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10Departamento Fı́sica Teórica II, Universidad Complutense, 28040 Madrid, Spain

(Received 14 January 2013; published 10 April 2013)

The quark mass dependences of light-element binding energies and nuclear scattering lengths are

derived using chiral perturbation theory in combination with nonperturbative methods. In particular, we

present new, improved values for the quark mass dependence of meson resonances that enter the nuclear

force. A detailed analysis of the theoretical uncertainties arising in this determination is presented. As an

application, we derive from a comparison of observed and calculated primordial deuterium and helium

abundances a stringent limit on the variation of the light quark mass, �mq=mq ¼ 0:02� 0:04. Inclusion of

the neutron lifetime modification, under the assumption of a variation of the Higgs vacuum expectation

value that translates into changing quark, electron, and weak gauge boson masses, leads to a stronger limit,

j�mq=mqj< 0:009.
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I. INTRODUCTION

The Standard Model is widely believed to be a low-
energy manifestation of a more general theory that unifies
the four fundamental forces of nature. Several candidate
unified theories suggest that spatial and temporal variation
of fundamental constants is a possibility, or even a neces-
sity, in an expanding Universe (see, e.g., the reviews in
Refs. [1,2]). Studies of big bang nucleosynthesis (BBN)
provide a unique probe of the values of fundamental con-
stants in the pre-recombination Universe. A further moti-
vation to consider the response of light nuclei to changes in
mq, the light quark mass,1 is related to anthropic consid-

erations [3,4] that have, e.g., been used in the context of
carbon production in hot stars [5–7] in order to understand
how much fine tuning is necessary amongst the fundamen-
tal parameters of the Standard Model in order to allow life
to emerge on Earth. Only now—based on methods as used
here—is one really able to study the explicit quark mass
dependence of the nuclear forces and nuclear properties,
and therefore their impact on, e.g., nuclear abundances,
because such issues can only be investigated systematically

and completely based on chiral effective field theories or
lattice simulations (or combinations thereof).
In addition, recent studies of quasar absorption spectra

suggest a cosmological gradient in the value of the fine
structure constant, �, across the Universe [8]. The exis-
tence of this spatial variation could be confirmed from
complementary astrophysical studies such as big bang
nucleosynthesis [9]. If the values of fundamental constants
were different in different regions of space at the time of
nucleosynthesis, this could be seen in the spatial distribu-
tion of primordial deuterium abundances. Note that while
BBN is relatively insensitive to � variation [10], the limits
placed on quark mass variation in this work can be related
to the variation of � under a range of unification models
[11]. Indeed, many of these grand unification theories
predict that relative variations in the strong force would
be 1 or 2 orders of magnitude larger than those of the
electroweak forces (for a simple explanation of this, see,
e.g., Ref. [12]). This is also connected to anthropic ques-
tions, for if a spatial variation of fundamental constants
were to exist, we should not ask how finely tuned the
fundamental parameters are, but instead conclude that
life emerged in the region of the Universe where the
parameters allowed for it.
Relating the observed primordial abundances to the

values of fundamental constants at the time of big bang
nucleosynthesis requires theoretical models for how the
nuclear reaction rates depend on observable quantities such
as binding energies and scattering lengths, as well as a
model for how those quantities in turn depend on the

1Throughout most of this paper, we work in the isospin limit
mu ¼ md and only consider the average light quark mass, mq ¼
ðmu þmdÞ=2; in addition, the quark masses are studied in units
of a fixed �QCD, for only the variation of dimensionless quan-
tities is meaningful. However, in Sec. VII, we address the
constraints from neutron � decay, which necessarily requires
the inclusion of isospin violation by strong and electromagnetic
effects.
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fundamental constants. The former has been dealt with
previously in several works (see, e.g., Refs. [10,13–15]
and the references therein); in this paper, we provide a
response matrix based on the method described in Ref. [13]
for some of these quantities which are of importance to the
current work. The second part of the problem, relating bulk
nuclear quantities to values of fundamental constants, is the
focus of this paper.

Most of the previous studies in this context were per-
formed on the basis of model-dependent estimates for
quark mass dependences of nuclear properties [16–21].
However, there are two theoretical tools available that
allow, in principle, for a model-independent access to
quark mass dependences. On the one hand, there is lattice
QCD; on the other hand, one has chiral perturbation theory
(ChPT). The former is a direct evaluation of QCD in
Euclidean space-time, and thus the quark mass dependence
is explicit. In the latter case, the operator structure of quark
mass terms is fixed by the QCD symmetries; in fact, ChPT
is a faithful representation of the spontaneous and explicit
chiral symmetry breaking of QCD [22]. The strength pa-
rameters [usually called low-energy constants (LECs)] of
those operators have to be fixed from other sources.
Generally, this is done by comparison with experiment.
However, for operators that explicitly involve the quark
mass, as is the case here, such a determination is difficult,
since in nature the quark masses take definite values. To
determine the LECs of such operators, one can fit either to
lattice data directly (see, e.g., Ref. [23], where the formal-
ism is outlined for the � meson) or from low-energy
scattering data when using some unitarization scheme in
addition to ChPT (see, e.g., Refs. [24–26]). It should be
stressed, however, that in the latter case some model
dependence is involved, since the quark mass terms of
higher order than what was put in from ChPT are not
complete and depend on the scheme used [27]. In some
cases, this model dependence can be controlled, to some
extent, by a comparison with lattice data.

In Ref. [28], an effective field theory treatment of the
impact of quark mass variation on BBN was presented for
the first time. In this work, the quark mass dependence of
the NN scattering lengths was used as primary input. To
constrain these, the results of Ref. [29] were used, since at
present the lattice is not sufficiently accurate to provide
precise values of these fundamental parameters. Central to
the analysis of Ref. [29] was a naturalness assumption for
the quark mass corrections to the leading quark-mass-
independent contact interactions. On the other hand, the
same LEC was allowed to vary in a different range in
Ref. [30], which led to quite different quark mass varia-
tions of the two-nucleon properties. We remark, however,
that the considerations in Ref. [29] were consistent with the
earlier resonance saturation study of the leading-order
and next-to-leading-order contact interactions performed
in Ref. [31].

In this work, we study systematically the impact of
quark mass variations on two-nucleon observables based
on a study of the quark mass dependences of mesons, since
those are expected to give the most prominent contribu-
tions. In particular, if a strong quark mass dependence of,
say, the potential part of the nucleon-nucleon (NN) inter-
action that comes from � exchange were present—e.g., in
Ref. [16], where a striking strange quark mass dependence
of the � is conjectured—it might, in the effective field
theory where this field is integrated out, lead to an unnatu-
rally enhanced LEC accompanying some contact interac-
tion. An example of such a pattern is apparent in some
low-energy constants of dimension 2 that appear in �N
scattering: when extracted from data in standard ChPT,
they appear to be unnaturally large; however, this can be
understood phenomenologically by observing that they are
mainly dominated by the exchange of � isobars [32].
Consequently, once the � contribution is subtracted, the
residual LECs get reduced significantly. Analogously, one
should expect that, once all meson-exchange-induced large
quark mass effects are treated explicitly, the bulk of the
quark mass dependence is included.2 Still, such a proce-
dure involves some modeling that induces some systematic
uncertainty which is very difficult to specify.
Our main focuses here are the � and the �mesons. Both

appear as resonances in the two-pion system. The cleanest
way to connect their properties to the NN sector is via a
dispersion integral of the Omnès type as used, e.g., in
Refs. [35,36]. Here, however, we use a method which is
technically easier to handle and more transparent, although
admittedly of lower theoretical rigor: in Ref. [31] it was
shown that the four nucleon operators of the NN potential
can be understood quantitatively in terms of the exchange
of heavy mesons in the sense of a resonance saturation. In
that paper, explicit expressions are presented for this kind
of matching. Thus, we here use the following strategy: we
determine the quark mass dependence of the light reso-
nances using the methods of Refs. [24–26], which allows
us to predict the quark mass dependences of the four-
nucleon contact terms using the expressions of Ref. [31].
To complete this study, we then quantify the impact of the
determined quark mass dependences of the mesons to-
gether with that of the nucleon, which is already studied
on the lattice, on the NN observables via an explict calcu-
lation of scattering lengths. It is important to note that, to
our knowledge, no explicit calculations for a dynamic
generation of the!meson exist. Thus, we assume through-
out that its quark mass dependence is the same as that of
the �. Clearly, this should be refined in future studies.

2In addition, we need to assume that there are no large quark
mass dependences coming from sources other than meson ex-
changes. In this sense, the findings of Ref. [33] are important; for
here it is demonstrated that potentially large quark mass depen-
dences induced by �NN cuts [34] cancel, once final-state
interaction effects are considered explicitly.
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The paper is structured as follows: In Sec. II, we derive
the quark mass dependence of nucleon and meson masses,
which we use to calculate the impact of quark mass varia-
tion on the two-nucleon potential in Sec. III. The theoreti-
cal uncertainties of our calculation are discussed in Sec. IV.
From the two-nucleon observables, we are able to calculate
the quark mass dependence of helium nuclei (Sec. V).
Finally, in Secs. VI and VII, we calculate the dependence
of primordial abundances on nuclear observables and com-
bine this with the results of the previous sections to derive a
limit on the variation of the light quark mass at the time of
big bang nucleosynthesis.

II. QUARK MASS DEPENDENCE
OF HADRON MASSES

Here, we study the quark mass dependence of the perti-
nent hadron masses. The results for each hadron H are
most appropriately presented in terms of the dimensionless
parameters KH defined via

�MH

�mf
¼ Kf

H

MH

mf

; (2.1)

evaluated at the physical point. Here mf denotes the

mass of the quark of flavor f, and MH denotes the mass
of hadron H. In what follows, we will choose f ¼ q for
the light quarks (in the isospin limit) and f ¼ s for the
strange quark. Note that, although mf by itself is not

renormalization-group invariant, the quantity of relevance
here—namely �mf=mf—is, for the same reason that quark

mass ratios are well defined.

A. Quark mass dependence of the nucleon mass

Because of significant advances in lattice QCD, the pion
mass dependence of the nucleon, especially, is now known
to some precision. E.g., in Ref. [37], the dependence of the
nucleon mass on the pion mass squared as calculated by the
BMW Collaboration is given. It is straightforward to ex-
tract from this the quantity Kq

N [for the definition, see
Eq. (2.1)]. One finds Kq

N ¼ 0:04. Note that more recent
evaluations from other lattice collaborations give similar
results, as nicely reviewed in Ref. [38]. It is also pointed
out in that reference that the nucleon mass can be well
represented by a linear function of the pion mass in most
lattice simulations, which is at odds with the chiral con-
straints on this observable.

Alternatively, one may determine Kq
N from the pion-

nucleon sigma term, ��N . Reference [39] finds

��N ¼ 44:9þ1:8
�5:4 MeV: (2.2)

On the other hand, in Refs. [40,41] a value

��N ¼ 59� 7 MeV (2.3)

is found. In what follows, we use the first value, as it is
consistent with the classical determination of Ref. [42]

based on dispersion relations. A completely reliable up-
grade of the value fromRef. [42] can only be obtained based
on the recently proposed Roy-Steiner equations for pion-
nucleon scattering that allow for precise determination of
the pion-nucleon scattering amplitude in the physical
region as well as inside the Mandelstam triangle [43,44].
There is also a large spread of values determined from
lattice QCD which encompasses the range of values given
above; see Ref. [45] and the recent review byKronfeld [46].
Using the Feynman-Hellman theorem �f ¼

mf@MN=@mf, one finds straightforwardly Kf
N ¼ �f=MN

and with that, based on the numbers given above,

Kq
N ¼ 0:048þ0:002

�0:006; (2.4)

consistent with the number quoted above within 2�. The
values given are significantly lower than those presented in
Refs. [17,18] due to the unusually large value of the �N
sigma term in those works.

B. Quark mass dependence of meson masses

Because of their nature as (pseudo–)Nambu-Goldstone
bosons (NGBs) of the approximate chiral symmetry of the
strong interactions, the quark mass dependence of the
members of the pseudoscalar octet is given by standard
ChPT, which is model independent. At tree level, for the
pion, one finds

Kq
� ¼ 0:5; Ks

� ¼ 0: (2.5)

In our calculation, we have included higher-order terms in
the light ðu; dÞ quark mass dependence of the pion, using
the SUð2Þ ChPT expansion up to two loops [47]. The
strange quark mass dependence of the pion and the quark
mass dependence of the kaon and � meson (which will be

needed later for the calculation of Kf
� and Kf

�) have been
calculated using SUð3Þ ChPT to one loop [48]. We remark,
however, that these masses are possibly affected by large
higher-order corrections—this is an open issue in three-
flavor ChPT. For our study, we do not want to enter this
discussion, but rather use the next-to-leading-order (NLO)
corrections based on the standard scenario for the strange
quark condensate. To get at least some feeling for the
corresponding theoretical errors, we have estimated the
size of the higher-order corrections by treating the ChPT
expansions in two different ways: in the first of them, the
expansions are written in terms of the physical masses and
decay constants of the NGB; in the second, they are written
as a function of the tree-level constants M0�, M0K and F0.
In our calculations, these tree-level constants are obtained
by fitting the ChPT expansions for the masses and decay
constants of the NGB to their physical values. Since the
difference between the two treatments corresponds to
higher orders in the expansion, it serves as an estimate
for the systematic error due to the truncation of the ChPT
series.
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The values that we provide in the first line of Table I for

Kf
� are an average of the results obtained using SUð2Þ and

SUð3Þ, the two methods of truncation mentioned above and
different determinations for the ChPT LECs [49–52]. The
error is taken so that it covers all the results with their
statistical uncertainties, which arise from the errors of the
LECs. Following a similar procedure, also in Table I, we

provide the Kf
F�

values for the pion decay constant F�.

For the other light resonances the situation is less sys-
tematic, since all of them are unstable, and their correct
description requires a pole in the complex energy plane
that cannot be obtained within the ChPT expansion, which,
up to some logarithmic terms, corresponds to an expansion
in powers of the energy or the meson masses. By construc-
tion, the amplitudes of ChPT are only perturbatively uni-
tary and valid only near threshold. In Ref. [23], a formula
to be used in chiral extrapolations for vector meson masses
was presented; however, the quality of lattice data was not
sufficient to pin down the slope of the quark mass depen-
dence, which is required here. Of course, there are better
data now [53–55], so one could refresh the analysis of
Ref. [23]. Here, we follow another path, which can also
be used to explore the quark mass dependences of the �
and the �. Employing dispersion relations for the inverse
�� scattering amplitude and using ChPT to fix the sub-
traction constants—where the subtraction points can be
chosen in a regime where ChPT is valid—solves both
problems and, by generating poles, allows for the study
of resonances without a priori assumptions about their
existence or nature. This is done in a way consistent with
the ChPT expansion without introducing spurious parame-
ters where an uncontrolled quark mass dependence may
appear.3 This method is called the inverse amplitude
method (IAM) [56] and has been used to study both the
� and the � in an SUð2Þ one-loop treatment in Ref. [24]
and to two loops in Ref. [25]. The SUð3Þ version of this
study can be found in Ref. [26].

Let us note that, within the IAM, all the dependence on
the quark masses appears through the NGB masses, which
are explicitly present in the amplitudes, both kinematically

and in interaction vertices. Thus, we can calculate the Kf
R

parameters for the resonances generated within the IAM by
varying the masses of the NGBs, whose dependence on the
quark masses was discussed in the previous section, and
measuring the corresponding change on the position of the
poles.
We have performed this calculation using SUð2Þ and

SUð3Þ and different sets of LECs obtained from IAM fits
[24–26,57]. In each case, we have changed the masses of
the NGB using the two different methods for the truncation
of the ChPT expansion commented on above. Our esti-
mates for theK factors for � and�, given in the second and
third rows of Table I, are an average of the results combin-
ing these different approaches, with errors taken to cover
all the results. Let us note that the description of the �
depends more strongly on the chiral loops, which are
model independent, and much less on the LECs.
However, the dependence of the � resonance on the quark
masses depends strongly on the values of the LECs. For
that reason, for the central value of Kq

� we have only used
the averaged results of the two best two-loop SUð2Þ ChPT
fits in Ref. [25], which we consider to be the most reliable,
in particular because they were fitted to three sets [53] of
lattice calculations of the � mass dependence on the pion
mass, which were consistent among themselves,4 and
because the resulting values of the LECs were more con-
sistent with standard determinations and estimates. We
refer the reader to Ref. [25] for details. For the strange
quark mass dependence, we rely on the existing IAM
one-loop SUð3Þ calculations in Ref. [26], but include the
uncertainties as just described above.
It should be stressed that the quark mass dependences

we find are significantly smaller than those given in
Ref. [16]. In particular, in that reference a value of
Ks

� ¼ 0:54 is given, compared to our �0:01 (cf. Table I).
The origin for this significant discrepancy is the assump-
tion about the quark structure of the � underlying the work
of Ref. [16]: the � was assumed to be an SUð3Þ singlet. In
our case, on the other hand, the � emerges from non-
perturbative �� interactions, which give only a very small
dependence on the strange quark mass.
As becomes clear from Table I, for all relevant quanti-

ties, the variation with respect to the strange quark mass is
smaller than the corresponding uncertainty. In addition,
some quark mass variations driven by an external scale
will lead to a relative change in the strange sector sup-
pressed additionally by a factor mq=ms � 1=25. In what

follows, we will therefore only study the effect of a varia-
tion of the light quark masses on the NN potential.

TABLE I. Estimates for the Kf
R coefficients and their

uncertainties.

Kq
� 0:494þ0:009

�0:013 Ks
� 0:00� 0:05

Kq
� 0:058� 0:002 Ks

� 0:02� 0:04
Kq

� 0:081� 0:007 Ks
� 0:01� 0:05

Kq
F�

0:048� 0:012 Ks
F�

0:00� 0:06

3Clearly, the expansion is controlled only to the order of the
chiral expansion used as input. Terms of higher order produced
by the formalism are not necessarily correct [27], although at
least they will respect unitarity and the correct analytic structure
of the amplitude.

4Let us nevertheless remark that there are other lattice calcu-
lations which are not quite compatible with these three because
their �masses fall systematically either above [54] or below [58]
them. The ones falling below are somewhat harder to accom-
modate within the IAM, as explained in Ref. [25].
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III. IMPACT ON THE VARIATION OF
THE TWO-NUCLEON POTENTIAL

The changes in the meson masses cannot be directly
connected to their impact on BBN. The quantity of rele-
vance is the resulting variation of the two-nucleon (NN)
interaction, and especially its impact on nuclear binding
energies. However, the connection of meson masses to the
NN interaction is not clear cut. In Ref. [12], the phenome-
nological V18 interaction was used as a basis, where the
insights of Refs. [17,18] were translated into a variation of
the model parameters. Although it provides some under-
standing of the sensitivity of the NN interaction on the
variation of quark mass parameters, such a calculation is
neither systematic nor complete. On the other hand, in
Ref. [28] an EFT approach is chosen; however, there the
input of the quark mass dependence of NN scattering
lengths is taken from other sources. Our goal is to improve
our understanding of the quark mass dependence of theNN
observables, using as input the K factors given in Table I.

As outlined in the Introduction, we do not do the full
dispersion theoretical treatment of Refs. [35,36], but rather
make a connection to the NN force via the method of
resonance saturation: in Ref. [31], explicit expressions
are given that allow one to express the values of the NN
contact terms in terms of meson masses and coupling

constants. Thus, the quark mass dependences given above
can be implemented straightforwardly.

A. Quark mass dependence of the pion
exchange contributions

The long-range part of the NN potential up to next-to-
next-to-leading order (N2LO) in the chiral expansion is
driven by the exchanges of one and two pions. In the exact
isospin limit, the one-pion (1�) exchange potential at
N2LO has the form

V1�¼� 1

4F2
�

ðgA�2d18M
2
�Þ2�1 ��2

ð ~�1 � ~qÞð ~�2 � ~qÞ
~q2þM2

�

; (3.1)

where �i denote the Pauli spin matrices, ~q ¼ ~p0 � ~p is the
nucleon momentum transfer and ~p ( ~p0) refers to initial
(final) nucleon momenta in the center-of-mass system.
Further, F� and gA denote the pion decay and the nucleon
axial coupling constants, respectively, while d18 is a low-

energy constant fromLð3Þ
�N that controls the leading contri-

bution to the Goldberger-Treiman discrepancy. Employing
the spectral function regularization as detailed in Ref. [59],
the nonpolynomial part of the two-pion (2�) exchange
potential has the form

Vð2Þ
2N ¼� �1 � �2

384�2F4
�

L
~�ðqÞ

�
4M2

�ð5g4A � 4g2A � 1Þ þ ~q2ð23g4A � 10g2A � 1Þ þ 48g4AM
4
�

4M2
� þ ~q2

�

� 3g4A
64�2F4

�

L
~�ðqÞð ~�1 � ~q ~�2 � ~q� ~�1 � ~�2 ~q

2Þ;

Vð3Þ
2N ¼� 3g2A

16�F4
�

ð2M2
�ð2c1 � c3Þ � c3 ~q

2Þð2M2
� þ ~q2ÞA~�ðqÞ � g2Ac4

32�F4
�

�1 � �2ð4M2
� þ q2ÞA~�ðqÞð ~�1 � ~q ~�2 � ~q� ~q2 ~�1 � ~�2Þ;

(3.2)

with the loop functions L
~�ðqÞ and A

~�ðqÞ defined as

L
~�ðqÞ ¼ �ð~�� 2M�Þ !2q ln

~�2!2 þ q2s2 þ 2~�q!s

4M2
�ð~�2 þ q2Þ ; ! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

� þ ~q2
q

; s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2 � 4M2

�

q
;

A
~�ðqÞ ¼ �ð~�� 2M�Þ 1

2q
arctan

qð~�� 2M�Þ
q2 þ 2~�M�

:
(3.3)

Here and in what follows, the ci are the LECs from the
order-Q2 (dimension 2) pion-nucleon Lagrangian, and ~�
denotes the cutoff in the spectral representation; see
Ref. [59]. In addition to the explicit M� dependence, at
N2LO one also needs to take into account the implicit one
resulting from the chiral expansion of gA and F� in the 1�
exchange potential in Eq. (3.1). We use the NLO result for
the chiral expansion of the pion decay constant, as it is
appropriate at the order at which we are working:

F� ¼ F

�
1þ M2

�

ð16�2F2Þ
�l4 þOðM4

�Þ
�
; (3.4)

where F denotes the pion decay constant in the chiral limit.
For the LEC �l4, we adopt the value �l4 ¼ 4:3 from Ref. [60].
Using F� ¼ 92:2 MeV, this leads to the chiral limit value
F ¼ 86:2 MeV. Notice that the resulting NLO value for
the K factor, Kq

F� ¼ 0:065, is slightly larger than the one
given in Table I.
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Contrary to the pion decay constant and the nucleon
mass, the chiral expansion for gA is known to converge
rather slowly; see Fig. 1. In particular, taking into account
the leading [i.e., orderOðM2

�Þ] correction to its value at the
chiral limit and adopting the value for the low-energy
constant, �d16 ¼ �1:76 GeV�2, obtained from the reaction
�N ! ��N [61], leads to a very strong quark mass de-
pendence of gA near the physical point. On the other hand,
lattice QCD calculations indicate that the behavior of gA
withM� is rather flat. As discussed in Ref. [62], such a flat
behavior of gA, consistent with the lowest-mass lattice data
point from Ref. [63], corresponding to M� ¼ 353 MeV,
can, in principle, be achieved at the two-loop level.5 In
order to provide an accurate representation of the quark
mass dependence of the 1� exchange potential, we use in
the present study the complete order-Q3 result accompa-
nied by one order-Q4 contact term, whose strength is
adjusted to reproduce the lowest-mass lattice data from
Ref. [62]:

gA¼g0

�
1þ

�
4

g0
�d16� 1

ð4�FÞ2
�
g20þð2þ4g20Þln

M�

�M�

��
M2

�

þ 1

24�F2m0

ð3þ3g20�4m0c3þ8m0c4ÞM3
�þ�M4

�

�
:

(3.5)

Here, g0, F and m0 refer to the chiral limit values of the
nucleon axial vector coupling, pion decay coupling and
nucleon mass, respectively. We use the same values of the

LECs ci as in Ref. [62],6 namely c3 ¼ �4:7 GeV�1, c4 ¼
3:5 GeV�1. Further, �M� ¼ 138 MeV is the physical value
of the pion mass in the isospin limit, while � is a linear
combination of the order-Q4 LECs. We emphasize that the
above expression does not correspond to the full order-Q4

result, since we do not include the order-Q4 chiral loga-
rithms. We have verified numerically that the effect of
these logarithms is largely compensated for by the �
term when the latter is tuned to reproduce the lattice point.
Indeed, one observes that the solid line in Fig. 1, corre-
sponding to the pion mass dependence of gA adopted in the
present work, is very similar to the more complete
calculations of Ref. [62] shown in Fig. 2 of that work.
Further, Fig. 1 also shows the uncertainty associated with
the variation of �d16 in the range �d16 ¼ �0:91 to
�2:61 GeV�2 [61] and the variation of the lattice point
by 10%.
The value of the nucleon mass in the chiral limit can be

obtained from the order-Q3 expression

m ¼ m0 þ 4c1M
2
� þ 3g2A

32�F2
�

M3
� þOðM4

�Þ: (3.6)

Using gA ¼ 1:267 and c1 ¼ �0:81 GeV�1 leads to m0 ¼
892 MeV. Note that the value of c1 used here is consistent
with the small sigma term, ��N ¼ 45 MeV, cf. Eq. (2.2).
We further emphasize that the resulting K factor, Kq

N ¼
0:042, is consistent (within the error bars) with the value
given in Eq. (2.4).

B. Quark mass dependence of the short-range terms

The short-range potential in the 1S0 and
3S1-

3D1 chan-

nels up to N2LO has the form

Vshort
1S0 ¼ ~C1S0 þ C1S0ðp2 þ p02Þ;

Vshort
3S1 ¼ ~C3S1 þ C3S1ðp2 þ p02Þ;

Vshort
	1 ¼ C	1p

2;

(3.7)

where p � j ~pj, p0 � j ~p0j refer to the incoming and out-

going momenta in the center-of-mass system and ~Ci,Ci are
M�-dependent coefficients.

7 The quark mass dependence
of these operators can, in principle, be calculated straight-
forwardly in chiral perturbation theory [29]. The problem
is, however, that the coefficients in front of the contact
operators / M2

� are unknown. In Ref. [29], the correspond-
ing LECs were estimated by means of naı̈ve dimensional

0 0,1 0,2 0,3
Mπ  [GeV]

0

0,5

1

1,5

2

2,5

g A

Q
2

Q
3

incomplete Q
4

uncertainty in d
16

variation of the lattice point

FIG. 1 (color online). Quark mass dependence of gA at various
orders in the chiral expansion. Also shown is the lowest mass
lattice point from Ref. [63]. The hatched band corresponds to the
variation of �d16 in the range �d16 ¼ �0:91 to �2:61 GeV�2; see
Ref. [61]. The light-shaded band results from a 10% variation of
the lattice point used to fix the LECof theM4

� operator in Eq. (3.5).

5We emphasize, however, that the convergence at such pion
masses is problematic, as discussed in detail in Ref. [64].

6Notice that slightly different values of these LECs are
adopted in the chiral NN potential. We have verified that using
these different values for c3;4 and readjusting the parameter �
leads to a very similar M� dependence of gA. The induced
difference in the two-nucleon observables is significantly beyond
the theoretical uncertainty of our analysis.

7Of course, the LECs do not depend on the quark masses. The
coefficients used here subsume the coefficients of the LO four-
nucleon operators plus their first pion mass-dependent correc-
tions that are generated by the same operators times M2

�.
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analysis which, however, resulted in a very large theoreti-
cal uncertainty for two-nucleon observables. In order to
avoid this difficulty, we follow here a completely different
approach and refrain from doing an explicit chiral expan-
sion for contact operators. Instead, we make use of reso-
nance saturation of contact interactions [31] and employ
the M� dependence for the masses of the heavy mesons
discussed in Sec. II B.

Resonance saturation for contact NN operators up to
N2LO is discussed in detail in Ref. [31]. In that work,
strongly reduced values of the LECs ci were adopted in
order to circumvent a very strong attraction resulting from
the isoscalar central two-pion (2�) exchange potential
calculated using dimensional regularization. As discussed
in Ref. [59], the strong attraction in the 2� exchange
potential at intermediate and shorter distances can be
traced back to the large-mass components in the spectrum
which cannot be described reliably within the framework
of chiral EFT. In the chiral potentials of Refs. [65,66], the
unphysical high-mass components in the two-pion ex-
change spectrum are cut off by means of the spectral
function regularization. We now repeat the analysis of
Ref. [31] for the actual version of the chiral N2LO

potentials and test the validity and accuracy of the reso-
nance saturation hypothesis.
Here and in what follows, we consider the Bonn-B [67]

potential as a typical representative of one-boson exchange

(OBE) models. Its long-range part is given by 1� ex-

change, whereas shorter-distance physics is expressed as

a sum over contributions from the exchange of heavier

mesons. For nucleon momentum transfers well below the

masses of the exchanged mesons, one can interpret such

exchange diagrams in terms of local contact operators with

an increasing number of derivatives (momentum inser-

tions). The LECs accompanying the resulting contact in-

teractions are then expressed in terms of the meson masses,

the meson-nucleon coupling constants and the correspond-

ing form factors. In order to allow for a meaningful com-

parison between the chiral and OBE potentials, one needs

to properly account for the chiral 2� exchange potential,

which contributes to the chiral potential but is absent in the

OBE models. Here we follow the strategy of Ref. [31] and

expand the 2� exchange potential of Eq. (3.2) in powers of

momenta. The induced contributions to the LECs entering

the 1S0 and
3S1-

3D1 partial waves read

� ~Cð2Þ
1S0 ¼

ð�8g4A þ 4g2A þ 1ÞM2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2 � 4M2

�

q
24�F4

�
~�

;

�Cð2Þ
1S0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2 � 4M2

�

q
ðð�88g4A þ 17g2A þ 2Þ~�2 þ 2ð8g4A � 4g2A � 1ÞM2

�Þ
144�F4

�
~�3

;

� ~Cð2Þ
3S1 ¼

ð8g4A � 4g2A � 1ÞM2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2 � 4M2

�

q
8�F4

�
~�

;

�Cð2Þ
3S1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2 � 4M2

�

q
ðð40g4A � 17g2A � 2Þ~�2 þ ð�16g4A þ 8g2A þ 2ÞM2

�Þ
48�F4

�
~�3

;

�Cð2Þ
	1 ¼ �g4A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2 � 4M2

�

q
4

ffiffiffi
2

p
�F4

�
~�

(3.8)
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FIG. 2 (color online). Various contributions to the quark mass dependence of the LECs ~C3S1 (left panel), C3S1 (middle panel) and C	1

(right panel) for fit 1 at N2LO, as discussed in the text. Here, mq0 denotes the physical value of the light quark mass.
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at NLO; and

� ~Cð3Þ
1S0 ¼

3g2AM
3
�ð2c1 � c3Þð2M� � ~�Þ

4F4
�
~�

;

�Cð3Þ
1S0 ¼ �g2AM�ð2M� � ~�Þð~�2ð�10c1 þ 11c3 � 4c4Þ þ 4M2

�ð2c1 � c3Þ þ 2~�M�ð2c1 � c3ÞÞ
16F4

�
~�3

;

� ~Cð3Þ
3S1 ¼

3g2AM
3
�ð2c1 � c3Þð2M� � ~�Þ

4F4
�
~�

;

�Cð3Þ
3S1 ¼ �g2AM�ð2M� � ~�Þð~�2ð�10c1 þ 11c3 � 4c4Þ þ 4M2

�ð2c1 � c3Þ þ 2~�M�ð2c1 � c3ÞÞ
16F4

�
~�3

;

�Cð3Þ
	1 ¼ c4g

2
AM�ð~�� 2M�Þ
2

ffiffiffi
2

p
F4
�
~�

(3.9)

at N2LO. In the limit ~� ! 1, corresponding to dimensional regularization, the above expressions agree with the ones
given in Ref. [31]. The size of the 2�-exchange-induced contributions to the LECs for the two extreme values of the
spectral function cutoff ~� can be read off Table II.

After these preparations, we are now in the position to test the resonance saturation hypothesis for ~Ci and Ci. The
contributions of the various mesons to the contact operators can be obtained by carrying out partial wave decomposition of
the expressions for the boson exchange contributions given in Ref. [31] and expanding the results in powers of momenta. In
Tables III and IV, the 2�-exchange-corrected values of these LECs for five cutoff combinations,

NLO: f�; ~�g ¼ f400; 500g; f550; 500g; f550; 600g; f400; 700g; f550; 700g;
N2LO: f�; ~�g ¼ f450; 500g; f600; 500g; f550; 600g; f450; 700g; f600; 700g;

(3.10)

are listed together with the values resulting from resonance
saturation based on the Bonn-B model. For the considered
cutoff combinations, all LECs are reasonably well de-
scribed in terms of resonance saturation. The agreement

is better at N2LO, most notably for the LEC C3S1. The
estimations based on resonance saturation yield numbers
which are typically within 20%–30% of the true values,
except for the LO LECs ~Ci, which appear to be somewhat

TABLE II. Contributions to the LECs ~Ci and Ci induced by the NLO and N2LO 2� exchange
potential. The ~Ci are in 104 GeV�2, and the Ci are in 104 GeV�4.

LEC Q2, ~� ¼ 500 MeV Q2, ~� ¼ 700 MeV Q3, ~� ¼ 500 MeV Q3, ~� ¼ 700 MeV

� ~C1S0 �0:004 �0:005 �0:004 �0:005
�C1S0 �0:534 �0:592 �0:365 �0:500
� ~C3S1 0.013 0.014 �0:004 �0:005
�C3S1 0.594 0.663 �0:365 �0:500
�C	1 �0:178 �0:196 0.170 0.229

TABLE III. LECs ~Ci and Ci from the NLO chiral potential for different cutoff combinations [fits 1 to 5 as defined in Eq. (3.10)],
corrected by the induced contributions of the 2� exchange potential. Also shown are values resulting from resonance saturation using
the Bonn-B model (last column). The ~Ci are in 104 GeV�2, and the Ci are in 104 GeV�4.

Fit 1 Fit 2 Fit 3 Fit 4 Fit 5 Bonn-B

~C1S0 þ � ~Cð2Þ
1S0 �0:161 �0:066 �0:095 �0:161 �0:111 �0:117

C1S0 þ �Cð2Þ
1S0 0.974 1.574 1.457 1.008 1.386 1.276

~C3S1 þ ~Cð2Þ
3S1 �0:169 �0:136 �0:135 �0:167 �0:135 �0:101

C3S1 þ �Cð2Þ
3S1 0.356 0.256 0.231 0.280 0.221 0.660

C	1 þ �Cð2Þ
	1 �0:390 �0:332 �0:325 �0:373 �0:321 �0:410
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more strongly underestimated. For the sake of complete-
ness, we also list in Table V the contributions from indi-
vidual meson exchanges in the Bonn-B model; see also
Ref. [31].

The observed reasonably good representation of the
LECs accompanying the short-range operators in terms
of heavy meson exchanges justifies modeling the chiral
extrapolations for the corresponding operators in terms of
the quark/pion mass dependence of the heavy mesons as
discussed in Sec. II B. More precisely, we assume that the
resonance saturation hypothesis remains valid at unphys-
ical values of the quark/pion masses; that is,

XIðM�Þ þ �XIðM�Þ ¼ X�
I ðM�Þ þ X�

I ðM�Þ
þ X!

I ðM�Þ þ Xrest
I : (3.11)

Here X stays for C, ~C and I ¼ f1S0; 3S1; 	1g and

�XIðM�Þ ¼ �Xð2Þ
I ðM�Þ at NLO, and �XIðM�Þ ¼

�Xð2Þ
I ðM�Þ þ �Xð3Þ

I ðM�Þ at N2LO. For the resonance con-
tributions, we take into account the quark mass dependence
of the �- and �-meson masses as given in Table I and
assume Kq

! ¼ Kq
� for the ! meson [17,18]. Neglecting the

quark mass dependence of the � and � mesons is justified
by their small contributions to the LECs. The resulting
error is expected to be well below the theoretical uncer-
tainty of our analysis. Notice that in X

�;�;!
i , we also take

into account the quark mass dependence of the nucleon
mass. The last term on the right-hand side of Eq. (3.11),
Xrest
i , denotes the contributions to the LECs not related to

the heavy boson exchanges. The (unknown) M� depen-
dence of Xrest

I is neglected in the present work. This, of

course, only makes sense if Xrest
I is small compared to the

XI; i.e., if the LECs are well described in terms of reso-
nance saturation. This is indeed the case for both the NLO
and N2LO potentials. As a representative example, we
show in Fig. 2 the individual contributions to the quark

mass dependence of ~C3S1, C3S1 and C	1 resulting from

Eq. (3.11) for fit 1 at N2LO. While strong cancellations

between the � and ! contributions are observed for ~C3S1

and C3S1, the LEC C	1 is largely saturated by the � meson.
Notice that as a result of the cancellations, there is a
sizeable uncertainty in the mq dependence of C3S1 associ-

ated with the nonresonance contribution of the last term
in Eq. (3.11).

C. Quark mass dependence of the S-wave
NN observables

Having specified the quark mass dependence of the NN
potential, we now turn to the chiral extrapolations of two-
nucleon S-wave observables. We calculate the NN phase
shifts and mixing angles by solving the nonrelativistic8

Lippmann-Schwinger (LS) equation in the partial wave
basis

Tsj
l0lðp0; pÞ ¼ Vsj

l0lðp0; pÞ þX
l00

Z 1

0

dp00p002

ð2�Þ3 Vsj
l0l00 ðp0; p00Þ

� m

p2 � p002 þ i�
Tsj
l00lðp00; pÞ (3.12)

as � ! 0þ. The relation between the on-shell S and T
matrices is given by

Ssj
l0lðpÞ ¼ �l0l � i

8�2
pmTsj

l0lðpÞ: (3.13)

Thus, the quark/pion mass dependence in the observables
emerges from both the nucleon mass entering the NN
Green’s function and the potential.
Our results for the chiral extrapolation of the deuteron

binding energy and the inverse S-wave scattering lengths at

TABLE IV. LECs ~Ci and Ci from the N2LO chiral potential for different cutoff combinations [fits 1 to 5 as defined in Eq. (3.10)],
corrected by the induced contributions of the 2� exchange potential. Also shown are values resulting from resonance saturation using
the Bonn-B model (last column). The ~Ci are in 104 GeV�2, and the Ci are in 104 GeV�4.

Fit 1 Fit 2 Fit 3 Fit 4 Fit 5 Bonn-B

~C1S0 þ � ~Cð2Þ
1S0 þ � ~Cð3Þ

1S0 �0:161 �0:116 �0:159 �0:163 �0:161 �0:117

C1S0 þ �Cð2Þ
1S0 þ �Cð3Þ

1S0 1.164 1.368 1.243 1.321 1.321 1.276

~C3S1 þ � ~Cð2Þ
3S1 þ � ~Cð3Þ

3S1 �0:162 �0:127 �0:137 �0:164 �0:130 �0:101

C3S1 þ �Cð2Þ
3S1 þ �Cð3Þ

3S1 0.574 0.423 0.523 0.720 0.568 0.660

C	1 þ �Cð2Þ
	1 þ �Cð3Þ

	1 �0:425 �0:363 �0:395 �0:467 �0:409 �0:410

TABLE V. Contributions of the various boson exchanges to the
LECs for the Bonn-B potential and the corresponding sum. The
~Ci are in 104 GeV�2, and the Ci are in 104 GeV�4.

LEC � � � ! � Sum

~Cres
1S0 0.000 �0:392 �0:023 0.287 0.011 �0:117

Cres
1S0 0.033 1.513 0.036 �0:560 0.254 1.276
~Cres
3S1 0.000 �0:424 0.070 0.287 �0:034 �0:101

Cres
3S1 �0:011 1.030 �0:108 �0:777 0.526 0.660

Cres
	1 �0:032 0.000 0.000 0.077 �0:455 �0:410

8Relativistic corrections to the two-nucleon Green’s function
need to be taken into account starting from N3LO, which is
beyond the scope of the present work.
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NLO and N2LO are visualised in Figs. 3 and 4. In these
figures, mq0 denotes the physical value of the light quark

mass—note that mq=mq0 is, to a very good approximation,

equal toM2
�=M

2
�;physical. In these calculations, we also took

into account the implicit quarkmass dependence in the two-
pion exchange potential induced by gA and F�, which is,
strictly speaking, a higher-order effect.Wewill comment on
the size of these higher-order contributions in the next
section. Also, as already explained above, we follow here
our general strategy and use the most accurate available
information regarding the mq dependence of m, and espe-

cially of gA, coming in particular from lattice QCD simu-
lations rather than sticking to the strict chiral expansion at a
given order. Note also that within the LS framework, not all
contributions to the quark mass dependence are generated,
but this effect is well within the error bands discussed later.

We observe the opposite trends in the 1S0 and 3S1
channels when changing the value of the quark mass. In
particular, the interaction between the nucleons is found to

become more attractive in the 1S0 channel with increasing

light quark masses, while it becomes more repulsive in the
3S1 partial wave. The obtained results do not exclude the
possibility of a bound spin singlet state at sufficiently large
quark masses. The deuteron is found to remain bound for
all values of the quark masses considered. Notice further
that our results indicate that the infrared limit cycle pro-
posed in Ref. [68] (see also Ref. [69]) is unlikely to emerge
in the range of the quark masses considered in the present
analysis. A detailed comparison of our findings with the
available calculations will be presented in the next section.
Let us now address the theoretical uncertainty of our

calculations. It is comforting to see that the results for the

quark mass dependence of the deuteron binding energy and

the S-wave scattering lengths calculated at NLO andN2LO
are consistent with each other. The NLO and N2LO bands

resulting from the cutoff variation as described above

overlap, except for large quark masses in the spin triplet

channel. This is in line with the observation that the cutoff

variation at NLO underestimates the true theoretical un-

certainty at this order, since the width of the bands at both

NLO and N2LO measures the impact of the neglected

order-Q4 contact interactions. A more complete discussion

of the theoretical uncertainties of the calculated NN
observables will be given in Sec. IV. Notice further that

the chiral extrapolations become rather uncertain for small

quark masses, which at first sight might appear counter-

intuitive. This, however, has to be expected, given that

the LECs accompanying contact interactions are fit to

experimental data which obviously correspond to the

physical quark masses. In addition, one should also keep

in mind that we do not rely here on the chiral expansion

of the short-range forces, contrary to Refs. [29,34]. Our

approach, utilizing resonance saturation and the K factors

for heavy meson masses, cannot be expected to yield

reliable results at low quark masses, where short-range

contributions nonanalytic in quark masses, which are not

explicitly taken into account in our calculations, should

play an important role.
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FIG. 3 (color online). Quark mass dependence of the deuteron
binding energy at NLO (light-shaded band) and N2LO (dark-
shaded band). The bands correspond to the cutoff variation as
discussed in the text. The solid dot shows the deuteron binding
energy at the physical quark mass.
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FIG. 4 (color online). Quark mass dependence of the inverse S-wave scattering lengths at NLO (light-shaded band) and N2LO (dark-
shaded band). The bands correspond to the cutoff variation as discussed in the text. The solid dots show the inverse scattering lengths at
the physical quark mass.
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Finally, we list in Table VI the individual contributions
of various mechanisms to the dimensionless quantities
Kq

deut and Kq
a;I, with I ¼ f1S0; 3S1g, defined as

Kq
deut ¼

�Edeut=�mq

Edeut=mq

; Kq
a;I ¼

�aI=�mq

aI=mq

: (3.14)

We observe a reasonable convergence pattern in the triplet
channel, with the main effect coming from the LO terms in
the potential and the contributions due to NLOþ NNLO
terms and the quark mass dependence of the nucleon mass
being considerably smaller. The much larger uncertainty in
the singlet channel can be explained by the known feature
that the one-pion exchange yields only a minor contribu-
tion to the 1S0 phase shift. The dominant effects emerge

from two-pion exchange and shorter-range terms whose
quark mass dependence is less constrained than that asso-
ciated with the longest-range one-pion exchange potential.

IV. DISCUSSION

We are now in the position to discuss in some detail the
theoretical uncertainty of our calculations. Its main sources
are due to

(1) The uncertainty associated with the chiral extrapo-
lation of the nucleon mass m as well as the axial
coupling gA and the pion decay constant F�, which
impact the mq dependence of the long-range

interactions.
(2) The uncertainty due to truncating the chiral expan-

sion of the potential at N2LO.
(3) The uncertainty associated with the resonance satu-

ration hypothesis for short-range operators and the
employed quark mass dependence of the heavy
meson properties.

The chiral dependence of F� is well reproduced at
the leading-loop order in ChPT, so that the associated
uncertainty has a much smaller impact on the two-nucleon
observables considered in this work as compared to other
sources. On the other hand, the chiral expansion of gA is
known to converge slowly. As explained in Sec. III A, we
incorporate the order-Q4 counterterm and use the lattice
QCD result at M� ¼ 353 MeV as an input to tune the
corresponding LEC. This allows us to obtain a realistic
description of the quark mass dependence of gA. We check
the robustness of this procedure by allowing for a 10%
variation of the lattice point. As visualized in the left panel
of Fig. 5, this induces a shift in the binding energies which

TABLE VI. Various contributions to Kq
a;1S0, K

q
a;3S1 and Kq

deut. The numbers correspond to the third cutoff combination in Eq. (3.10),
while the errors result from the cutoff variations.

Kq
a;1S0 Kq

a;3S1 Kq
deut

NLO N2LO NLO N2LO NLO N2LO

V1� þ Vð0Þ
cont 0:2þ0:1

�0:6 �0:8þ0:8
�0:5 0:36þ0:09

�0:03 0:54þ0:00
�0:05 �0:87þ0:06

�0:22 �1:28þ0:12
�0:0

þV2� þ Vð2Þ
cont �1:3þ2:7

�0:3 1:8þ1:5
�1:5 0:24þ0:06

�0:34 0:43þ0:08
�0:11 �0:66þ0:80

�0:13 �1:11þ0:27
�0:19

þm (LS equation) �0:6þ2:6
�0:2 2:3þ1:6

�1:5 0:13þ0:05
�0:33 0:32þ0:08

�0:10 �0:41þ0:76
�0:13 �0:86þ0:24

�0:18

0.5 1 1.5 2
mq / mq0

-4

-3

-2

-1

0

E
  [

M
eV

]

g
A

: uncertainty in d
16

g
A

: 10% variation of the lattice point

2π-exchange: strict order Q
3

nucleon mass, order Q
2

NNLO, fit 3

0.5 1 1.5 2
m

q
/ m

q0

-4

-3

-2

-1

0

E
  [

M
eV

]

uncertainty in Kσ
uncertainty in Kω
uncertainty in Kρ

NNLO, fit 3

FIG. 5 (color online). Quark mass dependence of the deuteron binding energy at NNLO, fit 3 (solid lines). Left panel: Theoretical
uncertainty associated with the quark mass dependence of the long-range interactions and the nucleon mass. The hatched band
corresponds to the variation of �d16 in the range �d16 ¼ �0:91 to �2:61 GeV�2 (see Ref. [61]). The light shaded band results from a
10% variation of the lattice point used to fix the order-Q4 counterterm in Eq. (3.5). Finally, the dashed line shows the effect of
neglecting the quark mass dependence of gA and F� in the 2� exchange potential, while the dash-dotted line shows the effect of using
the order-Q2 rather than order-Q3 expression [Eq. (3.6)] for the chiral extrapolation of the nucleon mass. Right panel: Theoretical
uncertainty induced by the errors in the quark mass dependence of the heavy meson masses according to Table I.
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is considerably smaller than our estimated theoretical
uncertainty, cf. Fig. 3. On the other hand, the uncertainty
in the determination of the LEC, �d16, �d16 ¼ �0:91 to
�2:61 GeV�2 [61], leads to a sizeable spread which is
comparable with the one emerging from the cutoff varia-
tion. This can be expected, since the value of �d16 influences
the shape of the quark mass dependence of gA (larger-
magnitude values lead to a more flat behavior); see Fig. 1.

The uncertainty due to truncating the chiral expansion
for the potential atN2LOwas already roughly estimated by
the cutoff variations; see Fig. 3. As an additional check, we
calculated the impact of the M� dependence of gA and F�

in the 2� exchange potential, which nominally starts to
contribute at N3LO (i.e., order Q4), which is beyond the
accuracy of this work. The size of this effect is given by the
difference between the solid and dashed lines in the left
panel of Fig. 5 and is indeed within the estimated theoreti-
cal accuracy at N2LO. Similarly, it is, strictly speaking,
sufficient to use the order-Q2 rather than the order-Q3

expression for the M� dependence of the nucleon mass at
N2LO. The induced difference agrees well with the esti-
mations based on dimensional arguments and is within the
accuracy of our calculation; see the dash-dotted line in the
left panel of Fig. 5.

Presumably, the most important source of uncertainty is
due to the quark mass dependence of the contact inter-
actions. While resonance saturation itself seems, at least in
principle, to provide a fairly accurate way to relate the
chiral extrapolations of the short-range terms to the prop-
erties of heavy mesons which are more easily accessible
theoretically, it is difficult to estimate the theoretical un-
certainty associated with this procedure. We therefore
restrict ourselves to propagating the errors in theKq factors
for the heavy meson masses (see Table I) through our
analysis. These errors turn out to be strongly magnified
due to the large cancellations between the contributions of
the � and!mesons; see Fig. 2. The resulting uncertainty in
the deuteron binding energy appears to be comparable
to the uncertainty emerging from the cutoff variation and
the chiral extrapolations of gA; see Fig. 5. We further
emphasize that using the linear approximation in terms
of the K factors for the quark mass dependence of the
heavy mesons is yet another approximation (if one goes
sufficiently far away from the physical point). It is, how-
ever, irrelevant, as long as one is only interested in the K
factors, and can be easily avoided if necessary.

The final results for theK factors of the deuteron binding
energy and the corresponding scattering lengths read

Kq
a;1S0 ¼ 2:3þ1:9

�1:8; Kq
a;3S1 ¼ 0:32þ0:17

�0:18;

Kq
deut ¼ �0:86þ0:45

�0:50;
(4.1)

where the numbers are given for the third cutoff combina-
tion at N2LO and the central values of Kq

�;� listed in
Table I. The theoretical uncertainties due to truncating
higher-order terms (estimated by the cutoff variation), the

uncertainty in �d16, the lattice calculation of gA, and the
errors in Kq

�;� are added in quadrature.
The results given in Eq. (4.1) can be compared with

those of Ref. [29], carried out at NLO in chiral EFT:

Kq
a;1S0 ¼ 5� 5; Kq

a;3S1 ¼ 1:1� 0:6;

Kq
deut ¼ �2:8� 1:2;

(4.2)

where the numbers are inferred from Figs. 11 and 12 of this
work. A more conservative error estimation, taking into
account a larger variation in the LEC �d16 and in the quark
mass dependence of the lowest-order spin triplet contact
interaction, was performed in Ref. [70], leading to

Kq
a;3S1 ¼ 1:1� 0:9; Kq

deut ¼ �2:9� 1:8: (4.3)

As already pointed out before, the major differences be-
tween the present analysis and that of Refs. [29,70] are in
using a more realistic result for the chiral expansion of gA,
employing resonance saturation to describe the quark mass
dependence of contact interactions and extending the cal-
culations to N2LO. These improvements have allowed us
to determine the values for the K factors with higher
accuracy.
The results for both 1S0 and 3S1 channels given above

are consistent with the chiral EFT values calculated in
Ref. [71] using the Kaplan-Savage-Wise approach:

Kq
a;1S0 ¼ 2:4� 3:0; Kq

a;3S1 ¼ 3:0� 3:5;

Kq
deut ¼ �7� 6;

(4.4)

where the numbers correspond to Figs. 1, 2, and 4
(� ¼ 1=5) of that work.
More recently, attempts have been made to combine

chiral EFT with lattice QCD calculations. In particular,
the NPLQCD Collaboration has determined the regions
for the S-wave scattering lengths consistent with their
lattice data, a1S0 ¼ 0:63� 0:50 (5–10) fm and a3S1 ¼
0:63� 0:74 (5–9) fm obtained at M� ¼ 353:7�
2:1 MeV [72]. Assuming the validity of the employed
chiral EFT frameworks in the considered range of pion
masses, they determined the following constraints for the
allowed regions of the K factors (the numbers below are
extracted from Figs. 3, 4 of Ref. [72]):

Kq
a;1S0 & �4 [ Kq

a;1S0 * 2 (4.5)

based on the Weinberg approach, and

Kq
a;1S0 * 6; �5 & Kq

a;3S1 & �0:2 [ 0:3 & Kq
a;3S1 & 9

(4.6)

using the chiral EFT formulation of Ref. [73]. For a more
recent extrapolation of the NPLQCD numbers to physical
quark masses, see Ref. [74]. Very recently, a similar analy-
sis has been carried out using the framework of chiral EFT
with dibaryon fields [33], yielding Kq

a;3S1 ��0:4 (see

Fig. 9 of that work), and a positive value for Kq
a;1S0 (which
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we were unable to infer from that figure). While this result
for Kq

a;3S1 disagrees with our findings, it is difficult to draw

conclusions, since Ref. [33] does not provide an estimate
of the theoretical uncertainty associated with using the
lattice QCD results at large values of the pion mass as
input in the calculations. The same comment also applies
to the results of Ref. [72] given in Eqs. (4.5) and (4.6), as
well as the results of Ref. [74].

Last but not least, it is comforting to see that our results
are in good agreement with those of Ref. [12], where the
values Kq

deut ¼ �0:75, �0:84 and �1:39 are reported for

three different models of the two-nucleon potentials. Even
more important, however, is that we are able to carefully
estimate the theoretical uncertainty for this quantity.

V. CONSEQUENCES FOR HEAVIER NUCLEI

So far, we focused on the two-nucleon system; however,
the quark mass dependences of 3He and 4He are also
relevant for BBN. In order to estimate the impact of the
quark mass dependences of the deuteron binding energy
and the 1S0 scattering length on BBN, we here use the

methods of Ref. [28]—actually, what we have provided in
the previous sections is an update of the input used in
Ref. [28], which basically came from Ref. [29].

The quark mass dependences of the binding energies of
3He and 4He can be calculated from

Kq
AHe

¼ Kq
a;1S0K

a;1S0
AHe

þ Kq
deutK

deut
AHe

; (5.1)

where Kx
AHe

¼ x=EAHeð�EAHe=�xÞ was defined in analogy

to the quantities given above. In Ref. [28], the coefficients
were calculated from pionless EFT. They read, including
the uncertainties quoted in Ref. [28], as follows:

Ka;1S0
3He

¼ 0:12� 0:01; Kdeut
3He

¼ 1:41� 0:01;

Ka;1S0
4He

¼ 0:037� 0:011; Kdeut
4He

¼ 0:74� 0:22:
(5.2)

From this, using the uncertainties for theK factors as given
in Eq. (4.1), we get

Kq
3He

¼�0:94�0:75; Kq
4He

¼�0:55�0:42; (5.3)

where the uncertainties of Ref. [28] and those quoted in
Eq. (4.1) were added in quadrature. Note that there has
been a recent lattice study of the deuteron, 3He and 4He at a
pion mass of 510 MeV and various lattice sizes [75]. As
this pion mass is rather large, we refrain from trying to
extract the corresponding K factors from that work. In the
future, when such studies become available at lower values
of M�, they will provide valuable constraints on the quark
mass dependence of nuclear binding energies. Note further
that the K factor for 4He is consistent for the central value
obtained from a recent nuclear lattice calculation using the
same scattering lengths and K factors, Kq

4He
¼ �0:32 [7].

VI. IMPACT ON BBN

In Table VII, we present our calculated BBN response
matrix. The quantities presented are the linear dependences
of calculated primordial abundances Ya to small variations
of nuclear binding energies and scattering lengths X,
@ lnYa=@ lnX. They were obtained using the methods
and codes (modified from the publicly available Kawano
code [76]) described in Ref. [13]. Updated reaction rates
are taken from Refs. [77–80]; see Ref. [13] for details.
Unlike in previous studies, we have separated the effect of
Bdeut from the singlet scattering length as. The scattering
length affects the rate of the reaction nðp; dÞ
 via the
equation (see, e.g., Ref. [81])

h�vi � ðBdeutÞ5=2=	v;
where 	v is the position of the singlet virtual level. The
baryon-to-photon ratio � ¼ 6:19ð15Þ � 10�10 is taken
from the latest WMAP7 data [82].
Final sensitivities of primordial abundances Ya to the

variation of mq are obtained by combining the results in

Table VII with Eqs. (4.1) and (5.3) using

� lnYa

� lnmq
¼ X

Xi

@ lnYa

@ lnXi

Kq
Xi
: (6.1)

Error estimates must be performed carefully, since the Kq
Xi

are derived from the same sources via Eq. (5.1). We have
taken the correlations in errors into account when deriving
our final sensitivities. The uncertainties of Eq. (5.2) are also
correlated to some extent, but since they are small anyway,
we may neglect this correlation. The final sensitivities of
primordial abundances to quark mass variation are given in
Table VIII, along with final values of quark mass variation
at the time of big bang nucleosynthesis extracted from
the comparison of observed and calculated primordial
abundances.
We see from Table VIII that the deuterium and 4He data

give consistent limits on �mq=mq. Taking a weighted

TABLE VII. BBN response matrix @ lnYa=@ lnX at the
baryon-to-photon ratio � ¼ 6:19� 10�10. The Ya values are
the number ratios of primordial isotope abundances to hydrogen,
except for 4He, which is the mass ratio 4He=H.

X d 3He 4He 6Li 7Li

as �0:39 0.17 0.01 �0:38 2.64

Bdeut �2:91 �2:08 0.67 �6:57 9.44

Btrit �0:27 �2:36 0.01 �0:26 �3:84
B3He �2:38 3.85 0.01 �5:72 �8:27
B4He �0:03 �0:84 0.00 �69:8 �57:4
B6Li 0.00 0.00 0.00 78.9 0.00

B7Li 0.03 0.01 0.00 0.02 �25:1
B7Be 0.00 0.00 0.00 0.00 99.1

� 0.41 0.14 0.72 1.36 0.43
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average of the two results gives �mq=mq ¼ 0:02� 0:04,

our final result.

VII. EFFECT OF THE NEUTRON LIFETIME

Our limit �mq=mq ¼ 0:02� 0:04 at first appears much

weaker than the limit derived by Bedaque et al. [28], who
obtained�1% & �mq=mq & 0:7%, although our input for

the two-nucleon parameters is more accurate. The origin of
the difference is that, contrary to this work as well as
previous works [10, 12, 13], in Ref. [28], a quark mass
dependence of the neutron lifetime, �, was included. Since
essentially all free neutrons at the onset of BBN end up in
4He nuclei, and changing � changes the neutron-to-proton
number ratio at BBN, the 4He abundance is quite sensitive
to the neutron decay rate. Therefore, it is worthwhile to
examine the assumptions made in Ref. [28] in more detail.

Neutron beta decay becomes possible as a consequence
of a nonvanishing proton-neutron mass difference, which is
nonzero due to an apparent violation of the isospin sym-
metry in the Standard Model caused by mu � md and
electromagnetic effects driven by different quark charges.
One finds

�mN ¼ mn �mp ¼ �mstr
N þ �mem

N ¼ 2 MeV–0:7 MeV;

(7.1)

with an uncertainty of 0.3 MeV for the individual contri-
butions [85].9 Thus, in order to quantify how �mN , and
thus �, changes with the quark masses, an assumption has
to be made on how the other Standard Model parameters
change—as we will see, of particular importance is the
change of the electron mass relative to the quark masses.

The neutron width �� 1=� can be written as

� ¼ ðGF cos �CÞ2
2�3

m5
eð1þ 3g2AÞf

�
�mN

me

�
; (7.2)

where GF is the Fermi constant, �C is the Cabibbo angle,
me is the electron mass, and gA is the nucleon axial decay
constant. The function fð�mN=meÞ describes the phase
space and Coulomb attraction; an explicit form is pre-
sented in Ref. [28].

In order to proceed, Ref. [28] made the assumption that
when mq changes, mu=md, as well as all other Standard

Model parameters, stays constant. This clearly introduces
some model dependence. Based on this assumption, one
gets a very strong sensitivity of � to mq via the factor f:

� ln �

� lnmq

’ � ln fð�mN=meÞ
� lnmq

¼ f0

f

���������mN=me

�
�ð�mN=meÞ

� lnmq

�

¼ 10:4� 1:5; (7.3)

where f0=f is numerically determined to be 2.57 at the
physical value of �mN=me. Thus, the large sensitivity to
the variation of the quark mass, found in Ref. [28], comes
directly from model-dependent assumptions, which allow
one to write

�ð�mN=meÞ=� lnmq ¼ �mstr
N =me ¼ 4:

One the other hand, had one assumed that mu �md is
independent of the quark mass, the value found for
� ln �=� lnmq would be significantly smaller.

In general, how possible changes of fundamental pa-
rameters are interrelated depends on the model assumed
for the physics beyond the Standard Model. In fact, the
relation mu=md ¼ constant emerges naturally from a sce-
nario where all elementary particle masses are proportional
to a varying Higgs vacuum expectation value (VEV), v
(relative to�QCD), but the gauge and Yukawa couplings are

independent of it. However, in this caseme and the mass of
the weak gauge boson,mW , are also proportional to v. One
finds, therefore, that �mstr

N =me has no dependence on v,
and the sensitivity of f comes from the variation in me

relative to the electromagnetic component of �mN:

� ln fð�mN=meÞ
� lnv

¼ f0

f

���������mN=me

���mem
N

me

�
¼ 3:6� 1:5:

(7.4)

Under our assumption that � lnmW ¼ � lnme ¼
� lnmq ¼ � lnv (i.e., all masses vary with the Higgs

VEV), and noting that GF � 1=m2
W , from Eq. (7.2), we

obtain

� ln �

� lnv
¼ 1þ 3g2A

1þ 3g2A

� ln g2A
� lnv

þ � ln fð�mN=meÞ
� lnv

¼ 4:8� 1:5; (7.5)

where we used the quark mass dependence of g2A discussed
in Sec. III A, which gives

TABLE VIII. Extracted values of quark mass variation, �mq=mq, during BBN from the
comparison of observed and calculated primordial abundances, Ya. Observed values are taken
from the Particle Data Group review [83], and calculated values are taken from Ref. [84].

Ya Observed Calculated � lnYa=� lnmq �mq=mq

[deut/H] 2:82ð21Þ � 10�5 2:49ð17Þ � 10�5 3.9 (3.4) 0.034 (42)
4HeðYpÞ 0.249 (9) 0.2486 (2) �0:56ð34Þ �0:003ð65Þ

9The more recent extraction of Ref. [86] finds
�mem

N ¼ �1:3� 0:5 MeV—consistent within uncertainties.

J. C. BERENGUT et al. PHYSICAL REVIEW D 87, 085018 (2013)

085018-14



� lng2A
� lnv

¼ 0:2� 0:1: (7.6)

The final sensitivity to neutron decay rate, � ln �=� lnv ¼
�4:8, is reduced by around a factor of 2 compared with
Ref. [28], but it is still very large even within our model.
Note that � ln �=� lnv ¼ �4:9may also be obtained using
Table IV of Dent et al. [10] under the same assumptions,
and a value of �4:8 can be extracted from Eq. (7) of
Ref. [87]. Multiplying � ln �=� lnv by the sensitivity
coefficients � lnYa=� ln � presented in Table VII and
adding the binding energy and scattering length sensitiv-
ities presented in Table VIII (using our assumption
� lnmq ¼ � lnv), we obtain

� lnYdeut

� lnv
¼ 1:9ð3:4Þ; � lnY4He

� lnv
¼ �4:0ð0:3Þ: (7.7)

In this model, the � sensitivity reduces the deuterium
sensitivity to v by a factor of 2 and entirely dominates
the 4He sensitivity. The final limits on Higgs VEV varia-
tion from deuterium and helium abundances are �v=v ¼
0:07� 0:13 and �v=v ¼ 0:000� 0:009, respectively.
However, we should include here the disclaimer that,
although we included the effects of isospin violation in
the evaluation of the neutron beta decay, all few-nucleon
calculations were done imposing isospin symmetry. One
expects these effects to be small compared to that from
neutron beta decay; still, for consistency, such effects will
have to be included in the future.

Therefore, imposing the model that all masses scale with
v and including the variation of �; as expected, the results
are entirely dominated by the 4He data, and the limits are
rather tight, j�v=vj< 0:9%. Finally, we note that this result
does not include all possible mass variations: for example,
in Ref. [10], the dependences of primordial abundances on
me are calculated assuming constant � (that is, the me

dependence that does not come via � variation). In com-
parison with the dependence from �, these are rather small,
� lnYa=� lnme ¼ �0:16 and �0:71 for deuterium and
4He, respectively. Including this effect would marginally
tighten our limits on �v=v.

VIII. SUMMARY

We have presented a systematic study of the impact of
quark mass variations on properties of the two-nucleon
system based on chiral perturbation theory combined with
nonperturbative techniques. Since the approach is based on
an effective field theory, a reliable error estimate becomes
feasible—a clear advantage compared to purely phenome-
nological studies as reported, e.g., in Refs. [16–21]. We
include the uncertainties from the quark mass dependence
of meson masses as well as those from the treatment of the
NN interaction derived from chiral perturabtion theory.
Here the heavy (heavier than the pion) meson masses enter
into the expressions for four-nucleon contact terms with

strengths fixed from a resonance saturation hypothesis—the
uncertainty induced by this method is not included.
However, support for this procedure comes from the
apparent quantitative success of the resonance saturation
for four-nucleon contact interactions. In particular, we find

Kq
a;1S0 ¼ 2:3þ1:9

�1:8; Kq
a;3S1 ¼ 0:32þ0:17

�0:18;

Kq
deut ¼ �0:86þ0:45

�0:50;
(8.1)

where the uncertainties are significantly reduced compared
to the numbers derived from earlier studies within effective
field theory [29,30]. The numbers for the K factors pre-
sented in this work are the necessary input for studies that
address the quark mass dependence of nuclear properties.
These studies allow one to quantify howmuch fine tuning is
necessary amongst the StandardModel parameters to allow
life to develop—for the most recent developments in this
respect, see Ref. [7].
From the given K factors, we derived the quark mass

dependence of helium nuclei using the techniques of
Ref. [28]. Additionally, we have presented a new response
matrix of calculated primordial abundances to variations in
nuclear binding energies and the scattering length of the
important two-nucleon 1S0 channel. Combining these, we

have derived a stringent limit on the quark mass variation
at the time of big bang nucleosynthesis, �mq=mq ¼
0:02� 0:04.
In previous phenomenological studies, the bounds

derived from the deuteron and 4He abundances are, e.g.,
0:009� 0:19 and �0:005� 0:038, respectively, from
Ref. [12]; and�0:002� 0:037 and 0:012� 0:011, respec-
tively, from Ref. [13]. The uncertainties are significantly
smaller compared to ours, since in these works no attempt
was made to quanitify the theoretical uncertainty—in
Ref. [12], it is stated that the uncertainty is expected to
be of the order of a factor of 2. In this sense, although the
uncertainty of our work seems larger, still the bound de-
rived is more robust, since a careful uncertainty estimate
was done.
In Ref. [28], a range�1% � �mq=mq � 0:7% is quoted

for the quark mass variation allowed by BBN. In their
calculation, the sensitivity is dominated by variation of
the neutron lifetime, �, which strongly affects the 4He
abundances which are well constrained observationally.
We have shown that this calculation is based on a model-
dependent assumption. Under the reasonable assumption
that all elementary particle masses are proportional to v,
the Higgs vacuum expectation value, the sensitivity of � to
v is shown to be quite large (although only half that found
by Ref. [28]), and we obtain a limit j�v=vj< 0:9%, which
within this model translates into j�mq=mqj< 0:9%.

In Refs. [12,13] also, bounds are derived from the 7Li
abundance that are different from zero, namely �mq=mq ¼
0:016� 0:005 and �mq=mq ¼ 0:013� 0:002, respec-

tively. Also here, the uncertainties do not include the
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theoretical uncertainty of the input quantities. In our work
we have not included the 7Li abundance for several rea-
sons. Firstly, the 7Li abundance is very sensitive to varia-
tions in 7Be and 7Li binding energies, as well as A ¼ 5
resonances [13], which have not yet been calculated using
the methodology of this paper. In the future, our study can
be extended into this regime, as soon as systematic studies
of the quark mass dependence of heavier nuclei are avail-
able, e.g., employing methods of nuclear lattice calcula-
tions—see Refs. [88,89] and references therein. In fact, the
first results within that framework for 4He, 8Be and 12C can
be found in Ref. [7]. Secondly, the discrepancy between
theory and observation is a factor of �3, which can make
nonlinear effects important. Lastly, the observational status
and interpretation of the ‘‘Spite plateau’’ of lithium abun-
dances in Population III stars is still uncertain (see, e.g.,
Refs. [83,90,91] and references therein).
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[59] E. Epelbaum, W. Glöckle, and U.-G. Meißner, Eur. Phys.

J. A 19, 125 (2004).
[60] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142

(1984).
[61] N. Fettes, Ph.D. thesis, University Bonn, 2000.
[62] V. Bernard and U.-G. Meißner, Phys. Lett. B 639, 278

(2006).

[63] R. G. Edwards, G. Fleming, Ph. Hägler, J. Negele, K.
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