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We consider radially twisted nanotubes in the low-energy approximation, where the dynamics is

governed by a one-dimensional Dirac equation. The mechanical deformation of the nanotubes is reflected

by the presence of an effective vector potential. We discuss twisted carbon and boron-nitride nanotubes,

where deformations give rise to periodic and nonperiodic finite-gap Hamiltonians. The intimate relation of

these systems with the integrable Ablowitz-Kaup-Newell-Segur hierarchy is exploited in the study of their

spectral properties as well as in the computation of the (local) density of states. We show that a nonlinear

hidden supersymmetry generated by local supercharges arises naturally in the finite-gap configurations of

twisted nanotubes with time-reversal symmetry. The properties of the van Hove singularities are encoded

in its structure.
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I. INTRODUCTION

Since their discovery in 1991 [1], carbon nanotubes have
attracted massive attention from both experimental and
theoretical physicists. Their remarkable mechanical and
electronic properties, extreme mechanical strength [2],
and elasticity [3] as well as conductivity [4] make their
use in future electronic devices very promising [5]. Carbon
nanotubes are also relevant as a low-dimensional test field
of fundamental physical theories. For instance, the Klein
tunneling, a well known phenomenon in relativistic quan-
tum theory [6], has not been observed for elementary
particles so far. However, it was predicted and observed
in carbon nanotubes, where it stays behind the absence of
backscattering on impurities [7].

The single-wall carbon nanotubes are small cylinders
with atom-thick shells that can be created by rolling up
graphene nanoribbons [8]. Despite their structural simplic-
ity (as quasi one-dimensional objects), the nanotubes
exhibit a remarkable variety of electronic properties.
They can be either metallic or semiconducting, depending
on the orientation of the hexagonal lattice in the nanotube.
The gap between the valence and conduction band can be
regulated by either external fields [9] or by mechanical
deformations [11]. This paves the way to strain engineering
[12], where graphene-based devices would be fine-tuned
by deformations.

In the present paper, we will consider a class of exactly
solvable models of single-wall carbon nanotubes subject to
radial twist (axial torsion). The systems will be studied in
the low-energy regime, where the dynamics of charge
carriers is well approximated by a (1þ 1)-dimensional
Dirac equation [13]. In particular, the twist configurations
under investigation will be described by a finite-gap
Hamiltonian.

Besides the analysis of the spectral properties, the com-
putation of the local density of states (LDOS) of the

systems will be addressed. This quantity is measurable
by means of scanning tunneling microscopy experiments
[14] and is very important for the specification of the
electronic properties of nanostructures. When integrated
spatially, it provides the density of states (DOS) that
reflects the probability of inserting an electron at given
energy into the system.
In general, it is a rather complicated task to analytically

compute the local density of states. However, as it was
suggested in Ref. [15] and demonstrated later in Ref. [16],
the computation can be considerably simplified for a broad
class of Dirac and Bogoliubov-de Gennes Hamiltonians
that are characterized by a finite number of gaps in the
spectrum. This approach is based on the intrinsic properties
of the finite-gap systems that arise from the stationary
AKNS (Ablowitz-Kaup-Newell-Segur) hierarchies of inte-
grable systems [17].
In the next section, we will set up the theoretical frame-

work in which the twisted nanotubes will be analyzed and
explain how the Dirac Hamiltonian emerges in the descrip-
tion of twisted carbon (and boron-nitride) nanotubes. In
Sec. III, the relevant points of the construction of the
AKNS hierarchies are summarized, and the closed formula
for the LDOS is discussed. Section IV is devoted to the
presentation of explicit examples of carbon and boron-
nitride nanotubes, where the LDOS and DOS will be
computed explicitly. We will show in Sec. V that the
singular points of DOS, the so-called van Hove singular-
ities, are closely related to the nonlinear supersymmetry
that arises naturally for the nanotubes with finite-gap twists
and conserved time-reversal symmetry. The last section is
left for the discussion and outlook.

II. THE MODEL

Carbon atoms have four valence electrons; three of them
are tightly bound in the interatomic bonds, while the fourth
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one is free and can contribute to the electronic properties of
the crystal. The properties of the collective excitations of
these electrons in graphene are well described by the tight-
binding Hamiltonian [18]. The interactions between the
nearest neighbors are only assumed, being specified by a
constant hopping parameter. The spin degree of freedom of
electrons can be neglected; it is irrelevant in the considered
interactions.

The analysis of the band structure displays the specific
feature of graphene: the Fermi surface is formed by six
discrete points, where valence and conduction bands meet.
They are located at the corners of the hexagonal first
Brillouin zone and are called Dirac points. Only two of
them are inequivalent1 and correspond to different elec-
tronic states. Let us denote them as K and K0 � �K. In
the close vicinity of the Dirac points, the energy surface
acquires conelike shape. It suggests that the dispersion
relation is linear in this region. Indeed, taking k ¼
�Kþ �k with �k� 0 and expanding the tight-binding
Hamiltonian up to the terms linear in �k, we get the
stationary equation for the two-dimensional massless
Dirac particle [13]. The Hamiltonian acquires the same
form in both valleys of K and K0. In the coordinate
representation, we have2

hð�KÞc�K ¼ ð�i�2@x þ i�1@yÞc�K ¼ �c�K: (1)

The spinorial degree of freedom in (1), the pseudospin,
arises due to the two carbon atoms in the elementary cell;
the hexagonal lattice can be thought of as assembled from
two triangular lattices. The spin-up or -down components
of the wave functions are nonvanishing on only one of
the two triangular sublattices. The operator hðKÞ acts on
the spinors ðcKA; cKBÞt, while hðK0Þ on the spinors
ðcK0B; cK0AÞt. Here, the first index denotes the valley,
the second distinguishes between the sublattices A and B
and t denotes transposition.

The formula (1) was introduced already in 1984 by
Semenoff [13] and makes the basis for considering the
condensed matter system as a convenient test field for a
low-dimensional quantum field theory. Indeed, it makes it
possible to observe phenomena in this condensed matter
system that are native in high-energy quantum physics, see
e.g., Refs. [19,20].

A single-wall carbon nanotube is rolled up from a
straight graphene strip. The actual orientation of the
hexagonal lattice in the strip is uniquely determined by
the chiral (circumference) vector Ch, which is a linear
combination of the translation vectors of the lattice [10].
Its length corresponds to the diameter of the nanotube.
We can fix the coordinates such that y goes in the

circumference direction. Then the chiral vector gets the
simple form, Ch ¼ ð0; ChÞ.
The effect of rolling up the strip is reflected by

the periodic boundary condition imposed on the wave
functions, cKðx; yþ ChÞ ¼ cKðx; yÞ. It leads to the quan-
tization of the momentum in the circumference direction,
which acquires discrete values ky. In the low-energy

approximation, only the value of ky that minimizes the

energy is relevant. The system is then governed by a truly
one-dimensional Hamiltonian �i�2@x þ �1ky. The actual

value of this fixed ky depends on the character of the

nanotube. Instead of going into more details that can be
found, for instance, in Ref. [10], let us notice that ky ¼ 0

corresponds to metallic nanotubes as there is no gap in the
spectrum. When ky � 0, there is a small gap in the spec-

trum and the nanotube is semiconducting. For the purposes
of our current analysis, we can suppose that the nanotubes
are metallic (i.e., the angular momentum is vanishing,
ky ¼ 0) and are infinitely long. The latter approximation

is rather reasonable due to the recent experiments where
ultralong single-wall nanotubes were created [21].
Up to now, we considered systems where neither exter-

nal fields nor any strains were present. By deforming the
crystal mechanically, the interatomic distances in the
lattice are modified. Thus, the hopping parameter ceases
to be constant and becomes position dependent. This leads
to the appearance of gauge fields in the tight-binding
Hamiltonian. It can be approximated in the low-energy
limit by Dirac operator with nonvanishing vector potential
[11,22,23].
We shall consider radial twist of the nanotubes. Let us

mention that both single-wall and multi-wall carbon
nanotubes with radial twist were used in construction of
nanoelectromechanical devices, e.g., single-molecule tor-
sional pendulum [24], abacus-type resonators [25] or
even rotors [26]. In these systems, the nanotube served
as the torsional string that was twisted by deflection of
small paddles attached to it; see also Ref. [27] for a brief
review.
The radial twist shifts the atoms in the lattice perpendic-

ularly to the axis, preserving the tubular shape of the
nanotube. The displacement is reflected by a deformation
vector, which measures the difference between actual and
equilibrium position of atoms. It can be written in our
specific case as d ¼ ð0; dyðxÞÞt. We consider the situation

where the displacement is smooth and small on the scale of
the interatomic distance. Then the interaction does not mix
the valleys of K and K0, and the system can be studied
in the vicinity of one Dirac point only. The stationary
equation for low-energy Dirac fermions in the K-valley
acquires the following simple form [11,28],

hðKÞ� ¼ ð�i�2@x þ�ðxÞ�1Þ� ¼ ��; (2)

where the vector potential �ðxÞ reflects the twist. It is
related to the displacement vector by d ¼ �ð0;R�ðxÞdxÞ,

1The remaining four Dirac points can be reached by transla-
tional vectors of the reciprocal lattice and, hence, do not repre-
sent distinct electronic states.

2We set ℏ ¼ e ¼ 1. � ¼ E
vF

where E is energy and vF the
Fermi velocity of the quasiparticle.
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where � is a constant dependent on the crystal character-
istics.3 In this framework, the constant vector potential
�ðxÞ ¼ � > 0 would reflect a linear displacement
d ¼ �ð0; �xÞ.

Finally, let us consider the following generalization of
(2), where a mass term is included,

hðKÞ�¼ð�i�2@xþ�ðxÞ�1þM�3Þ�¼��: (3)

The analogue of (1) with the mass termM was proposed by
Semenoff for description of the quasiparticles in the boron-
nitride crystal in the low-energy approximation [13]. The
boron-nitride crystal has the same hexagonal structure as
graphene. However, the atoms in the elementary cell of the
crystal cease to be equivalent. It gives rise to the potential
term with �3 that distinguishes between the two triangular
sublattices A and B.

We will consider (3) as the Hamiltonian of radially
twisted carbon (M ¼ 0) or boron-nitride (M � 0), depend-
ing on the value ofM, nanotubes. Boron-nitride nanotubes
were studied theoretically and observed experimentally;
see e.g., Refs. [29,30]. Contrary to the carbon nanotubes,
they are always semiconducting.

We shall consider the scenario where the term�ðxÞ�1 þ
M�3 in (3) belongs to the broad class of the finite-gap
potentials. In the next section, we will show how the
peculiar properties of finite-gap systems can be utilized
for computation of the local density of states.

III. FINITE-GAP TWISTS AND THE LDOS
VIA AKNS HIERARCHY

We review here some properties of the integrable ANKS
hierarchies associated with the Dirac Hamiltonian (3). To
explain more easily the main features, we use the following
unitarily transformed Hamiltonian,

~h ¼ exp

�
�i

�1�

4

�
hðKÞ exp

�
i
�1�

4

�

¼ �i@x �ðxÞ
�ðxÞ� i@x

 !
; (4)

where� ¼ �ðxÞ þ iM. This form with diagonal derivative
term, the Bogoliubov-de Gennes type Hamiltonian, is used
frequently in the analysis of Gross-Neveu and Nambu-
Jona-Lasinio models [14,15], and will make the presenta-
tion more coherent with the specialized literature [17].

The vector potential �ðxÞ ¼ � in (4) is called finite gap
(or algebro-geometric in the mathematical literature) when
it solves one of the equations from the stationary AKNS
hierarchy of the nonlinear differential equations, namely
AKNSN . One of the most intriguing properties of the
Hamiltonian (4) with a finite-gap potential is manifested
in its spectrum; it consists of a finite number of bands

[17,31]. The actual number of bands (or gaps) is fixed by
theAKNSN equation solved by�. The values of band-edge
energies of a finite-gap system can be obtained in purely
algebraic manner; see Ref. [17]. These features are inti-
mately related with the existence of an integral of motion
of the Hamiltonian (4). Nonperiodic finite-gap systems can
be obtained as the infinite-period limit of the periodic ones.
In this context, the nonperiodic systems are known as kink
or kink-antikink models in analogy with the soliton solu-
tions in the Korteweg-de Vries hierarchy.
Another relevant feature of this class of models is that

they can approximate very well any condensed matter
systems described, in the low-energy approximation, by
the Hamiltonian (2) with a generic periodic potential. The
Hamiltonian with a generic periodic potential has an infi-
nite number of spectral gaps, the width of which decreases
rapidly with the increasing absolute value of energy.
Hence, the spectrum of such system can be fitted well by
a finite- gap one.
The stationary AKNS hierarchy of nonlinear differential

equations can be constructed in terms of a Lax pair, which

consists of the Hamiltonian ~h and a matrix differential

operator ~SNþ1, defined as

~SNþ1¼ i
XNþ1

l¼0

gNþ1�l fN�l

f�N�l gNþ1�l

 !
�3h

l; N2N: (5)

The functions fnðxÞ and gnðxÞ are defined, recursively, in
the following manner,

fn ¼ � i

2
f0n�1 þ �gn; (6)

g0n ¼ ið��fn�1 ��f�n�1Þ; (7)

g0 ¼ 1; f�1 ¼ 0: (8)

The functions fn and gn depend on �ðxÞ and its derivatives
and also contain integration constants that appear due to
the integration of (7); see Ref. [16] for details.
The operator (5) satisfies the following commutation

relation for any positive integer N,

½~SNþ1; ~h� ¼ 2i
0 fNþ1

�f�Nþ1 0

 !
: (9)

The stationary AKNS hierarchy of nonlinear differential
equations is then defined in terms of the vanishing
commutator (9),

AKNSN ¼ fNþ1 ¼ 0: (10)

The Hamiltonian ~h and the operator ~SNþ1 are called the
Lax pair of the stationary AKNS hierarchy. When a func-
tion � satisfies the (N þ 1)th order differential equation
AKNSN , all the next equations of the hierarchy with

3� ¼ ð� t
a

@ ln t
@ lnaÞ�1 where t is the hopping parameter and a is

the lattice constant. See Ref. [23] for more details.
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greater values than N (and with the integration constants
fixed appropriately4) are immediately solved.

The operators ~h and ~SNþ1 satisfy the remarkable alge-
braic relation,

~S2Nþ1 ¼
Y2Nþ1

n¼0

ð~h� �nÞ; (11)

where �n are band-edge energies. The operator valued
function on the righthand side is known as the spectral

polynomial. The integral ~SNþ1 annihilates all the singlet

eigenstates ~�n of ~h, corresponding to the band-edge en-

ergies, ð~h� �nÞ ~�n ¼ 0,

~SNþ1
~�n ¼ 0; n ¼ 0; 1; . . . ; 2N þ 1: (12)

The local density of states �ðx; �Þ is defined in terms of

the trace of the Green’s function, ~Rðx; �Þ � ~Gðx; x; �Þ,

�ðx; �Þ ¼ � 1

�
lim Im�!0þ ImTr ~Rðx; �Þ; (13)

where the trace is computed over matrix degrees of free-
dom. The function ~Rðx; �Þ is also called diagonal resolvent
or Gorkov resolvent.

The spatial integration of LDOS leads to the formula for
DOS. In case of periodic quantum systems, the integration
can be performed over one period L,5

DOS ¼ 1

L

Z
L
�ðx; �Þdx: (14)

Explicit calculation of the Green’s function can be quite
difficult. Nevertheless, the definition (13) suggests that the
need of its explicit knowledge might be avoided; only the
diagonal resolvent is required to find LDOS. This fact was
utilized in Ref. [15] and further developed in Ref. [16].
Indeed, an exact form of the diagonal resolvent was found
for a wide class of Hamiltonians (4). The approach was
based on the fact that ~Rðx; �Þ has to satisfy the Dikii-
Eilenberger equation [32],

@

@x
~Rðx;�Þ�3 � i

"
� ��ðxÞ

��ðxÞ ��

 !
; ~Rðx;�Þ�3

#
¼ 0;

(15)

where � belongs to the spectrum of ~h. Additionally, ~Rðx; �Þ
has to satisfy the following requirements,

~R ¼ ~Ry; det ~R ¼ � 1

4
; (16)

where the latter one fixes the normalization of ~R. For more
details on the properties of ~R and derivation of (16), see
e.g., the Appendix in Ref. [33].
Making the following ansatz for the diagonal resolvent

[16],

~Rðx;�Þ ¼ XNþ1

n¼0

	nð�Þ
gnðxÞ fn�1ðxÞ
f�n�1ðxÞ gnðxÞ

 !
; (17)

and substituting (17) into (15), the Dikii-Eilenberger
equation transforms into the two (mutually conjugated)
nonlinear differentials equations of the form of the
AKNS hierarchy. The diagonal entries in (15) vanish iden-
tically due to the recurrence relations (8). The resulting
equation can be written as

XNþ1

n¼0

	nð�Þfn � �
XNþ1

n¼0

	nð�Þfn�1 ¼ 0; (18)

which can be solved by fixing properly the constants
	nð�Þ; see footnote 4 and Ref. [16]. It can be shown that
the ansatz (17) fulfills the requirements (16).6

Making the inverse transformation (4), we can
find the Lax operator associated with the finite-gap
Hamiltonian (3) as

SNþ1 ¼ exp

�
i
�1�

4

�
~SNþ1 exp

�
�i

�1�

4

�

¼ �i
XNþ1

l¼0

ðgNþ1�l1þ �3 ImfN�l þ �1 RefN�lÞ�2h
l:

(19)

The diagonal resolvent for the Hamiltonian h can be
obtained directly from (3), since the trace of an operator
is invariant with respect to similarity transformations.

IV. EXACTLY SOLVABLE MODELS
OF THE TWISTED NANOTUBES

The periodic systems described by (2) can be classified
in terms of a quantity which we call average twist. It is
defined as

�c ¼ max ð�Þ þmin ð�Þ
2

(20)

and corresponds to the value around which the potential is
oscillating. We will present two- and four-gap systems,
denoted as �ðxÞ ¼ �2 and �ðxÞ ¼ �4, respectively, where
the average twist is vanishing. Then we will consider two
simple cases where it acquires nonzero values. They cor-
respond to the one-, �ðxÞ ¼ �1, and three-gap �ðxÞ ¼ �3

systems. The mass term will be identically zero in all these
4The AKNSN can be written as a linear combinationPNþ1
l¼0 clf̂l, where the functions f̂l are defined like in (8) but

with all the integration constants that emerge in (7) fixed to zero.
5For the nonperiodic settings, the spatial integration can be

divergent.

6The ansatz (17) is manifestly Hermitian. Additionally, it also
satisfies the second condition in (16). Indeed, one can check
directly that ðdet ~Rðx; �ÞÞ0 ¼ 0 with the use of (18).
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models, M ¼ 0. We will see that the actual value of the
average twist is in correlation with the qualitative spectral
properties of these models.

As the last example, we will consider a nonperiodic
system with a constant mass, M � 0. It will serve for
illustration of a twisted boron-nitride nanotube.

A. Configurations with zero average twist

1. Two-gap system

First, let us consider the system governed by (2) with the
vector potential

�2 ¼ mk2
snmxcnmx

dnmx
; (21)

where m is a real parameter and k 2 ð0; 1Þ. This vector
potential is induced by the deformation specified by the
following displacement vector (see Fig. 1),

d ¼ ð0;�� ln dnmxÞ: (22)

The crystal kink two-gap potential (21) is given in terms
of doubly periodic Jacobi elliptic functions depending on
the modular parameter k. It has a real period L ¼ 2KðkÞ,
whereKðkÞ is the complete elliptic integral of the first kind.
For the definitions and properties of the elliptic functions,
we recommend Refs. [34,35]. The infinite-period limit
(k ! 1) of (21) is called the single kink vector potential
�2 ¼ tanh x. Let us notice that the properties of the Dirac
electron in graphene in the presence of a single-kink-type
vector potential were analyzed in Ref. [36]. The potential
�2 vanishes in the limit when the modular parameter goes
to zero.

The spectrum of the one-dimensional Dirac Hamiltonian
hðKÞ has two gaps located symmetrically with respect to
zero. The band-edge energies are �0 ¼ ��3 ¼ �m and

�1 ¼ ��2 ¼ �m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
. The corresponding eigenstates

(ðhðKÞ � �nÞ�n ¼ 0, n ¼ 0, 1, 2, 3) are

�0 ¼
�
�snmx;

cnmx

dnmx

�
t
; �3 ¼ �3�0; (23)

�1 ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p cnmx;
snmx

dnmx

�
t
; �2 ¼ �3�1: (24)

The band-edge energies are nondegenerate, while the
energies from the interior of the bands are doubly
degenerated.
Using directly the formula (17) for N ¼ 2, we can find

the explicit form of the diagonal resolvent. Its trace then
reads

TrR2ðx;�Þ¼
�2þ 1

2�
2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm2��2Þð�2þm2ðk2�1ÞÞp ; (25)

and the associated density of states acquires the following
form,

DOS2¼� 1

�
limIm�!0þ Im

�2�m2 EðkÞ
KðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm2��2Þð�2þm2ðk2�1ÞÞp ;

(26)

where we have used Eqs. (13) and (14). Notice that DOS2
is identically zero when � belongs to the prohibited gaps.
The function in the argument is purely real for these values
of � and, thus, the imaginary part is vanishing identically;
see Fig. 2.

2. Four-gap system

As the next example, we shall consider the
2KðkÞ-periodic system described by the Hamiltonian (2)
with the vector potential

�4 ¼ 6mk2
snmxcnmxdnmx

1þ k2 þ �� 3k2sn2mx
; (27)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 þ k4

p
. The crystal kink four-gap

potential (27) is an isospectral deformation of the crystal
kink potential�40 ¼ 2mk2 snmxcnmx

dnmx . Both potentials reduce

to the single kink �4 ¼ �40 ¼ 2m tanhmx when k ! 1.

FIG. 1 (color online). Illustration of the two-gap (upper),
three-gap (middle) and four-gap (lower) configurations of the
twisted carbon nanotubes. In the system without twist, the black
line would be straight.

FIG. 2 (color online). Illustration of DOS (26) of the
Hamiltonian (3) with �ðxÞ ¼ �2 and M ¼ 0 with m ¼ 1:5 and
k ¼ 0:7.
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The associated displacement vector in this case takes the
form

d ¼ ð0;�� ln ð1þ k2 þ �� 3k2sn2mxÞÞ (28)

and is illustrated in Fig. 1. The spectrum of hðKÞ has five
bands and eight band-edge states �n, n ¼ 0; . . . ; 7, which
can be defined with help of an operator D ¼ d

dx þ �4 as

follows,7

�n ¼
�
c n;

1

�n

Dc n

�
t
; ðhðKÞ � �nÞ�n ¼ 0: (29)

Keeping in the mind the spectral symmetry � $ ��
(which is valid for any model (3) with M ¼ 0), it is
sufficient to find just the first four eigenstates �0, �1,
�2, �3, since the remaining four can be obtained as
�nþ4 ¼ �3�n, where n ¼ 0, 1, 2, 3. They are given in
terms of the following functions:

c 0 ¼ mð1þ k2 � �� 3k2sn2mxÞ; �0 ¼ �2m
ffiffiffiffi
�

p
;

(30)

c 1 ¼ cnxsnx; �1 ¼�m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� k2þ2�;

q
(31)

c 2¼ cnxsnx; �2¼�m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2�1þ2�;

q
(32)

c 3 ¼ cnxdnx; �3 ¼�m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��1�k2;

q
(33)

where �n are the corresponding eigenvalues.
The local density of states can be computed using the

method described in the preceding section,

TrR4ðx;�Þ ¼ 
1 þ 
2�
2
4 þ 3�4

4 þ�02
4 � 2�4�

00
4

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�0 � �2Þð�2 � �2

1Þð�2 � �2
2Þð�2 � �2

3Þ
q ;

(34)

where the constants are


1 ¼ 8ð�4 � 5m2��2 þ 4m4�2Þ; (35)


2 ¼ 4ð�2 � 5m2�Þ: (36)

The explicit (analytical) form of the density of states is
rather cumbersome. In Fig. 3, we present the numerical
computed DOS of the current four-gap system.

Let us note that for the system described by the isospec-
tral potential �40 , the resolvent trace

TrR40 ðx;�Þ ¼
�1 þ �2�

2
40 þ �3�

4
40

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�0 � �2Þð�2 � �2

1Þð�2 � �2
2Þð�2 � �2

3Þ
q

(37)

can be written just in terms of a polynomial in �40 , where
�1, �2 and �1 are constant depending on �.

B. Semiconducting carbon nanotubes
via nonzero average twist

1. One-gap system

The simplest example of a finite-gap system with the
nonzero average twist is given by the Hamiltonian (2) with
the constant vector potential�ðxÞ ¼ �. The two band-edge
energies correspond to �0 ¼ ��1 ¼ ��. The local den-
sity of states can be found in the following form,

TrR4 ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p : (38)

The constant potential can be regarded as periodic with the
period being equal to any real number L. We can compute
the average twist as �c ¼ �.
The spectrum of the system has two bands separated by a

gap of width 2�c. This suggests that the central gap is
twice the average twist.

2. Three-gap system

Let us test the suggestion in the case of a more compli-
cated system. Its Hamiltonian (2) has the 2KðkÞ-periodic
vector potential

�3 ¼ cnbdnb

snb
þ k2snbsnðxÞsnðxþ bÞ; (39)

which is called the crystal kink-antikink, three-gap poten-
tial, [16]. The real parameter b 2 ð0; KðkÞÞ represents the
distance between the kink and the antikink.

FIG. 3 (color online). Illustration of DOS of the Hamiltonian
(3) with �ðxÞ ¼ �4 and M ¼ 0 with m ¼ 1 and k ¼ 0:6.

7This way to express the eigenfunctions is just the essence of
usual supersymmetric quantum mechanics applied for finite-gap
potentials. To avoid the details here, we refer to Refs. [37,38].
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The vector potential is induced by the displacement
d ¼ ð0; �FðxÞÞ, where FðxÞ is as follows,

FðxÞ ¼ cnbdnb

snb
�ðk2sn2b; amxjkÞ

� 1

2
ln ð1� k2sn2bsn2xÞ:

The function �ða; xj�Þ is the incomplete elliptic integral
of the third kind and am x is the Jacobi amplitude. See
Fig. 1 for illustration.

When b ¼ KðkÞ, (39) is reduced to the two-gap vector
potential (21). In the infinite period limit, the single kink-
antikink solution is recovered [39], lim k!1�1ðxÞ ¼
coth bþ tanh x� tanh ðxþ bÞ.

The spectrum of (2) with (39) contains three gaps
positioned symmetrically with respect to zero. The three
band-edge states with negative energies are

�0 ¼ ð�snðxÞ; snðxþ bÞÞt; �0 ¼ � 1

snb
;

�1 ¼ ð�cnðxÞ; cnðxþ bÞÞt; �1 ¼ � dnb

snb
;

�2 ¼ ð�dnðxÞ; dnðxþ bÞÞt; �2 ¼ � cnb

snb
:

(40)

The positive energy states are obtained as �nþ3 ¼ �3�n

and correspond to the energies �nþ3 ¼ ��n, where
n ¼ 0, 1, 2.

The trace of the diagonal resolvent can be computed
from (17) for N ¼ 2 in the following form,

TrR3ðx;�Þ ¼
�
2 ð
þ �2

3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2

0 � �2Þð�2
1 � �2Þð�2

2 � �2Þ
q ; (41)

where 
 ¼ 1þ k2 þ 2�2 � 3
sn2b

. The actual integration of

the formula above, needed for analytical form of DOS, is
rather complicated. We present Fig. 4 of DOS for the three-
gap case that was obtained numerically.

The average twist associated with the potential (39) can
be found as

�c ¼ cnb

snb
: (42)

Checking the corresponding band-edge energies �2 and �3

in (40), we can see that the gap between the positive and
negative energies is exactly of width 2�c.
Comparing the spectra of the presented systems, we can

see that the nonvanishing average twist (20) is proportional
to the magnitude of the central spectral gap in the system.
In the two- and four-gap systems, the average twist is
vanishing and there is no gap between positive and nega-
tive energies. These nanotubes are conducting in the sense
that infinitesimal excitation is sufficient to kick the elec-
trons from valence band to conduction band. The systems
with the nonvanishing average twist are different. They
have a gap between positive and negative energies that are
equal to 2�c and, hence, are semiconducting.

C. Boron-nitride nanotubes

As the last example, we shall consider a nonperiodic
system with the nontrivial mass term. We take the potential
term of (3) in the following form,

�ðxÞ ¼ N sin
�

2
tanh

�
sin

�

2
x

�
; M ¼ �N cos

�

2
;

(43)

where N is a positive integer and � is a real parameter. The
potential is classified as (N þ 1)-gap, as it solves the
corresponding equation of the AKNS. It has N þ 2 singlet
states in the spectrum. Two of them correspond to the
energies that form the threshold of the continuum spec-
trum, the rest is associated with bound states of the system.
In the case of N ¼ 1, the eigenstates are then given as

c 0 ¼
�
tanh

�
sin

�

2
x

�
;� cot

�

4

�
t
; �0 ¼ �1; (44)

c 1 ¼
�
sech

�
sin

�

2
x

�
; 0

�
t
; �1 ¼ cos

�

2
; (45)

c 2 ¼
�
tanh

�
sin

�

2
x

�
; tan

�

4

�
t
; �2 ¼ 1: (46)

The trace of the diagonal resolvent can be computed in the
following manner,

TrRðx;�Þ ¼ �2 � � cos �2 � 1
2 sin

2 �
2 sech

2ðsin �
2 xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

ð�� cos �2Þ
: (47)

It is worth noticing that in the examples of the carbon
nanotubes, the trace of diagonal resolvent (25), (34), (37),
and (41), could be written in terms of the finite-gap poten-
tial and its derivatives. A similar result is known for the
Schrödinger systems with Lamé potential. The trace of the

FIG. 4 (color online). Illustration of DOS of the Hamiltonian
(3) with �ðxÞ ¼ �3 and M ¼ 0 with k ¼ 0:2 and b ¼ 1:5.
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diagonal resolvent corresponded in that case to a polyno-
mial of the finite-gap potential [40]. This is related to the
fact that the square of the Dirac operator with the four-gap
potential �4, corresponds to an extended Schrödinger
operator with two-gap Lamé potential.

In the current case with the nonvanishing mass term, the
trace of diagonal resolvent can be written as a function of
the amplitude of the corresponding complex potential �
[see (4)], where j�j2 ¼ �ðxÞ2 þM2. For (43), we can
write

TrRðx;�Þ ¼ P2Nðx; �Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � �2

p Q2N
n¼1ð�� �nÞ2

:

Here,

P2Nðx; �Þ ¼
XN
n¼0

cnð�Þ
�
sin 2 �

2
sech2

�
sin

�

2
x

��
n

(48)

with cnð�Þ being specific constants.8

V. VAN HOVE SINGULARITIES AND
THE NONLINEAR SUPERSYMMETRY

The densities of states have a set of singular points that
are called van Hove singularities. A closer inspection of the
corresponding formulas (25), (34), (38), (41), and (47),
shows that the number as well as the position of the van
Hove singularities coincide precisely with the singlet band-
edge energies of the finite-gap systems. In this section, we
will show that this coincidence is reflected by a nonlinear
supersymmetry that underlies the finite-gap configurations
of the twisted nanotubes.

Quantum systems in presence of a magnetic field cease
to be time-reversal invariant. The time-reversal operator
changes the sign of momentum while it preserves the
coordinate. It changes the sign of the magnetic field. It
can be represented by an anti-unitary operator T that

satisfies T yT ¼ 1, T iT ¼ �i and T 2 ¼ �1. The latter
equality arises due to the half-integer spin of the consid-
ered particles.

One can check that the anti-unitary operator �2T
(T denotes complex conjugation, T2 ¼ 1) does not

commute with the Hamiltonian (3) due to the symmetry
breaking term �ðxÞ (and M). However, we have to keep in
mind that these terms arise from the tight-binding model,
which, despite the deformations of the crystal, is time-
reversal invariant [18].
The time-reversal symmetry of the system in the low-

energy regime emerges when dynamics in both valleys
corresponding toK andK0 is taken into account. The total
Hamiltonian reads

H ¼ hðKÞ 0

0 hð�KÞ

 !
; (49)

where the energy operators hð�KÞ of the subsystems are
given as

hð�KÞ ¼ �i�2@x ��ðxÞ�1 �M�3: (50)

The operator (49) acts on the bispinors � ¼
ðcKA; cKB; cK0B; cK0AÞ, where we use the notation intro-
duced in the second section below (1).
The Hamiltonian H commutes with the time-reversal

operator T which is defined in the following manner,9

½H ;T � ¼ 0; T ¼ �1 � �2T: (51)

As the considered system consists of a single fermion, the
Kramer’s theorem applies; all the energy levels of (49)
have to be at least doubly degenerate. In the case of a
periodic system, the band structure of hðKÞ is determined
by 2N þ 2 nondegenerate band-edge energies �n. In the
infinite period limit, the operator has N þ 2 singlet states.
As we can see from (50), the operators hð�KÞ are unitarily
equivalent, hðKÞ ¼ �2hð�KÞ�2. Hence,H has the same
band structure as hðKÞ, but the degeneracy is doubled as is
required by the Kramer’s degeneracy theorem.
Degeneracy of energy levels is reflected by a set of

integrals of motion that are based on the Lax integral
SNþ1; see (19). In the individual subsystems governed by
hð�KÞ, the degeneracy is associated with two diagonal
operators, Q0, and Q3,

Q0 ¼
SNþ1 0

0 �2SNþ1�2

 !
; Q3 ¼ 30Q0; (52)

where 30 ¼ �3 � 1. The intervalley (Kramer’s) degener-
acy is naturally reflected by the operators Q1 and Q2,

Q1 ¼ 12Q0; Q2 ¼ 22Q0; (53)

where ab ¼ �a � �b, a, b ¼ 1, 2. All these operators
commute with the total Hamiltonian,

8For N ¼ 2 the band edge energies are �0 ¼ ��4 ¼ �2,

�1 ¼ ��3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
7þcos�

2

q
and �2 ¼ 2 cos �2 . The constants in

(48) are then given in the following form,

c0ð�Þ ¼ �4 � 2�3 cos

�
�

2

�
� 1

2
�2ðcos ð�Þ þ 7Þ

þ 1

2
�

�
15 cos

�
�

2

�
þ cos

�
3�

2

��

c1ð�Þ ¼ 2

�
��2 þ � cos

�
�

2

�
þ cos ð�Þ þ 1

�
;

c2 ¼ 9

4
:

9In Ref. [20], the real spin of electrons in taken into account.
There, the time-reversal operator is defined as ð�1 � �1ÞT�2,
where the last Pauli matrix acts on the spin degree of freedom of
the electrons. As we do not consider real spin of electrons in our
model, we have to define T as in (51) to keep T 2 ¼ �1.
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½Qa;H � ¼ 0: (54)

By construction, these operators close Lie algebra
soð3Þ � uð1Þ,
½Q0;Qa�¼0; ½Qa;Qb�¼2i"abcQc; a;b;c¼1;2;3:

(55)

The existence of the operators (53) is a direct consequence
of the time-reversal symmetry of (49). Indeed, (51) implies
the unitary equivalence of the valley Hamiltonians
hð�KÞ and enables the construction of antidiagonal
operators (53).

The action of the integrals is quite nontrivial and deter-
mined by the properties of the Lax operator SNþ1. It can be
inferred from (12) that all doublet states �2�deg of H ,

corresponding to the band-edge energies �n, are annihi-
lated by the integrals of motion Qa,

Qa�2�deg ¼ 0; a ¼ 0; 1; 2; 3: (56)

Let us denote by the subscript K and K0ð¼ �KÞ the
states that are nonvanishing in one valley only, i.e.,
1
2 ð1� 30Þ��K ¼ ��K. We can find mutual eigenstates

��
K and ��

K0 of the Hamiltonian H , the valley-index

operator 30, and the integrals Q0 and Q3. They satisfy
the following relations,

ðH ��Þ��
KðK0Þ ¼0; ð30�1Þ��

K¼ð30þ1Þ��
K0 ¼0

(57)

and

Qi�
�
K ¼����

�
K; Qi�

�
K0 ¼����

�
K0 i¼ 0;3:

(58)

The eigenvalues �� can be determined from the spectral
polynomial (11) as

�� ¼ ffiffiffiffiffiffiffiffiffiffi
Pð�Þp ¼ Y2Nþ1

n¼0

ð�� �nÞ1=2: (59)

Hence, the operatorsQ0 andQ3 act on the basis of�
�
�K as

the multiplication by
ffiffiffiffiffiffiffiffiffiffi
Pð�Þp

, i.e., as the square root of the
operator PðH Þ. As mentioned above, the roots of the
spectral polynomial (59) coincide with the van Hove sin-
gularities of the analyzed finite-gap systems. The two
antidiagonal operatorsQ1 andQ2 switch the valley index,

Q1�
�
KðK0Þ ¼ ����

�
K0ðKÞ; Q2�

��K ¼ �i����
�	K;

(60)

where � ¼ �.
The action of the operatorsQa on the valley index is not

indicated by the algebra (55). To reflect better the proper-
ties of the system, we can define a superalgebra graded by
the valley index operator 30. We denote F 1ð2Þ � Q1ð2Þ as
fermionic operators that change the valley index of the

wave functions (fF 1ð2Þ; 30g ¼ 0) and B1ð2Þ � Q0ð3Þ
as bosonic operators that preserve the valley index
(½B1ð2Þ; 30� ¼ 0). The superalgebra is nonlinear and con-

tains other fermionic operators 12 and 22,

½H ;Ba� ¼ ½H ;F a� ¼ 0; fF a;F bg ¼ 2�abPðH Þ;
(61)

½Ba;F b� ¼ 2i�a2�3bcc2PðH Þ; (62)

½Ba; 22� ¼ �2i�2aF 1; ½Ba; 12� ¼ 2i�2aF 1; (63)

fF a; b2g ¼ 2�abB1: (64)

The fact that we deal with finite-gap systems is manifested
in the anticommutator of the fermionic operators where the
spectral polynomial PðH Þ emerges naturally. It underlies
nonlinearity of the superalgebra and manifests the intimate
relationship of between the algebraic structure and the van
Hove singularities of the considered models.
Let us stress that the superalgebra (61)–(64) exists

for any finite-gap configuration of the twisted nanotubes
described by H as long as the Hamiltonian possesses the
time-reversal symmetry.
The choice of the grading operator was not unique. We

could use either 12 or 22 equally well; both of them either
commute or anticommute with the considered operators.
Notice that 12 corresponds to the unitary component of the
time-reversal (51). Choosing any of them as the new grad-
ing operator, qualitatively the same superalgebra would be
obtained. The operators (52) and (53) would be just per-
muted in the role of bosonic and fermionic generators.
Let us notice that in examples presented in the previous

section, the single valley Hamiltonians with the vector
potentials (21) and (27) commute with the operator �3R
where R is the parity,10 RxR ¼ �x. Hence, the corre-
sponding Hamiltonian (49) is commuting with 33R. The
latter operator also commutes with 30 and 22, whereas it
anticommutes with all the operators Qa, a ¼ 0; . . . ; 3. It
means that 33R could be regarded as a grading operator
of a distinct, N ¼ 4 superalgebra that would be generated
by four fermionic operators (52) and (53). The nonlinear
superalgebra of Bogoliubov-de Gennes Hamiltonians gen-
erated by nonlocal supercharges was discussed in the
literature. We refer to Ref. [16] for more details; see
also Ref. [41].
The formulas for LDOS and DOS computed in the third

section with the use of the formula (17) have to be multi-
plied by four to get the correct form for the corresponding
twisted nanotubes. Indeed, we have to take into account the
valley degeneracy that we discussed in this section, as well

10The three-gap setting with (39) has the nonlocal integral of
slightly modified form, see Ref. [16].
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the double degeneracy of energy levels due to (real)
spin� 1

2 of the particle that was neglected up this moment.

Finally, let us discuss briefly the settings where an
external magnetic field is present in addition to the twists.
The magnetic field breaks the time-reversal symmetry.
When the vector potential �mg is included into the

Hamiltonian, we have

hð�KÞ ¼ �i@x�2 ��ðxÞ�1 �M�3 þ �mg�1: (65)

We can see that as long as mass term M is vanishing and
either magnetic field or twists are switched on (i.e.,
�ðxÞ�mg ¼ 0), all the energy levels have even degeneracy

due to the unitary equivalence of hðKÞ and hðK0Þ. The
situation changes when both �ðxÞ and �mg are nonzero. In

that case, we can still have a finite-gap configuration in one
valley described by hðKÞ. However, in the second valley
the finite-gap potential is violated in general by the
changed sign of �mg.

Curiously enough, we can still get a finite-gap configu-
ration for each valley by the fine-tuning of the external
field. As an example, let us consider the situation when the
low-energy dynamics in the K-valley is described by

hðKÞ ¼ �i@x�2 þ ðcothbþ tanh x� tanh ðxþ bÞÞ�1;

(66)

which is an infinite-period limit of the three-gap system
(39). Let us suppose that the vector potential in (66) is
induced both by radial twist and by external magnetic
field, where �ðxÞ ¼ 1

2 ð2 cothbþ tanh x� tanh ðxþ bÞÞ
and �mg ¼ 1

2 ðtanh x� tanh ðxþ bÞÞ. Then the subsystem

in the K0 valley is described by

hðK0Þ ¼ �i@x�2 � coth b�1; (67)

which is just the trivial one-gap system. In the current
setting, deformation associated with�ðxÞ is asymptotically
uniform but gets changed in the localized region, where the
(asymptotically vanishing) external magnetic field is non-
zero. The spectrum of the corresponding total Hamiltonian
H has two singlet discrete energy levels corresponding to
the bound states and two doubly degenerate levels� coth b
corresponding to the threshold of the positive and
negative continuum. The other energy levels are four-fold
degenerate.

It is worth noticing that the discussed framework can be
understood in the context of (planar) graphene crystal in
the presence of the external magnetic field and strain, both
of which depend on x only. Due to separability of the
stationary equation, the one-dimensional Hamiltonian
can be written as

hðKÞ ¼ �i�2@x þ ðky þ AyðxÞÞ�1; (68)

where ky corresponds to the momentum that is parallel

with the (pseudo-) magnetic barrier. The operator (68)
describes a massless Dirac particle that moves with fixed

direction in the presence of vector potential Ay, associated

with the strain and the external magnetic field. In this
context, the setting with the single-valley Hamiltonians
(66) and (67) with the inhomogeneous external magnetic
field perpendicular to the surface and given by �mg is

rather realistic.

VI. DISCUSSION AND OUTLOOK

The one-dimensional Dirac operator with finite-gap
potential appears in a variety of physically interesting
models [15,16,42,43]. In the present paper, we illustrated
how the machinery of the AKNS hierarchy can be used in
the analysis of the twisted nanotubes in the low-energy
regime, particularly for the computation of the local den-
sity of states.
We showed that the finite-gap, time-reversal invariant

configurations possess a hidden nonlinear supersymmetry
that is associated with the Kramer’s degeneracy of energy
levels. Physics of these systems, namely the presence of the
two valleys at K and K0 and the preserved time-reversal
symmetry, is responsible for the form of the Hamiltonian
(49), which consists of two copies of the (unitarily) equiva-
lent single-valley energy operators.
The current situation differs from the quantum models

with bosonized supersymmetry [44], where a nonlocal
integral of motion was identified as the grading operator.
Both the Hamiltonian (49) and its integrals of motion (52)
and (53), forming soð3Þ � uð1Þ Lie algebra, can be graded
by a local operator, e.g., by the valley index operator 30.
This framework represents a nontrivial example of the
hidden supersymmetry in the sense that it naturally emerges
within the unextended, physical Hamiltonian (49).
The explicit results for the presented finite-gap systems

can be extended with the use of Darboux transformation
[45]. Within this framework, one can construct new finite-
gap Hamiltonians h2 from a known one, namely h1. The
transformation is given in terms of a matrix differential
operator D, which intertwines two one-dimensional Dirac
Hamiltonians, Dh1 ¼ h2D. It maps the eigenstates of h1
into those of h2, keeping the operators (almost) isospectral.
Moreover, the diagonal resolvent of h2 can be computed
directly from the diagonal resolvent of h1 with the use of
D; see Ref. [28] for details.
In the paper, the operator (3) was almost exclusively

interpreted as the effective Hamiltonian of the twisted
carbon (or boron-nitride) nanotube. As we discussed in
the end of the preceding section, the results can be also
used in the analysis of Dirac electrons in graphene in
presence of (pseudo-)magnetic barriers. Such systems
with Kronig-Penney or a piece-wise constant (pseudo-)
magnetic fields induced by either external field or strains
were considered in the literature, see Ref. [46] or Ref. [47].
In this context, the DOS computed for the twisted nano-
tubes can be interpreted as the partial density of states in
graphene for the ky ¼ 0 channel. It could facilitate the
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computation of the transition coefficient in the normal
direction to the magnetic barrier. The known results [48]
on the relation between one-dimensional DOS and the
phase of the transmission amplitude could be particularly
helpful in this context.

ConsideringDirac electrons in graphene, it is desirable to
extend the analysis for ky � 0 as well. Keeping in mind

Ref. [36] or Ref. [49], the infinite-period limit of the finite-
gap models could be a feasible starting point in this respect.
The analysis of periodic systems could make it possible to
observe the phenomena that appear in graphene superlatti-
ces, the new generation ofDirac points in particular [50,51].

Study of the finite-gap configurations of electrostatic
potential represents another possible direction for future
research. Spectral properties of the Dirac electron in gra-
phene in the presence of both periodic electrostatic and
magnetic fields were discussed in various works, see e.g.,
Refs. [52–54]. In this context, the mapping between the
systems with magnetic and electrostatic field [55] could
provide an interesting way to extend our results.

The finite-gap systems are an approximation of more
realistic settings. They can serve as a test field for
numerical or perturbative methods and can also provide
qualitative insight into the experimental data. Although, to
our best knowledge, the experiments with the single-wall
carbon nanotubes with the periodically modulated twist
have not been prepared yet, the building blocks of such
settings seem to be available, see e.g., Refs. [24–26].

As an experimental implementation of the proposed
models, we can imagine a long suspended nanotube
anchored to a substrate at the ends and a periodic array
of small paddles attached to it. By deflection of the pad-
dles, the twist of the nanotube could be altered. Let us
mention that the latter configuration (with one paddle) was
employed in Ref. [56] for measurement of the torsional
properties of the nanotubes.
In the presented finite-gap models, the possible inter-

action of the nanotube with the anchors and the paddles is
not taken into account. Still, we think that the results (e.g.,
the suggested dependence of the central gap on the average
twist) might provide interesting qualitative insight into
the spectral properties of the settings realized in the
experiments.
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[28] V. Jakubský and M. S. Plyushchay, Phys. Rev. D 85,

045035 (2012).
[29] E. J.M. Hamilton, S. E. Dolan, C.M. Mann, H.O. Colijn,

C. A. McDonald, and S.G. Shore, Science 260, 659
(1993).

[30] A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B 49,
5081 (1994).

[31] C. De Concini and R.A. Johnson, Ergodic Theory
Dynamical Systems 7, 1 (1987).

[32] G. Eilenberger, Z. Phys. 214, 195 (1968).
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