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A model that gives rise to vacuum bubbles is considered where the domain wall field interacts with

another real scalar field, resulting in the formation of domain ribbons within the host domain wall.

Ribbon-antiribbon annihilations produce elementary bosons whose mass inside the wall is different from

the mass in vacuum. Two cases are considered, where the bosons get trapped either within the bubble wall

or the bosons get trapped within the vacuum enclosed by the bubble. The bosonic (meta)stabilization

effect on the bubble is examined in each case. It is found that when the bosons become trapped within the

bubble wall, the stabilization mechanism lasts for only a limited amount of time, and then the bubble

undergoes unchecked collapse. However, when the bosons become trapped within the bubble’s interior

volume, the bubble can be long-lived, provided that it has a sufficiently thin wall.

DOI: 10.1103/PhysRevD.87.085022 PACS numbers: 11.30.Qc, 11.27.+d, 98.80.Cq

I. INTRODUCTION

The stabilizing effects of fermions on vacuum bubbles
and other nontopological solitons have been studied in a
number of interesting field theoretical scenarios [1–9].
In addition, models have been examined where such ob-
jects may be stabilized by bosons which can get trapped
within the defect, due to a mass contrast between interior
and exterior regions [10–14]. Presently, we consider
models for possible bosonic stabilizing effects, where
elementary bosons are produced by annihilations of defects
(‘‘domain ribbons’’) residing within the host defect
(domain wall). This is similar in nature to a recent study
investigating the possibility of a boson gas (meta)stabiliza-
tion of cosmic string loops [15].

The domain wall is described by a real scalar field �
which interpolates between true vacuum states � ¼ ��,
but the field � also interacts with a second scalar field�, as
described in Ref. [16]. By the Witten mechanism [17],
there is a certain range of model parameters allowing the
scalar � to settle into nonzero vacuum states within the
core of the wall, taking on values where� ¼ ��0, thereby
breaking a discrete Z2 symmetry associated with the field
� within the wall. However, the þ�0 and ��0 vacuum
domains will be uncorrelated beyond some coherence
length �, and aþ�0 domain and an adjacent��0 domain
will be separated by region where� ¼ 0, which locates the
center of a domain ‘‘ribbon’’ or ‘‘antiribbon’’ described by
�R and � �R. So, a ribbon or antiribbon is a topological
domain wall section trapped within the host domain wall
formed by the field �. A single ribbon solution interpolates
between the vacuum states��0, and two adjacent ribbons
are separated by an antiribbon, and vice versa.

The ribbons and antiribbons are dynamical objects
which can interact with each other and themselves, under-
going annihilations and formations of ribbon loops through
fission and fusion processes. A ribbon loop is surrounded
by a ��0 domain and encloses a ��0 domain. A section

of ribbon (R) and a section of antiribbon ( �R) can undergo
annihilation, resulting in the formation of elementary ’
bosons, which are the perturbative particle excitations of
the � field. The ’ bosons have a mass min inside the
domain wall and a mass m outside the wall in a true
vacuum. If there is a high mass contrast between min

and m, then ’ bosons will tend to either become trapped
within the wall (min � m) or be expelled out of the wall
(min � m). A formation of � vacuum bubbles can result,
due to wall-wall interactions or self-intersecting trajecto-
ries. Also, if the Z2 symmetry with degenerate vacuum
states � ¼ �� is biased with different probabilities of
forming different domains becoming unequal [18], or if
the Z2 symmetry is approximate with a negligible differ-
ence in vacuum energies [19], a network of bounded
domain wall surfaces may result, leading to vacuum bub-
bles. The ’ particles which either get trapped within the
bubble wall or the interior volume of the bubble can then
have a (meta)stabilizing effect. Although the issue of long-
term bubble stability is difficult to address with confidence,
the shorter-term bosonic stabilizing effect can be analyzed
for both cases min � m and min � m.
The basic domain ribbon model is described in Sec. II.

Bosonic stabilization is then analyzed in Sec. III for the
case min � m and in Sec. IV for the case min � m.
Equilibrium bubble radii and bubble masses are ob-
tained for each case, and the possibility of long-term
stability is considered. It is concluded that for the case
where ’ bosons become trapped within the bubble wall
(min � m), the bosonic stabilization mechanism is ini-
tially effective, with a slow rate of leakage of ’ gas due
to a small number of bosons with energies E � m escaping
the wall. However, the gas temperature subsequently rises,
and the stability mechanism eventually becomes ineffec-
tive, with much of the ’ boson gas escaping the bubble
wall. On the other hand, for the case where the ’ gas is
trapped within the bubble’s interior volume (min � m),
there is a possibility for long-term stability, provided that
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the bubble wall is thin enough. A brief summary is pre-
sented in Sec. V.

II. DOMAIN RIBBON MODEL

The Lagrangian for the system of two interacting scalar
fields � and � is [16]

L ¼ 1

2
@��@��þ 1

2
@��@��� Vð�;�Þ; (1)

where the potential is

Vð�;�Þ ¼ 1

4
�ð�2 � �2Þ2 þ 1

2
fð�2 � �2Þ�2

þ 1

2
m2�2 þ 1

4
g�4: (2)

The stable vacuum states of this system are located by
� ¼ ��, � ¼ 0 The parameters �, f, �, m, and g are
taken to be real-valued and positive. The field equations
obtained from L are

r�@
��þ ½�ð�2 � �2Þ þ f�2�� ¼ 0; (3)

r�@
��þ ½fð�2 � �2Þ þm2 þ g�2�� ¼ 0: (4)

We notice that for � ¼ 0 the field equation for � admits
a domain wall solution describing a planar domain wall
centered on the y� z plane,

�ðxÞ ¼ � tanh

�
x

w

�
; w ¼ 1

�

ffiffiffiffi
2

�

s
; (5)

where w is the thickness of the wall. Now, if the field
� does not vanish identically, the Witten mechanism
[17] allows a � condensate to form within the wall taking
values � ¼ ��0, where

�0 ¼ ½ðf�2 �m2Þ=g�12 > 0: (6)

For mathematical simplicity and approximation
purposes we take the wall to be a slab of thickness w, with

j�j �
� 0; jxj 	 1

2w

�; jxj> 1
2w

�
;

� �
��ðy; z; tÞ; jxj 	 1

2w

0; jxj> 1
2w

�
:

(7)

Then (4), with the help of (7), allows us to express the
equation of motion for � inside the domain wall by,
approximately,

@20�� ð@2y�þ @2z�Þ þ g�ð�2 ��2
0Þ ¼ 0: (8)

Equation (8) admits the static solution

�RðzÞ ¼ �0 tanh

�
z� z0
wR

�
; wR ¼ 1

�0

ffiffiffi
2

g

s
; (9)

describing a domain ribbon of width wR embedded within
the wall, lying along the y direction with �R ! ��0 as
z ! �1. The ribbon (R) thus separates��0 domains, and
the antiribbon ( �R) solution is given by � �RðzÞ ¼ ��RðzÞ.
We picture the ribbon as a section of domain wall, lying on
the y axis, with thickness wR in the z direction and thick-
ness w in the x direction.
In the domain wall background described by (7), we see

from (2) and (6) that � ¼ 0 is not the lowest energy state
inside the � wall, but rather � ¼ ��0 is. Therefore, a �
field forms a condensate within the wall, tending to settle
into either � ¼ þ�0 or � ¼ ��0 domains, but these
domains will be uncorrelated beyond some coherence
length � * wR 
 1=ð ffiffiffi

g
p

�0Þ. Two different adjacent do-

mains must be separated by a ribbon or antiribbon located
where � ¼ 0. More general solutions of (8) would include
infinite ribbons, which need not be straight or static, and
closed (anti)ribbon loops [16]. These ribbon configurations
therefore resemble cosmic strings. A closed loop is sur-
rounded by a ��0 domain, and encloses a ��0 domain.
Smaller loops can fuse together to form larger loops, and
larger loops can fission by self-intersection to form smaller
loops. These processes involve R- �R annihilations wherever
the loops intersect, resulting in the release of ’ boson
radiation, where the ’ boson is the elementary particle
excitation of the � field inside the � wall, i.e., � ¼ �0 þ
’, for example. For our model, we take the ’ particles to
be much less massive than loops, which have masses
Mloop ¼ �RL, where �R is the linear energy density of a

ribbon (tension), and L is the loop length. Therefore, we
assume R- �R annihilations resulting in ’ production to be
much more likely than loop creation due to ’ scattering.
The ’ particle mass inside the � wall is denoted by min,

while the� particle mass outside the wall is denoted bym.
Following are the two possibilities we wish to consider:
(1) min � m, in which case ’ particles get trapped

within the � wall, forming a boson gas at tempera-
ture T ¼ 1=� with a thermal distribution of particle
energies. In this case only particles with energies
E � m can escape from the wall to the vacuum
outside. If T � m, i.e., �m � 1, then the number
of particles NðEÞ ¼ ðe�E � 1Þ�1 with enough en-
ergy to escape is small, and the’ leakage rate is low,
and the gas pressure tends to counteract the � wall
tension, allowing a spherical bubble to find equilib-
rium at a finite radius R. Bubbles of this scenario are
dubbed ‘‘type 1’’ bubbles.

(2) min � m, and in this case ’ particles are expelled
out of the � wall and into surrounding vacuum.
However, � walls are themselves dynamic and can
form closed bubbles through mechanisms mentioned
earlier. If � bubbles form before R- �R annihilations
complete, a’ gas will become trapped in the interior
of the bubble, and exert an outward pressure tending
to counteract the effects of bubble tension, allowing
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an equilibrium state for the bubble. Bubbles of this
scenario are dubbed ‘‘type 2’’ bubbles.

III. TYPE 1 BUBBLE STABILITY

A. Bosonic stabilization

For the type 1 bubble min � m and a gas of ’ bosons is
trapped inside the � bubble wall, which we assume to take
a spherical shape. Dynamical bubbles can emit radiation in

the form of � particles of massm� ¼ ffiffiffiffiffiffi
2�

p
�. Now consider

a bubble which is shrinking under the influence of its wall
tension. As it shrinks, the amount of bubble wall volume
available to the ’ gas decreases, and we expect the
temperature of the gas to rise. We assume that the ’ gas
is relativistic, with effectively massless particles, so that a
nonnegligible energy density �G, number density n, and
pressure p can exist to play a role in a stabilization of the
bubble. (We ignore possible effects of � particles emitted
into the bubble’s interior vacuum, as they can pass right
through the � wall—the reflection coefficient is zero
[20]—and pass into the exterior vacuum. Similarly, we
ignore the possibility of ’ bosons inside of a closed ribbon
loop exerting an outward pressure on the loop, since
reflectionless scattering of ’ particles from a � wall is
expected). The radial force acting on the bubble wall is
FR ¼ �@E=@R, where E is the configuration energy of the
nontopological soliton composed of vacuum bubble and
boson gas. If FR < 0 the bubble shrinks, and for FR > 0 the
bubble tends to expand at the expense of ’ particle energy,
and at equilibrium the configuration energy E is minimized
with FR ¼ 0.

The configuration energy E of the bubble is the sum of
two terms, the energy EW of the bubble wall due to wall
surface energy density� (tension), and the energy EG of the
relativistic’ boson gas trapped within the wall, which has a
volume of wð4	R2Þ, where R is the bubble radius. Then

E ¼ EW þ EG ¼ �ð4	R2Þ þ �Gð4	R2wÞ

¼ 4	R2

�
�þ 	2

30
T4w

�
; (10)

where the ’ gas energy density is �G ¼ 	2

30 T
4. The

equilibrium radius R is determined by minimizing E with
respect to R. We must be careful, however, in this minimi-
zation. We want the minimal value of E for a given ’
particle number N and a given entropy S. Therefore we
consider a virtual variation of E holding N and S fixed.
(One condition implies the other, since both are propor-
tional to T3ð4	R2wÞ). The number density of ’ particles at

temperature T is [21] n ¼ 
ð3Þ
	2 T

3 and the entropy density is

[21] s ¼ 2	2

45 T3. We then have

N ¼ nð4	R2wÞ ¼ 4w
ð3Þ
	

T3R2;

S ¼ sð4	R2wÞ ¼ 8	3w

45
T3R2;

(11)

so that holdingN and S constant during the virtual variation
of E implies the constraint

T3R2 ¼ N	

4w
ð3Þ ¼
45S

8	3w
� C3; T ¼ C

R2=3
;

C ¼
�

N	

4w
ð3Þ
�
1=3 ¼

�
45S

8	3w

�
1=3

:

(12)

Using the relation T ¼ CR�2=3 in (10) then gives

E
4	

¼ �R2 þ 	2wC4

30
R�2=3: (13)

Minimizing this expression by requiring @E=@R ¼ 0 results
in an equilibrium radius given by

R8=3 ¼ 	2wC4

90�
; R ¼

�
	2wC4

90�

�
3=8

: (14)

Equations (13) and (14) then give the bubble mass at
equilibrium,

E
4	

¼ EW

4	
þ EG

4	
; EW ¼ �R2; EG ¼ 	2wC4

30
R�2=3:

(15)

Upon comparing the two energy terms we find, with the
help of (14),

EG

EW

¼ 3; E ¼ EW þ EG ¼ 4EW ¼ 4

3
EG ¼ 16	�R2;

(16)

so that a type 1 bubble of radius R at equilibrium has a
mass E ¼ 16	�R2. From (16) we also have EG ¼ 3EW ,
which leads to [see, e.g., (10)] an equilibrium temperature
given by

	2

30
T4w ¼ 3� ) T ¼

�
90�

	2w

�
1=4

: (17)

Therefore, all type 1 bubbles equilibrate at this tempera-
ture, regardless of size.

B. Bubble decay

Even with a bosonic stabilization mechanism, we don’t
expect the bubble to remain in equilibrium forever. This is
because high-energy ’ particles with energies E � m are
energetically allowed to escape the bubble wall and even-
tually end up in the exterior vacuum. Although T � m for
a bubble near equilibrium, we expect a rate of leakage
which is slow at first, but then increases due to an increase
in temperature and average ’ particle energy. A dynamical
bubble can also shrink through emission of � particles. Let
us focus on a simple scenario of type 1 bubble decay due to
’ particle loss. We make the simple assumption that each
’ particle that escapes the bubble becomes a � particle of
mass m outside the bubble. Suppose the bubble is initially
in a state near equilibrium with mass E0 and ’ particle
number N0 at some initial time t0. After a time t� t0 the
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bubble has a mass E and ’ particle number N, and has
emitted N� ¼ N0 � N particles into the exterior vacuum.

Then we can write E0 ¼ E þ N�mþ EX, where EX in-

cludes � boson kinetic energy and � radiation energy.
The energy EX will be a positive, monotonically increasing
function of time t. Now let us rewrite this in the form,

Nm� E ¼ K þ EX � QðtÞ; (18)

where K ¼ N0m� E0 and QðtÞ is a positive, mono-
tonically increasing function. We see that K > 0 since
the bubble is initially close to equilibrium and N0m> E0.
To be more explicit, let us write

N

4	R2
¼ 
ð3ÞwT3

	2
� DT3;

EG

4	R2
¼ 	2w

30
T4 � BT4;

(19)

where

D ¼ 
ð3Þw
	2

; B ¼ 	2w

30
;

B

D
¼ 2:7;

D

B
¼ :37:

(20)

As long as the bubble remains sufficiently close to
equilibrium, with T � m, we can write (18) in the form

mDT3 � BT4 ¼ �þ Q

4	R2
: (21)

The first term on the left hand side dominates the second
(and K > 0 for this same reason [22]), so that we have,
approximately,

T �
�

1

mD

�
�þ Q

4	R2

��
1=3

(22)

for times where the bubble does not stray too far from
equilibrium. As the bubble shrinks, the ’ temperature
increases, and the leakage rate increases.

Eventually, the bubble will have evolved too far away
from an equilibrium state for the approximations above to
remain valid. This is seen by noticing that at high enough
temperatures the left hand side of (21) begins decreasing,
while the right-hand side is increasing. This happens for
T * Tm, where

Tm ¼ 3D

4B
m � 1

4
m (23)

locates the local maximum of the left-hand side of (21).
Upon approaching this temperature, we must assume that
the bubble rapidly loses its ’ gas, and undergoes an
unchecked collapse. In fact, at the temperature Tm we
have �E � �m for particles energetic enough to escape
the bubble wall, with �m ¼ m=Tm � 4. The energy den-
sity of the portion of the gas with particles with energy
E � m is then given, approximately, by [23]

uðTmÞ ¼ T4
m

2	2

Z 1

�m¼4

�3

e� � 1
d� ¼ T4

m

2	2
Ið4Þ; (24)

where � ¼ �E and Ið4Þ ¼ 2:6. The energy density of the

entire boson gas is �GðTmÞ ¼ T4
m

2	2 Ið0Þ (taking the ’ parti-

cles to be effectively massless, with min 
 0), so that a
comparison gives

uðTmÞ
�GðTmÞ ¼

Ið4Þ
Ið0Þ ¼

2:6

	4=15
¼ :4: (25)

So at T 
 Tm roughly 40% of the bosonic gas has been
lost, and the stabilization mechanism rapidly comes to an
end. On the other hand, for T � m, i.e., �m � 1, we have

Ið�mÞ ¼
Z 1

�m

�3

e� � 1
d�

�
Z 1

�m
�3e��d� � ð�mÞ3e��m � 1; (26)

so that uðTÞ=�GðTÞ � 1 when the bubble is very close to
equilibrium. Therefore, the ’ leakage rate is very low
initially, but rapidly increases, so that the bosonic stabili-
zation mechanism operates effectively for only a limited
time span. After that, the type 1 bubble collapses.

IV. TYPE 2 BUBBLE STABILITY

A. Bosonic stabilization

For the type 2 bubble min � m and ’ particles that are
produced within the bubble wall are accelerated out of the
wall into the vacuum as much lighter � bosons. However,
if the dynamical � walls form bubbles while R- �R annihi-
lations are in progress, some of the� particles will become
trapped within the volume of the bubble’s interior, and will
produce an outward pressure that has a stabilizing effect on
the bubble. We assume the gas of light � particles to be
relativistic, with non-negligible energy density �G, number
density n, and pressure p. Again, the radial force acting on
the bubble wall is FR ¼ �@E=@R, where E is the configu-
ration energy of the nontopological soliton composed of
the � bubble wall and the enclosed � gas. An equilibrium
state exists when E is minimized for some radius R.
There are again two contributions to the energy E, one

from the bubble wall and one from the enclosed � gas:

E ¼ EW þ EG ¼ �ð4	R2Þ þ �G

�
4

3
	R3

�

¼ 4	

�
�R2 þ 	2

90
T4R3

�
; (27)

where again �G ¼ 	2

30 T
4. Again, we perform a virtual

variation of E with respect to R while holding the �
particle number N and � entropy S fixed. Again using

n ¼ 
ð3Þ
	2 T

3 for the� particle number density and s¼2	2

45 T
3

for the � entropy, we have
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N ¼ n

�
4

3
	R3

�
¼ 4
ð3Þ

3	
T3R3;

S ¼ s

�
4

3
	R3

�
¼ 8	3

135
T3R3:

(28)

Requiring N and S to remain fixed during the virtual
variation results in the constraint,

T3R3 ¼ 3	N

4
ð3Þ ¼
135S

8	3
� C3

0; T ¼ C0

R
;

C0 ¼
�
3	N

4
ð3Þ
�
1=3 ¼

�
135S

8	3

�
1=3

:

(29)

Using the constraint T ¼ C0=R in (27) results in

E
4	

¼ �R2 þ 	2C4
0

90R
: (30)

The equilibrium condition @E=@R ¼ 0 yields an equilib-
rium bubble radius,

R ¼
�
	2C4

0

180�

�
1=3 �

�
C1

�

�
1=3

; C1 ¼ 	2C4
0

180
; (31)

and we can then write

EW

4	
¼C2=3

1 �1=3;
EG

4	
¼2C2=3

1 �1=3¼2
EW

4	
;

EG

EW

¼2:

(32)

Therefore, the mass of the type 2 bubble, when in equilib-
rium, is given by

E ¼ EW þ EG ¼ 3EW ¼ 3

2
EG ¼ 12	�R2: (33)

From EG ¼ 2EW it follows that at equilibrium the tempera-
ture of the � gas is given by

�
	2

30
T4

�
4

3
	R3 ¼ �ð8	R2Þ ) T ¼

�
180�

	2R

�
1=4

; (34)

indicating that at equilibrium, larger bubbles have a lower
temperature than smaller ones.

B. Bubble decay

We would like to know under what conditions a type 2
bubble can remain in a long-lived near-equilibrium state.
A long-lived bubble must not leak � particles to the out-
side vacuum at a significant rate, which requires that the
reflection coefficient R of the bubble wall be near unity.
For this condition to be met, the energies of most of the �
particles must satisfy [20] E � Ec � w�1, where we have
introduced an energy Ec ¼ w�1, with w being the thick-
ness of the bubble wall. For a typical � particle energy
E
T, (and therefore �E
 1) we then require �E��Ec,
i.e., �Ec � 1, to have R � 1. Furthermore, under this
condition the number of particles with such low energy
will be NðEÞ ¼ ðe�E � 1Þ�1 � NðEcÞ, so that most �

particles will be reflected from the wall and remain inside
the bubble. Another way to see this is to look at the fraction
of the total energy density of the gas for particles having
energies E � Ec. The energy density associated with this
set of particle energies is given by [23]

uðT;�EcÞ ¼ T4

2	2

Z 1

�Ec

�3d�

e� � 1
¼ T4

2	2
Ið�EcÞ; (35)

where � ¼ �E. Now, for �Ec � 1 we have

Ið�EcÞ �
Z 1

�Ec

�3e��d� � ð�EcÞ3e��Ec � 1;

ð�Ec � 1Þ: (36)

The total energy density of the � gas is �G ¼ uðT; 0Þ ¼
T4

2	2 Ið0Þ, where [23] Ið0Þ ¼ 	4=15. We therefore have

uðT;�EcÞ
�G

¼ Ið�EcÞ
Ið0Þ �

�
15

	4

�
ð�EcÞ3e��Ec � 1;

ðfor �Ec � 1Þ: (37)

Therefore, for the bosonic stabilization mechanism to be
long-lived, with a very low � leakage rate, we require
�Ec � 1, i.e.,

T � w�1: (38)

With a bubble remaining near equilibrium, this condition,
along with (34), implies that the bubble radius R satisfies

R ¼ 180�

	2T4
� �w4: (39)

Therefore, larger equilibrium bubbles, with thin walls, will
decay at a slower rate, and be longer lived than smaller
ones.

V. SUMMARY

Amodel of two interacting real scalar fields � and� has
been considered where the spontaneous breaking of a Z2

symmetry associated with the field � gives rise to domain
walls, which are dynamical, and can interact to form closed
bubbles. Within the core of a �wall the� field will tend to
settle into ground states � ¼ ��0, breaking a Z2 symme-
try associated with �. However, the þ�0 and ��0 do-
mains will be uncorrelated beyond some coherence length
�, and adjacent domains wil be separated by a domain
‘‘ribbon’’ (R) or ‘‘antiribbon’’ ( �R). These ribbon structures,
confined to the core of the � wall, can behave as cosmic
strings would, and exist either as long wiggly objects or in
the form of closed loops.
There will be R- �R annihilations taking place which

result in the production of ’ bosons, which are the ele-
mentary quanta of the ��0 vacuua. If these ’ bosons are
produced within a bubble wall, they can get trapped within
the wall, if min � m, where min is the mass of the ’
particles within the wall, where � ¼ ��0 þ ’, and m is
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the � particle mass in true vacuum outside the wall, where
� ¼ 0 locates the vacuum. These trapped ’ bosons form a
boson gas within the wall with pressure p, which tends to
counteract the effects of the bubble wall tension �. On the
other hand, if min � m, the ’ particles will be expelled
from the wall, appearing as� particles in vacuum. Some of
these � particles will get trapped within the bubble’s
enclosed volume, and unless a substantial fraction of these
� particles have a high enough energy to be transmitted
through the wall, they will form a boson gas which exerts
an outward pressure p, again, having a tendency to coun-
teract the effects of the wall tension �. Bubbles of the
former case, where min � m, have been dubbed ‘‘type 1’’
bubbles, and bubbles of the latter case, wheremin � m are
dubbed ‘‘type 2’’ bubbles. Conditions for a bosonic stabi-
lization of each type of bubble due to a relativistic gas of
bosonic particles have been determined.

It is found that type 1 bubbles can be metastable, finding
an equilibrium radius where the effects of the boson gas
pressure balance those of the wall tension, but this equi-
librium exists for only a limited amount of time. This is due
to the fact that ’ particles with high enough energy, E � m,
can escape from the wall, and eventually wind up in the
exterior vacuum. The rate of leakage of boson particles is
small initially, but as the bubble shrinks, the gas temperature

rises, and the rate of ’ particle loss rapidly increases,
leading to an unchecked collapse of the type 1 bubbles.
Type 2 bubbles enclose a gas of � bosons in the interior

which exert an outward pressure on the bubble wall. Again,

the bubble can stabilize with some radius R when the gas

has a temperature T. While all type 1 bubbles equilibrate at

the same temperature, regardless of size, a type 2 bubble

equilibrates at a temperature T / R�1=4, so that a larger

bubble at equilibrium has a correspondingly lower tem-

perature. Still, high-energy � particles can escape the

bubble’s interior by passing through the bubble wall, but

the reflection coeffficient R is energy dependent, with R
being large and the transmission coefficientT being small

for low energies. Specifically, R � 1 for particle energies

E � w�1, with w being the thickness of the bubble wall.

For the bosonic stabilization mechanism to be long-lived,

there should be only a negligible fraction of � particles

with high enough energy to escape, i.e., a very low leakage

rate. The condition for this to occur is found to be given by

T � w�1, so that at equilibrium, the temperature is small

in comparison to an energy Ec � w�1. For a bubble near

equilibrium, this implies R � �w4, so that larger equilib-

rium bubbles, or bubbles with very thin walls, may survive

for longer periods of time before an eventual decay.
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