation. Concretely, for n ¼ 2:

½I; ~��½J; ~��
h�jPj~��4 ¼ 1

6
~I _�~J

_� @2

@ðh�jPÞ _�@ðh�jPÞ _�
�

1

h�jPj~��2
�
: (A3)

For the case of MHV bubble integrands, the only reference
spinors are of the form jI� ¼ Pjii. Combining (A2) and
(A3), and interchanging the order of differentiation, one
can rewrite the ‘‘n ¼ 2’’ integrand as a total derivative:

I
~�¼ ��

P2 h�; d�i½~�; d~��
h�jPj~��4 hijPj~��hjjPj~��gð�Þ

¼
I

~�¼ ��
h�; d�i

�
�d~� _� @

@~� _�

� ½~�jPj�igð�Þ
h�jPj~��h�; �i

1

3

�
�hijPj~��hjjPj~��

h�jPj~��2 þ hi; �ihj; �i
h�;�i2

þ 1

2

hijPj~��hj; �i þ hi; �ihjjPj~��
h�jPj~��h�;�i

���
: (A4)

The last form for the integrand rewritten as a total deriva-
tive vanishes at all points save when it hits a simple pole.

This is because along the integration contour ~� ¼ ��, one
has [13]

�d~� _� @

@~� _�

1

h�; �i ¼ �2� ��ðh�; �iÞ; (A5)

Z
h�d�i ��ðh�; �iÞBð�Þ ¼ iBð�Þ: (A6)

Thus the dLIPS integral is localized to the poles 1=h�; �i of
the integrand.11 Each term in the integrand (A4) has po-
tential collinear divergences coming from the spinor brack-
ets in the denominator of gð�Þ and that of the reference
spinor h�;�i ! 0.

Through (A2) and (A5), we see that the simple bubble
integrals in scalar QFT in Sec. II simply evaluate toR
dLIPSð1Þ ¼ �2�i. For MHV bubble integrands, such

as Eq. (3.16), there is always a choice of the reference
spinor, such as j�i ¼ jai, which eliminates the unphysical
1=h�;�i pole.

APPENDIX B: SUM OF MHV BUBBLE
COEFFICIENTS FOR PURE YANG-MILLS

As mentioned in Sec. III C, the observed structure of
cancellations for N ¼ 1, 2 super Yang-Mills theory is
present in pure Yang-Mills as well. However, it is more
involved to derive this since the Oðz0Þ part of the BCFW-
shifted two-particle cut contains higher-order collinear
poles. Nevertheless, adjacent channels again share these
higher-order CCP, and their contribution to the sum of
bubble coefficient also cancels. The cancellation of CCP
renders the summation down to the terminal poles, which
evaluate to 11=6Atree

n . Here, we explicitly deal with the
details of this computation.
We begin with a generic BCFW-shifted two-particle cut

of ðjþ 1; . . . ; a; . . . ; ijiþ 1; . . . ; b; . . . ; jÞ for nonadjacent
MHVamplitude AMHV

n ða�; b�Þ. Choosing the helicity con-
figuration for the internal lines to be ðlþ1 ; l�2 Þ on the lhs of
the cut, as shown in Fig. 18, one has

Sði;jÞa;b ¼ Atree
n

�hi; iþ 1ihb; l̂1i
hi; l̂1ihl̂1; iþ 1i

��hj; jþ 1iha; l2i
hj; l2ihl2; jþ 1i

� hl2; l1i
ha; bi

�
�ha; l2ihb; l̂1i
ha; bihl1; l2i

�
3
: (B1)

Let us extract the bubble coefficient by shifting the loop legs

as jl̂1i ! jl1i þ zjl2i. Note that for our choice of shift, it will
be convenient to take jl2i ¼ j�i as the dLIPS integration
spinor. Under the dLIPS integration, there are three kinds of
poles that would contribute to the holomorphic anomaly:
(1) the 1=h��i poles that arise from writing the dLIPS
integral as a total derivative, (2) the collinear poles of the
form 1=hl2ii, and (3) the poles that come from expanding

1=hl̂1ii in 1=z to obtain theOðz0Þ piece at z ! 1.
We can remove the poles of type (1) by choosing

j�i ¼ jai, since the factor of hl2; ai in the numerator of
Eq. (B1) will cancel this pole. Thus the only contributions
remaining are of types (2) and (3). We rewrite Eq. (B1)
such that each type of pole is separated:

Sði;jÞa;b ¼ Atree
n

hb; l̂1i3
hl1; l2i2

�hi; bi
hl̂1; ii

� hiþ 1; bi
hl̂1; iþ 1i

�

�
�hj; ai
hl2; ji �

hjþ 1; ai
hl2; jþ 1i

���ha; l2i3
ha; bi4

�
:

l1

l2

a−

i

j+1

i+1

j

b−

−

FIG. 18. The ðlþ1 ; l�2 Þ helicity configuration for the two-particle
cut ðjþ 1; . . . ; a; . . . ; ijiþ 1; . . . ; b; . . . ; jÞ of AMHV

n ða�; b�Þ.
11Note that 1=h�jPj~�� is not a simple pole on the contour
~� ¼ ��.
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Next, we expand around z ! 1 obtaining

Sði;jÞ
a;b ð�Þ � Sði;jÞa;b jOðz0Þ

¼ Atree
n fGði;jÞ

a;b;ið�Þ�Gði;jÞ
a;b;iþ1ð�Þg

�hj;ai
h�;ji�

hjþ 1;ai
h�;jþ 1i

���ha;�i3
ha;bi4

�
;

¼ Atree
n fIgfJg

��ha;�i3
ha;bi4

�
; (B2)

where we have used fIg and fJg as a shorthand notation for the terms in the curly brackets. Later we will see manifest
cancellation of CCP for the terms in fIg under the summation over the i indices, and similarly for fJg under the summation
over the j indices. The new functional Gði;jÞ

a;b;i is defined as

Gði;jÞ
a;b;i �

hi; bi
hl1; l2i2

hb; l̂1i3
hl̂1; ii

��������Oð1Þ
¼ hi; bi

hl1; l2i2
�
3
hb; l1i2hb; l2i

hl2; ii � 3
hb; l1ihb; l2i2hl1; ii

hl2; ii2
þ hb; l2i3hl1; ii2

hl2; ii3
�

¼ hi; bi
h�jPi;jj��2

�
3
hbjPi;jj��2hb; �i

h�; ii þ 3
hbjPi;jj��hb; �i2hijPi;jj��

h�; ii2 þ hb; �i3hijPi;jj��2
h�; ii3

�
; (B3)

and similarly,

Gði;jÞ
a;b;iþ1 �

hiþ 1; bi
h�jPi;jj��2

�
3
hbjPi;jj��2hb; �i

h�; iþ 1i þ 3
hbjPi;jj��hb; �i2hiþ 1jPi;jj��

h�; iþ 1i2 þ hb; �i3hiþ !jPi;jj��2
h�; iþ 1i3

�
: (B4)

Note the function Gi;j
a;b;ið�Þ has higher-order (aka not simple) collinear poles in h�; ii, which will require extra care in using

the holomorphic anomaly as we later discuss.
The dLIPS integral of (B2) is localized by the four poles appearing in the curly brackets, and it will be convenient to

separate the contributions from the first and second curly brackets. Writing

X
i;j

�1

2�i

Z
dLIPSSði;jÞ

a;b ð�Þ ¼
X
i;j

�1

2�i

Z
dLIPS½Sði;jÞ

a;b ð�ÞjfJg þ Sði;jÞ
a;b ð�ÞjfIg�; (B5)

where jfIg indicates the contributions that arise from the presence of poles in fIg. We first consider the sum of residues of the
simple poles 1=h�; ji and 1=h�; jþ 1i in the second curly brackets:

X
i;j

Sði;jÞ
a;b ð�ÞjfJg ¼

X
i;j

Atree
n fGði;jÞ

a;b;ið�Þ �Gði;jÞ
a;b;iþ1ð�Þg

�hj; ai
h�; ji

���ha; �i3
ha; bi4

���������hl;ji

�X
i;j

Atree
n fGði;jÞ

a;b;ið�Þ � Gði;jÞ
a;b;iþ1ð�Þg

�hjþ 1; ai
h�; jþ 1i

���ha; �i3
ha; bi4

���������h�;jþ1i

¼ X
i;j

Atree
n fGði;jÞ

a;b;ið�Þ �Gði;jÞ
a;b;iþ1ð�Þg

�hj; ai
h�; ji

���ha; �i3
ha; bi4

���������h�;ji

�X
i;j0

Atree
n fGði;j0�1Þ

a;b;i ð�Þ � Gði;j0�1Þ
a;b;iþ1ð�Þg

�hj0; ai
h�; j0i

���ha; �i3
ha; bi4

���������h�;j0i
; (B6)

where we have used jh�;ji to indicate the collinear pole on which the integrand will be localized. From (B3), we see that
Gði;jÞ

a;b;ið�Þ ¼ Gði;j�1Þ
a;b;i ð�Þ when localized at � ! j.12 Treating j and j0 as dummy variables, the two summations simply

cancel with each other and one is left with zero. Of course this is the wrong result and the subtlety lies in the summation
limits. Wewill discuss the limits in detail in the next subsection. For now, wewill show the same cancellation occurs for the
higher-order poles in the first curly brackets.

The contributions from the poles in the first curly brackets in (B2) can be written as

12This again can be seen from the fact that on the pole, Pi;jjj� ¼ Pi;j�1jj�.
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X
i;j

Sði;jÞ
a;b ð�ÞjfIg ¼

X
j;i

Atree
n fGði;jÞ

a;b;ið�Þg
�hj; ai
h�; ji �

hjþ 1; ai
h�; jþ 1i

���ha; �i3
ha; bi4

���������h�;ii

�X
j;i

Atree
n fGði;jÞ

a;b;iþ1ð�Þg
�hj; ai
h�; ji �

hjþ 1; ai
h�; jþ 1i

���ha; �i3
ha; bi4

���������h�;iþ1i

¼ X
j;i

Atree
n fGði;jÞ

a;b;ið�Þg
�hj; ai
h�; ji �

hjþ 1; ai
h�; jþ 1i

���ha; �i3
ha; bi4

���������h�;ii

�X
j;i0

Atree
n fGði0�1;jÞ

a;b;i0 ð�Þg
�hj; ai
h�; ji �

hjþ 1; ai
h�; jþ 1i

���ha; �i3
ha; bi4

���������h�;i0i
: (B7)

Here, the integral will be localized by the poles that are present in Gði;jÞ
a;b;ið�Þ, which besides simple poles, has higher-order

poles at the same kinematic point. Repeated use of the Schouten identity allows one to extra the contribution of the higher-
order poles to the simple pole [27], which we review in Appendix A. Denoting the resulting expression as H ði;jÞ

a;b;ið�Þ,
we have

X
i;j

Sði;jÞ
a;b ð�ÞjfIg ¼

X
j;i

Atree
n

ha; bi4 fH
ði;jÞ
a;b;ið�Þ �H ði;jþ1Þ

a;b;i ð�Þ �H ði�1;jÞ
a;b;i ð�Þ þH ði�1;jþ1Þ

a;b;i ð�Þgjh�;ii: (B8)

The explicit form of H ði;jÞ
a;b;ið�Þ is given in Eq. (B14). The

key fact of H ði;jÞ
a;b;ið�Þ and H ði�1;jÞ

a;b;i ð�Þ is that they become
identical when the integrand is evaluated on the pole
1=h�; ii and integrated on the real contour ~� ¼ ��.
Therefore Eq. (B8) again gives zero.

While the limits of the summation require careful treat-
ment, our analysis shows that indeed for nonadjacent
MHV, the cancellation of CCP again reduces the sum of
bubble coefficients to a few terminal terms which we will
now identify.

1. dLIPS integrals of higher-order poles

Aswe have seen, generic pole terms in nonadjacentMHV
bubble coefficients’ gð�Þ’s generically have higher-order

poles. We evaluate the integrands in a manner following
that in Sec. 2.3 of Ref. [27]. Specifically, the dLIPS inte-
grands are rational functions of � of degree �2. We can
recursively reduce the degree of � in the numerator and
denominator by one unit each, through repeated application
of the following Schouten identity [27]:

ha; �i
h�; �ih�; �i ¼ ha;�i

h�;�i
1

h�; �i þ
ha; �i
h�;�i

1

h�; �i : (B9)

Repeated application reduces integrands with higher-order
poles to sums of integrands with either simple poles, or to
multiple poles, such as 1=ha; �i2, hx; �i=ha; �i3, etc., with
trivial residues as j�i ! jai. The generic forms for the
residues at second- and third-order poles are

1

h�; �i2
Yn
i¼1

hai; �i
hbi; �i

��������h�;�i
¼ Yn

i¼1

hai; �i
hbi; �i

X
1�i�n

hai; bii
hai; �ihbi; �i ; (B10)

h�; �i
h�; �i3

Yn
i¼1

hai; �i
hbi; �i

��������h�;�i
¼ h�;�iYn

i¼1

hai; �i
hbi; �i

� X
1�i�j�n

hai; bii
hai; �ihbi; �i

haj; bji
haj; �ihbj; �i þ

X
1�k�n

hak; bki
hak; �ihbk; �i

hak; �i
h�;�ihak; �i

�
:

(B11)

With this, we can factor out the irrelevant multiple poles in any expression, for example we have the following rewriting:

hb; �i2h�; ai3
h�; ii2h�; jih�jPi;jj��4

��������h�;ii
¼ �

hi; ai3hi; bi2ð 2hajPi;jji�
hijPi;jji�hi;ai þ

2hbjPi;jji�
hijPi;jji�hi;bi þ

ha;ji
hi;aihi;jiÞ

hijPi;jji�4hi; ji
; (B12)
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h�; ai3hb; �i3
h�; jih�; ii3h�jPi;jj��4

��������h�;ii
¼ ha; ii3hb; ii3

hijPi;jji�4hi; ji
�

3hajPi;jji�2
hijPi;jji�2ha; ii2

þ 3hbjPi;jji�2
hijPi;jji�2hb; ii2

þ 2hajPi;jji�ha; bi
hijPi;jji�ha; ii2hb; ii

þ 4hajPi;jjiihbjPi;jji�
hijPi;jji�2ha; iihb; ii

þ ha; ji2
ha; ii2hi; ji2 þ

2hajPi;jji�ha; ji
hijPi;jji�ha; ii2hi; ji

þ ha; biha; ji
ha; ii2hb; iihi; ji

þ 2hbjPi;jji�ha; ji
hijPi;jji�ha; iihb; iihi; ji

�
: (B13)

Combining these results, we can rewrite Gði;jÞ
a;b;ið�Þ h�;ai3hj;ai

h�jPi;jj��2h�;ji to H ði;jÞ
a;b;i as in (B8):

Gði;jÞ
a;b;ið�Þ

h�; ai3hj; ai
h�jPi;jj��2h�; ji

��������h�;ii
¼ hi; ai3hj; ai

hi; ji hi; bi
�
3
hbjPi;jji�2hb; ii
h�jPi;jj��2

þ 3hj; aihbjPi;jji�hijPi;jji� � ðB:12Þ

þ hj; aihijPi;jji�2 � ðB:13Þ
�
: (B14)

The upshot is that (B14) has vanishing residue at the
poles � ¼ a and � ¼ b . Note that if one considers
H ði�1;jÞ

a;b;i , the only difference is substituting Pi;j in H ði;jÞ
a;b;i

with Pi�1;j. It can be easily seen that on the pole 1=h�; ii,
the two are equivalent.

2. Terminal poles, terminal cuts, and their evaluation

In determining the limits of the summation, one has to
avoid configurations where there is a 3-point amplitude one
side of the cut, as these produce massless bubbles that are
set to zero in dimensional regularization. This implies that
in the summation of i, j in Eqs. (B6) and (B8), the sum-
mation limit of one index will depend on the value of the
other.

For Eq. (B6) one sums over the index j first, and the limit
is given as

X
i;j

¼ Xb�2

i¼aþ1

Xa�1

j¼b

þ Xa�1

j¼bþ1

��������i¼b�1
þ Xa�2

j¼b

��������i¼a
; (B15)

where ji¼b�1 indicates the index i is held fixed to be b� 1.
Using j0 ¼ jþ 1, the summation limit for j0 is given as

X
i;j0¼jþ1

¼ Xb�2

i¼aþ1

Xa
j0¼bþ1

þ Xa
j0¼bþ2

��������i¼b�1
þ Xa�1

j0¼bþ1

��������i¼a
:

(B16)

Looking back at Eq. (B6) we see that there are mismatches
in the limits between two sums, and hence the cancellation
is not complete, leaving behind

Xb�2

i¼aþ1

Xði;jÞ
a;b jj¼b �

Xb�2

i¼aþ1

Xði;j0Þ
a;b jj0¼a þ Xði;jÞ

a;b ji¼b�1
j¼bþ1

� Xði;j0Þ
a;b ji¼b�1

j0¼a
þ Xði;jÞ

a;b ji¼a
j¼b

� Xði;j0Þ
a;b j i¼a

j0¼a�1
; (B17)

where Xði;jÞ
a;b ¼�Atree

n fGði;jÞ
a;b;ið�Þ�Gði;jÞ

a;b;iþ1ð�Þg hj;aih�;ji
ha;�i3
ha;bi4 jh�;ji.

The first two terms in Eq. (B17) evaluate to zero. To see
this note that these two sums are evaluated on the pole

1=h�; bi and 1=h�; ai respectively. Looking at the sum-
mand in Eq. (B6) there is a factor h�; ai in the numerator

while Gði;jÞ
a;b;i has at least one h�; bi in the numerator,

as can be seen from Eq. (B3). For the same reason, the
fourth and fifth terms vanish as well. The remaining terms
are given by

X
i;j

Sði;jÞ
a;b ð�ÞjfJg

¼ Atree
n fGðb�1;bþ1Þ

a;b;b�1 ð�Þ � Gðb�1;bþ1Þ
a;b;b ð�Þg

�
�hbþ 1; ai
h�; bþ 1i

���ha; �i3
ha; bi4

���������h�;bþ1i
�Atree

n fGða;a�2Þ
a;b;a ð�Þ

� Gða;a�2Þ
a;b;aþ1ð�Þg

�ha� 1; ai
h�; a� 1i

���ha; �i3
ha; bi4

���������h�;a�1i
:

(B18)

Therefore, we see the complicated summation (B6)
reduces to only two terms: the residue at the pole
h�; a� 1i ¼ 0 in channel (i ¼ a, j ¼ a� 2), and the
residue of the pole h�;bþ1i¼0 in channel (i ¼ b� 1,
j¼bþ1).
We now look at Eq. (B8), where the index iwas summed

first. The summation limit is given by

X
j;i

¼ Xa�2

j¼bþ1

Xb�1

i¼a

þ Xb�1

i¼aþ1

��������j¼a�1
þ Xb�2

i¼a

��������j¼b
: (B19)

Recalling that i0 ¼ iþ 1, the summation limit for i0 is
given by

X
j;i0

¼ Xa�2

j¼bþ1

Xb
i0¼aþ1

þ Xb
i0¼aþ2

��������j¼a�1
þ Xb�1

i0¼aþ1

��������j¼b
: (B20)

Again the mismatch of the summation limits for i and i0
leads to uncanceled terms in Eq. (B8), given by
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Xa�2

j¼bþ1

Yði;jÞ
a;b ji¼a �

Xa�2

j¼bþ1

Yði0;jÞ
a;b ji0¼b þ Yði;jÞ

a;b ji¼aþ1
j¼a�1

� Yði0;jÞ
a;b j i0¼b

j¼a�1

þ Yði;jÞ
a;b ji¼a

j¼b
� Yði0;jÞ

a;b ji0¼b�1
j¼b

; (B21)

where Yði;jÞ
a;b ¼Atree

n fH ði;jÞ
a;b;ið�Þ�H ði;jþ1Þ

a;b;i ð�Þ�H ði�1;jÞ
a;b;i ð�Þ

þH ði�1;jþ1Þ
a;b;i ð�Þg=ha;bi4jh�;ii. The second and fourth terms

in Eq. (B21) evaluate to zero since they have vanishing
residue on the pole 1=h�; bi, as can be seen from the presence
of h�; bi in the numerator of Eqs. (B3) and (B4). The first and
fifth terms also vanish due to the h�; ai3 in the numerator of
Eq. (B7). As a result, the sum in Eq. (B8) reduces to

X
i;j

Sði;jÞ
a;b ð�ÞjfIg

¼ Atree
n

ha; bi4 fðH
ðaþ1;a�1Þ
a;b;aþ1 ð�Þ �H ðaþ1;aÞ

a;b;aþ1ð�ÞÞjh�;aþ1i

� ðH ðb�2;bÞ
a;b;b�1ð�Þ �H ðb�2;bþ1Þ

a;b;b�1 ð�ÞÞjh�;b�1ig: (B22)

Thus the sum localizes to the pole h�; aþ 1i ¼ 0 in channel
(i ¼ aþ 1, j ¼ a� 1) and h�; b� 1i ¼ 0 in channel
(i ¼ i0 � 1 ¼ b� 2, j ¼ b).
Collecting all the pieces we now have

C2ðlþ1 ; l�2 Þ ¼
�1

2�i

Z
��¼~�

dLIPS
Atree
n

ha; bi4
�
�ðGðb�1;bþ1Þ

a;b;b�1 ð�Þ �Gðb�1;bþ1Þ
a;b;b ð�ÞÞ hbþ 1; ai

h�; bþ 1i ha; �i
3jh�;bþ1i

þ ðGða;a�1Þ
a;b;a ð�Þ � Gða;a�1Þ

a;b;aþ1ð�ÞÞ
ha� 1; ai
h�; a� 1i ha; �i

3jh�;a�1iðH ðaþ1;a�1Þ
a;b;aþ1 ð�Þ �H ðaþ1;aÞ

a;b;aþ1ð�ÞÞjh�;aþ1i

� ðH ðb�2;bÞ
a;b;b�1ð�Þ �H ðb�2;bþ1Þ

a;b;b�1 ð�ÞÞjh�;b�1i
�
: (B23)

We now evaluate the integral. As discussed in Appendix A, writing the above integrand as a total derivative will always
introduce a factor of ½�jPj�i. With the choice of j�i ¼ jai, terms that are evaluated on the pole 1=h�a� 1i vanish since
½a� 1jPa;a�1jai ¼ 0. Thus the cancellation of CCP and the judicious choice or reference spinor reduce the sum of the
bubble coefficient for n-point MHV amplitude to simply:

C2ðlþ1 ; l�2 Þ ¼
Atree
n

ha; bi4
1

2�i

Z
��¼~�

dLIPS

�
ðGðb�1;bþ1Þ

a;b;b�1 ð�Þ � Gðb�1;bþ1Þ
a;b;b ð�ÞÞ hbþ 1; ai

h�; bþ 1i ha; �i
3jh�;bþ1i

þ ðH ðb�2;bÞ
a;b;b�1ð�Þ �H ðb�2;bþ1Þ

a;b;b�1 ð�ÞÞjh�;b�1i
�
: (B24)

Expanding the parentheses, there are four different terms to be evaluated. Explicit evaluation shows the first two terms sum
to cancel the last term. Thus we have

C2ðlþ1 ; l�2 Þ ¼
Atree
n

ha; bi4
1

2�i

Z
��¼~�

dLIPSðH ðb�2;bÞ
a;b;b�1ð�ÞÞj�!b�1 ¼ 11

6
Atree
n : (B25)

Adding this with the same calculation for the other helicity configuration, ðl�1 ; lþ2 Þ, one obtains the desired result,
C2 ¼ 11

3 A
tree ¼ ��0A

tree.
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