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I. INTRODUCTION

Kinetic theory [1] has wide applications in condensed
matter physics, nuclear physics, astrophysics, and cosmol-
ogy. There is, however, a key deficiency in the conven-
tional relativistic kinetic framework: it misses the effect of
triangle anomalies [2,3]—an important feature of relativ-
istic quantum field theories. Recently it has been shown in
Ref. [4]1 that a kinetic theory for Fermi liquids can be
modified to include such anomalous effects by taking into
account the Berry phase and Berry curvature [12]—the
notions extensively studied and widely applied in con-
densed matter physics [13]. It was shown that not only
the form of the transport equation but also the definition of
the particle number current must be modified when the
Berry curvature has a nonzero flux through the Fermi
surface. A consequence of this modification is the genera-
tion of parity-violating and dissipationless current in the
presence of magnetic field called the chiral magnetic effect
[14–17]. This had been previously found in the perturba-
tion theory [14,17] and the gauge/gravity duality [18,19]
and was incorporated in the framework of hydrodynamics
[20] (see also Refs. [21,22] for more recent developments).
The chiral magnetic effect may have been experimentally
observed in relativistic heavy ion collisions [17,23] and is
potentially observable in Weyl semimetals which possess
band-touching points [24–26].

On the other hand, one should be able to derive the
kinetic theories from the underlying quantum field theories
by following the standard procedure: starting from
the equations of motion for the two-point function
hc ðxÞc yðyÞi and performing a derivative expansion for
its gauge-covariant Wigner transform, one arrives at the
Vlasov equation (see, e.g., Ref. [27] for a review). So far,
Berry curvature corrections to the relativistic kinetic theory

have been ignored in the field theoretic derivation. Also,
microscopic origin of the modification to the particle num-
ber current is not yet clear.
In this paper, we microscopically derive the kinetic

theory with Berry curvature corrections from underlying
quantum field theories.2 For concreteness, we consider the
system of relativistic chiral fermions at finite chemical
potential � (which is known to have a nonzero Berry
curvature flux). Our starting point is the high density
effective theory [30,31] that describes the physics near
the Fermi surface of chiral fermions. In this effective
theory, one decomposes two-component chiral fermions
into single-component particles cþ with positive energy
E ¼ jpj �� and antiparticles c� with negative energy
E ¼ �jpj ��. Then one usually concentrates on the for-
mer with E� 0 for jpj ��, while neglecting the latter
with E��2�; picking up only cþ degrees of freedom
leads to the conventional Vlasov equation. As we shall
demonstrate in this paper, however, if one carefully inte-
grates out c� degrees of freedom, Berry curvature correc-
tions emerge in the kinetic theory from the mixing between
cþ and c� (or c� and c�). The modification to
Liouville’s theorem on the phase space known in the con-
densed matter literature [32,33] and the modification to the
current found in Ref. [4] can be naturally understood from
this deliberate integrating out procedure [see Eqs. (71) and
(76)]. Apparently, the essential ingredient in this field
theoretic argument to lead to Berry curvature corrections
is a Fermi surface of chiral fermions.
We also compute the parity-violating correlation func-

tion using the kinetic theory with Berry curvature correc-
tions. In the case of the conventional Vlasov equation, it is
known that the parity-even correlation function computed
in the kinetic theory coincides with the one in the pertur-
bation theory under the hard dense loop approximation
[27,34]. In this paper, we will see that the parity-odd
correlation function derived from the new kinetic theory

1See Refs. [5–9] for further investigations and applications.
See also Refs. [10,11] for different approaches to derive kinetic
equations with triangle anomalies without referring to the Berry
curvature. 2See Refs. [28,29] for related attempts.
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is equivalent to the result in the perturbation theory beyond
the leading-order hard dense loop approximation.

The paper is organized as follows. In Sec. II, we review
the kinetic theory with Berry curvature corrections.
We also derive a new relation for the spin magnetic
moment of quasiparticles in Fermi liquids. In Sec. III, we
derive the new kinetic theory starting from quantum field
theories. In Sec. IV, we compute the parity-violating cor-
relation functions using both the new kinetic theory and
perturbation theory and confirm their agreement. Section V
is devoted to our conclusions.

Throughout the paper, we consider sufficiently low
temperature regime T � � where the Fermi surface is
well defined. We also concentrate on the collisionless limit
of the kinetic theory.

II. KINETIC THEORY WITH BERRY CURVATURE

In this section, we review the kinetic theory in the
presence of the Berry curvature which exhibits triangle
anomalies [4] (see also Refs. [7,9]) and provide the proper
definitions of particle number density and current. We also
derive the dispersion relation of quasiparticles according to
the constraints of Lorentz invariance.

A. Berry curvature and Poisson brackets

We first consider a single chiral fermion expressed by
the two-component spinor up satisfying the Weyl equation

ð� � pÞup ¼ �jpjup; (1)

where the signs þ and � correspond to right-handed and
left-handed fermions, respectively. The two-component
spinor described above has a nonzero Berry connection
defined by [12]

iAp � uyprpup; (2)

and a nonzero Berry curvature,

�p � rp �Ap ¼ � p̂

2jpj2 ; (3)

where p̂ ¼ p=jpj is a unit vector. Equations (2) and (3) can
be regarded as the fictitious vector potential and magnetic
field in the momentum space. This fictitious magnetic field
can be associated with the one from a ‘‘magnetic mono-
pole’’ with the charge �1=2 put in the center of the
momentum space. As a result, the motion of chiral fermi-
ons is affected by the Berry curvature in the momentum
space, in addition to the usual electromagnetic fields in the
coordinate space. In particular, the effects of the Berry
curvature work oppositely between right-handed and left-
handed chiral fermions.

Let us now consider the action of a single quasiparticle
in the presence of the electromagnetic fields and Berry
curvature [32,33],

S ¼
Z

dt½pi _xi þ AiðxÞ _xi �AiðpÞ _pi � �pðxÞ � A0ðxÞ�:
(4)

Note that the quasiparticle energy �p is a function of x

in general; indeed, chiral fermions have the magnetic
moment at finite chemical potential � and their energy
depends on the magnetic field BðxÞ [see Eq. (43) below].
The action (4) can be summarized in the following form by
combining space x and momentum p into a set of variables
�a ða ¼ 1; . . . ; 6Þ,

S ¼
Z

dt½�!að�Þ _�a �Hð�Þ�; (5)

where Hð�Þ ¼ �p þ A0 is the Hamiltonian.

The equations of motion of the action (5) read

!ab
_�b ¼ �@aH; (6)

where !ab ¼ @a!b � @b!a and @a � @=@�a. This equa-
tion can be rewritten as

_�a ¼ �!ab@bH; (7)

where !ab � ð!�1Þab is the inverse matrix of !ab. Here
we assume the existence of the inverse matrix, i.e., ! �
det!ab � 0. Equation (7) can be interpreted as

_�a ¼ fH; �ag ¼ �f�a; �bg @H
@�b

; (8)

once we define the Poisson brackets as

f�a; �bg ¼ !ab: (9)

The explicit forms of the Poisson brackets for the action (5)
read [33]

fpi; pjg ¼ � �ijkBk

1þB �� ;

fxi; xjg ¼
�ijk�k

1þ B �� ;

fpi; xjg ¼
�ij þ�iBj

1þ B �� ;

(10)

where Bi ¼ �ijk@Ak=@xj.
These Poisson brackets should be compared with the

usual ones in the absence of the Berry curvature and
electromagnetic fields

fpi; pjg ¼ 0; fxi; xjg ¼ 0; fpi; xjg ¼ �ij; (11)

whose invariant phase space is dpdx=ð2�Þ3. As a conse-
quence of the modifications to the Poisson brackets above,
the invariant phase space is modified to [32]

d� ¼ ffiffiffiffi
!

p
d� ¼ ð1þ B ��pÞ dpdxð2�Þ3 ; (12)

where ! � det!ab.
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B. Kinetic theory with Berry curvature
and triangle anomalies

Let us construct the collisionless kinetic theory incor-
porating the effects of the Berry curvature. If collisions
between particles are negligible, each particle constitutes a
closed subsystem. According to Liouville’s theorem,
which states that a volume element in the phase space
does not change during its time evolution, the one-particle
distribution function nð�Þ would obey dn=dt ¼ 0.
However, the invariant phase space is modified as
Eq. (12) due to the Berry curvature, and the probability
of finding a particle in the phase space is

ffiffiffiffi
!

p
nð�Þd�. As a

result, we instead use the modified distribution function
�ð�Þ ¼ ffiffiffiffi

!
p

nð�Þ that obeys the equation d�=dt ¼ 0, or
equivalently,

_�þ @að _�a�Þ ¼ 0: (13)

Using Eq. (7), this reduces to

_np �!ab@bH@anp ¼ 0: (14)

Setting H ¼ �p þ A0, we can explicitly write down the

kinetic equation (see also Refs. [7,9,33])

_np þ 1

1þ B ��p

�
ð~Eþ ~v�Bþ ð~E �BÞ�pÞ �

@np
@p

þ ð~vþ ~E��p þ ð~v ��pÞBÞ �
@np
@x

�
¼ 0; (15)

where ~v ¼ @�p=@p and ~E ¼ E� @�p=@x. This is a gen-

eral low-energy effective theory in the presence of Berry
curvature corrections that describes the evolution of np.

Note that ~v is different from the unit vector p̂ when the
quasiparticle energy �p has the contribution from the mag-

netic moment [see Eq. (43) below]. If we turn off the Berry
curvature and ignore the x dependence of �p (i.e.,�p ¼ 0

and @�p=@x ¼ 0), this reduces to the usual Vlasov

equation.
We now define the particle number density

n ¼
Z d3p

ð2�Þ3 ð1þ B ��pÞnp; (16)

where the invariant phase space is modified according to
Eq. (12). Multiplying the kinetic equation (15) by

ffiffiffiffi
!

p
,

performing the integral over momentum p, and using
Maxwell equations r �B ¼ 0 and @tBþ r�E ¼ 0, we
obtain the following identity [4]:

@tnþ r � j ¼ �
Z d3p

ð2�Þ3
�
�p �

@np
@p

�
E � B; (17)

where

j ¼ �
Z d3p

ð2�Þ3
�
�p

@np
@p

þ
�
�p �

@np
@p

�
�pB

þ �p�p �
@np
@x

�
þE� � (18)

is identified with the current and � is defined as

� ¼
Z d3p

ð2�Þ3 �pnp: (19)

In Eq. (17), we observe that the particle number of chiral
fermions is no longer conserved when we turn on both
electric and magnetic fields. By integration by parts and
using rp ��p ¼ 0 around the Fermi surface, np ¼ 1 deep

inside the Fermi surface and np ¼ 0 far outside the Fermi

surface, it can be evaluated as

@tnþ r � j ¼ � 1

4�2
E � B; (20)

for right-handed and left-handed fermions, respectively.
This is exactly the equation of triangle anomalies in rela-
tivistic quantum field theories [2,3], which holds indepen-
dently of interactions.
The first term in Eq. (18) is the usual particle number

current of the kinetic theory, while the remaining terms are
the Berry curvature corrections. The same form of the
current can be obtained in the Hamiltonian formalism
using the commutation relations postulated in Ref. [4].
The final term in Eq. (18) is the anomalous Hall current,
which vanishes for a spherically symmetric distribution
function at rest. In this case, the current is

j ¼ �
Z d3p

ð2�Þ3
�
�p

@np
@p

þ
�
�p �

@np
@p

�
�pB

þ �p�p �
@np
@x

�
: (21)

At this moment, microscopic origins of the Berry curvature
corrections to the particle number density and current in
Eqs. (16) and (21) are not so clear. In Sec. III, microscopic
meanings of these corrections will be clarified in the field
theoretic language.
It should be remarked that there is an ambiguity to define

the number current from the continuity equation because
~j ¼ jþ r� a with any vector a is also a solution to the
continuity equation. In order to fix this ambiguity, we look
at the energy and momentum conservations. We define the
energy density and the momentum density,

� ¼
Z d3p

ð2�Þ3 ð1þB ��pÞ�pnp;

�i ¼
Z d3p

ð2�Þ3 ð1þB ��pÞpinp:

(22)

Multiplying Eq. (15) by �p
ffiffiffiffi
!

p
and pi

ffiffiffiffi
!

p
, and performing

the integral over momentum p, we have
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@t�þ
Z d3p

ð2�Þ3 �pF ¼ 0; @t�
i þ

Z d3p

ð2�Þ3 p
iF ¼ 0;

(23)

where F is the piece in the square brackets of Eq. (15).
The above equations can be respectively interpreted as the
energy and momentum conservation laws

@�T
0� ¼ Eiji; @�T

i� ¼ nEi þ �ijkjjBk; (24)

where

T0i ¼ �
Z d3p

ð2�Þ3
�
ð�ij þ Bi�jÞ �

2
p

2

@np
@pj

þ �ijk
�2p
2
�j

@np

@xk

�
; (25)

Tij ¼ �
Z d3p

ð2�Þ3 p
i

�
�pð�jk þ Bj�kÞ @np

@pk

þ �jkl�k

�
Elnp þ �p

@np

@xl

��
� �ij�; (26)

which indicates that ji is the genuine current.
Alternatively, this ambiguity is avoided if we use the

definition of the current [7,9]

j ¼
Z d3p

ð2�Þ3
ffiffiffiffi
!

p
_x: (27)

By using Eq. (7), one can actually check that this current is
equal to Eq. (18).

In equilibrium where np is homogeneous, the first and

third terms in the right-hand side of Eq. (21) vanish, while
the second term is nonvanishing. Using �p ¼ � at the

Fermi surface with � the chemical potential, we find

j ¼ �
Z d3p

ð2�Þ3
�
�p �

@np
@p

�
�B ¼ � �

4�2
B: (28)

This is the relation of the chiral magnetic effect [14,15,17]:
the equilibrium current induced in the direction of
the magnetic field for chiral fermions at finite chemical
potential �.

C. Lorentz invariance in Fermi liquids

Here we consider the consequences of Lorentz invari-
ance in a system described by Landau’s Fermi liquid theory
[35]. The constraint due to Lorentz invariance is that the
energy flux is equal to the momentum density, T0i ¼ �i.
From Eqs. (22) and (25), this condition in the homoge-
neous system becomes

�
Z d3p

ð2�Þ3 ð�
ij þ Bi�j

pÞ �
2
p

2

@np

@pj

¼
Z d3p

ð2�Þ3 ð1þB ��pÞpinp: (29)

We vary both sides of Eq. (29) as np ¼ n0p þ �np and �p ¼
�0p þ ��p, where

��p ¼
Z d3q

ð2�Þ3 ð1þ B ��qÞfðp;qÞ�nq; (30)

with fðp;qÞ being some function characterizing the inter-
actions among quasiparticles called the Landau parame-
ters. By integration by parts, we have

Z d3p

ð2�Þ3 ð�
ij þ Bi�j

pÞ
�
1

2

@ð�0pÞ2
@pj �np � �0p��p

@n0p
@pj

�

¼
Z d3p

ð2�Þ3 ð1þ B ��pÞpi�np: (31)

Using Eq. (30) and renaming variables q $ p, the second
part of the left-hand side reduces to

�
Z d3p

ð2�Þ3 ð1þB ��pÞ

�
�Z d3q

ð2�Þ3 ð�
ij þ Bi�j

qÞfðp;qÞ�0q
@n0q
@qj

�
�np: (32)

Because �np is arbitrary, we have the relation

ð�ij þ Bi�j
pÞ�0p

@�0p
@pj

� ð1þ B ��pÞ
Z d3q

ð2�Þ3 ð�
ij þ Bi�j

qÞfðp;qÞ�0q
@n0q
@qj

¼ ð1þB ��pÞpi: (33)

To proceed, we take an ansatz

�0p ¼ vfðp� pfÞ þ�þ �ðpÞB � p (34)

to the linear order in B, with vf and pf being some

constants and � a scalar function of p � jpj. Note that
the Fermi velocity defined by @�0p=@p is B dependent.

Note also that Landau parameters are functions of B;
from the property fðp;qÞ ¼ fðq;pÞ, Landau parameters
are composed of two parts (to the linear order in B),

fðp;qÞ ¼ fAðp;qÞ þ B � ðp̂þ q̂Þ
2p2

f

fBðp;qÞ; (35)

where fA;Bðp;qÞ are independent of B and can be
expanded by the Legendre functions as

fA;Bðp;qÞ ¼ X1
l¼0

fA;Bl Plðcos �Þ; (36)

where � is the angle between p and q both taken on the
Fermi surface.
We now evaluate both sides of Eq. (33) to the linear

order in B. Substituting Eqs. (34) and (35), replacing p by
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pf, and performing the angular integral (note also that n0p
has the B dependence), we have

�vf

�
1þ 1

3
FA
1

�
p̂i þ

�
pf

�
vf�þ��0 � 1

3
�vfF

0A
1

�

þ�vf

2p2
f

�
1

3
FA
1 þ 1

3
FB
1 þ 1

5
FB
2

��
ðB � p̂Þp̂i

þ�

�
vf

2p2
f

�
1þ FA

0 þ 1

3
FB
0 � 1

15
FB
2

�
þ �

�
Bi

¼
�
pf þ B � p̂

2pf

�
p̂i; (37)

where � � �ðpfÞ, �0 � @
@p �ðpfÞ, and we defined

Z
dq̂

@fAðp;qÞ
@qi

ðB � q̂Þ � 1

3
f0A1 ðB � p̂Þp̂i: (38)

In order to satisfy Eq. (37) for any B and p̂, we must have

vf

�
1þ 1

3
FA
1

�
¼ pf

�
; (39)

� ¼ � vf

2p2
f

�
1þ FA

0 þ 1

3
FB
0 � 1

15
FB
2

�
; (40)

pf

�
vf�þ��0 �1

3
�vfF

0A
1

�
þ�vf

2p2
f

�
1

3
FA
1 þ

1

3
FB
1 þ

1

5
FB
2

�

¼ 1

2pf

: (41)

While Eq. (39) is the relation obtained by Baym and Chin
[36], Eq. (40) is a new relation for the anomalous spin
magnetic moment. A constraint from the gauge invariance
on the anomalous angular magnetic moment in Fermi
liquids was originally given by Migdal [37] and was
studied in detail in Ref. [38]. Here we have provided the
new constraint on the anomalous spin magnetic moment
from the viewpoint of the Berry curvature together with the
Lorentz invariance.

In particular, in the noninteracting limit where fðp;qÞ is
turned off and pf ¼ �, we obtain

vf ¼ 1; �ð�Þ ¼ � 1

2�2
; �0ð�Þ ¼ 1

�3
: (42)

A solution to satisfy these relations is taken as �ðpÞ ¼
�1=ð2p2Þ. In this case, we have

�0p ¼ p� B � p̂
2p

: (43)

We shall see in Sec. III [Eqs. (51) and (65)] based on the
microscopic quantum field theories, that this is actually the
dispersion relation of chiral fermions near the Fermi sur-
face in a magnetic field.

III. FROM QUANTUM FIELD THEORIES TO
KINETIC THEORY WITH BERRY CURVATURE

In this section, we derive the kinetic theory constructed
in Sec. II B from the microscopic quantum field theories:
the kinetic equation (15) and the modified number density
(16) and current (18) are reproduced microscopically.
The resultant kinetic theory exhibits triangle anomalies
and the chiral magnetic effect.
Our procedure is as follows: we first consider the high

density effective theory [30,31], which is an effective field
theory valid near the Fermi surface. The expansion
parameter of the theory is l=� where l is the residual
momentum measured from the Fermi surface. We then
derive the kinetic theory by performing the derivative
expansion for the equations of motion of the Wigner func-
tion defined in the high density effective theory. The
expansion parameter here is the slowly varying disturban-
ces @X taken to be much smaller than the chemical potential
� and the gauge field A�. Note that our procedure does not

rely on the expansion in terms of the coupling constant, and
hence, it is applicable even when the interactions are strong
as long as the notion of quasiparticles is well defined.
In this and following sections, we consider the theory

with right-handed chiral fermions.

A. High density effective theory

We first review the derivation of the high density effec-
tive theory [30,31]. We start with the Lagrangian for right-
handed fermions,

L ¼ c yði 6Dþ�Þc ; (44)

where 6D ¼ 	�D� withD� ¼ @� þ iA� and	� ¼ ð1;�Þ,
and A� is the external background field.

In order to focus on the particles near the Fermi surface,
we decompose the energy and momentum of a particle
(or a hole) near the Fermi surface as p0 ¼ �þ l0 and
p ¼ �vþ l with l0; jlj � �, where v is a unit vector
which specifies a direction to a point on the Fermi surface.
The momentum can be shifted by �v by performing a
Fourier transformation

c ðxÞ ¼ X
v

ei�v�xc vðxÞ; (45)

where summation is taken over v. The matrix � � v in
the momentum space can be diagonalized by using the
projectors as

c�v ¼ P�ðvÞc v; P�ðvÞ ¼ 1� � � v
2

: (46)

In the absence of the external electromagnetic field, c�
satisfy the eigenvalue equations, ð� � vÞc� ¼ �c�.
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In terms of c�v, Eq. (44) reduces to

c yði 6Dþ�Þc ¼ X
v

½c y
þviv �Dcþv

þ c y�vð2�þ i �v �DÞc�v

þ ðc y
þvi 6D?c�v þ H:c:Þ�; (47)

where v� ¼ ð1; vÞ, �v� ¼ ð1;�vÞ,	�
? ¼ ð0;� � vðv � �ÞÞ,

D
�
? ¼ ð0;D� vðv �DÞÞ, and 6D? ¼ 	

�
?D� ¼ 	�D?

� . By

integrating out c�v using the equation of motion for c�v,

ð2�þ i �v �DÞc�v þ i 6D?cþv ¼ 0; (48)

the effective Lagrangian in terms of cþ can be written
down order by order in 1=�,

L EFT ¼ X
n

LðnÞ; LðnÞ ¼ X
v

c y
þvD

ðnÞcþv; (49)

where LðnÞ denotes the effective Lagrangian of the n th
order in 1=� ðn ¼ 0; 1; 2; . . .Þ. The explicit expressions for
DðnÞ ðn ¼ 0; 1; 2Þ are

Dð0Þ ¼ iv �D;

Dð1Þ ¼ 6D2
?

2�
;

Dð2Þ ¼ � i

4�2
6D?ð �v �DÞ 6D?:

(50)

Using 6D2
? ¼ D2

? þB � �, c y
þv�cþv ¼ c y

þvvcþv,

and p ¼ �þ lk þ l2?=ð2�Þ þOð1=�2Þ, the dispersion

relation near the Fermi surface reads

�p ¼ p�B � v
2�

þO

�
1

�2

�
: (51)

This indeed agrees with Eq. (43) up to Oð1=�2Þ. [The
agreement will be shown to the order of Oð1=�2Þ in the
next subsection.] The second term in Eq. (51) originates
from the magnetic moment of chiral fermions at finite �.
This is similar in structure to the Pauli equation that
describes the magnetic moment of massive Dirac fermions
in the vacuum; the Pauli equation can be obtained by
expanding the massive Dirac equation in 1=m, where m
is the mass of Dirac fermions.

B. Kinetic theory via derivative expansion

We construct the kinetic theory based on the effective
theory (49) on a patch indicated by a unit vector v. We
consider the Dirac operator to the second order in 1=�,

D ¼ Dð0Þ þDð1Þ þDð2Þ, and introduce a two-point func-
tion for c v,

Gvðx; yÞ ¼ hc vðxÞc y
vðyÞi: (52)

The function Gvðx; yÞ satisfies equations of motion
together with projection conditions,

DxGvðx; yÞ ¼ 0; Gvðx; yÞDy
y ¼ 0; (53)

P�ðvÞGvðx; yÞ ¼ 0; Gvðx; yÞP�ðvÞ ¼ 0: (54)

In thermal equilibrium where the system is homogene-
ous,Gv depends only on the relative coordinate s ¼ x� y.
We are interested in the small deviation from the equilib-
rium where Gv depends both on x and y. It is thus useful to
change the coordinates from ðx; yÞ to the center-of-mass
and relative coordinates ðX; sÞ defined by

x ¼ Xþ s

2
; y ¼ X � s

2
; (55)

and consider the derivative expansion with respect to X.
In order to derive a quantum analogue of the

classical distribution function, we perform the Wigner
transformation

GvðX; lÞ ¼
Z

d4seil�sGv

�
Xþ s

2
; X � s

2

�
; (56)

where l� is the residual four-momentum. Unlike Gvðx; yÞ,
however, GvðX; lÞ is not gauge covariant. We will thus use
the gauge-covariant definition instead,

~GvðX; lÞ ¼
Z

d4seil�sU
�
X; Xþ s

2

�

�Gv

�
Xþ s

2
; X � s

2

�
U

�
X� s

2
; X

�
; (57)

where

Uðx; yÞ ¼ P exp

�
�i

Z
�
dx�A�ðxÞ

�
; (58)

is the Wilson line. The symbol P is the path ordering along

the path � from x to y. For simplicity, ~GvðX; lÞ is renamed
GvðX; lÞ in what follows.
In constructing the kinetic theory, we consider the

slowly varying disturbances and perform a gradient expan-
sion in terms of @X. To this end, we assume the following
counting scheme: @X ¼ Oð�1Þ, @s ¼ Oð�2Þ, A� ¼ Oð�3Þ,
and F�
 ¼ Oð�1�3Þ. Here @X and @s are the derivatives

with respect to X and s, and �i ði ¼ 1; 2; 3Þ are independent
expansion parameters which satisfy the conditions, �1 �
�2;3 � 1. The condition �i � 1 (i ¼ 1; 2; 3) is necessary
for the derivative expansion in the high density effective
theory while �1 � �2;3 is necessary for the derivative

expansion in the kinetic theory. In order to take into
account triangle anomalies, we consider the kinetic theory
to Oð�21�23Þ.
For simplicity, in this subsection we consider the homo-

geneous system where @X�F�
 ¼ 0 and @Xi np ¼ 0 (np is the

distribution function which will be defined below). This is
sufficient for our purpose to understand the microscopic
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origin of the Berry curvature corrections. The generaliza-
tion to the inhomogeneous case should be straightforward.

Consider the equations,DxGvðx; yÞ �Gvðx; yÞDy
y ¼ 0.

We expand them in terms of @X to the second order and
perform the Wigner transformation. The Wigner transform
of the equations can be written down order by order,

IðnÞ� �
Z d4s

ð2�Þ4 e
il�sðDðnÞ

x Gv �GvD
ðnÞy
y Þ; (59)

for n ¼ 0, 1, 2. The expansion of the gauge field A� in @X
reads

A�ðxÞ	A�ðXÞþ1

2
ðs �@XÞA�ðXÞþ1

8
ðs �@XÞ2A�ðXÞ: (60)

Combined with the contributions from the Wilson loop in
Eq. (57), all the terms involving the gauge field are
expressed by the gauge-invariant field strength F�
 at the

end. Then the third term in the right-hand side of Eq. (60)
will be irrelevant eventually when @X�F�
 ¼ 0. Renaming

the kinetic residual momentum ~l� ¼ l� � A� as l�, we
have

Ið0Þþ ¼ 2ðl0 � lkÞGv; Ið0Þ� ¼ iv�ðg�0@t � F�
@


l ÞGv; (61a)

Ið1Þþ ¼ 1

�
ð�l2? þ B � vÞGv; Ið1Þ� ¼ i

�
l�?ðg�0@t � F�
@



l ÞGv; (61b)

Ið2Þþ ¼ 1

�2
½lkðl2? � B � vÞ þ B � l? þ ðE� lÞ � v�Gv;

Ið2Þ� ¼ � i

2�2

�
2lkl

�
? � 1

2
ðl2? � B � vÞ �v� � �ijkvk �v	F

i	g�j

�
ðg�0@t � F�
@



l ÞGv; (61c)

where @l is the derivative with respect to the residual
momentum l, and l0 ¼ lk þOðl2=�Þ is used in Eq. (61c).

From the equation DxGvðx; yÞ þGvðx; yÞDy
y ¼ 0, we

obtain the on-shell condition. Considering the projection
conditions (54), Gv can be written as

Gv ¼ 2�PþðvÞ�
�
l0 � lk �

l2? �B � v
2�

þ lkðl2? � B � vÞ þ B � l?
2�2

�
nl; (62)

where nlðXÞ is the distribution function expressed by the
residual momentum l. Recalling

p ¼ �þ lk þ
l2?
2�

� l2?lk
2�2

þO

�
1

�3

�
; (63)

B � p̂
2p

¼ B � v
2�

þ B � l? � lkB � v
2�2

þO

�
1

�3

�
; (64)

the dispersion relation in the delta function of Eq. (62) is
equivalent to the condition p0 ¼ �p with

�p ¼ p� B � p̂
2p

; (65)

which indeed coincides with Eq. (43). Accordingly, the
distribution function nl can be replaced by np in terms of

the original momentum p.

On the other hand, from the equation DxGvðx; yÞ �
Gvðx; yÞDy

y ¼ 0, we obtain the transport equation for
nlðXÞ. Using

p̂ ¼ vþ l?
�

� l2?vþ 2lkl?
2�2

þO

�
l3

�3

�
; (66)

the transport equation can also be expressed by the original
momentum p. We end up with the transport equation�

1þB � p̂
2�2

�
_npþ

�
ðEþ p̂�BÞþðE �BÞ p̂

2�2

�
�@np
@p

¼0:

(67)

Equation (67) indeed agrees with the homogeneous limit of
the kinetic theory (15) to Oð�21�23Þ if we identify �p ¼
p̂=ð2p2Þ at p ¼ �. Therefore, we have found that the Berry
curvature corrections in the kinetic theory emerge as the
higher-order corrections in 1=� to the usual Vlasov equa-
tion. Once the kinetic equation (67) is obtained, the rela-
tion of triangle anomalies (20) follows, as we have seen in
Sec. II B.

C. Particle number density and current

Here we consider the particle number density and cur-
rent for right-handed fermions without reference to the
kinetic theory derived above. To see the chiral magnetic
effect, we need to consider the number current to Oð�1�3Þ
in the high density effective theory. Our discussion in this
subsection is applicable to inhomogeneous electromag-
netic fields.
By definition, the number density of right-handed fer-

mions consists of four parts,

n¼hc y
þvcþviþhc y

þvc�viþhc y�vcþviþhc y�vc�vi
�nþþþnþ�þn�þþn��; (68)
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where nþþ is given by

nþþ ¼
Z d4p

ð2�Þ4 trGv ¼
Z d3p

ð2�Þ3 nl; (69)

and nþ� ¼ n�þ ¼ 0 because of the property of projectors,
PþðvÞP�ðvÞ ¼ 0. In order to express n�� in terms of cþv,
we use Eq. (48) which relates c�v to cþv. Then n�� is
given by

n�� ¼ 1

4�2

Z d4p

ð2�Þ4 trð 6D?Gv 6Dy
?Þ ¼

Z d3p

ð2�Þ3
B � v
2�2

nl:

(70)

Using the momentum p, we have in total

n ¼
Z d3p

ð2�Þ3
�
1þB � p̂

2�2

�
np: (71)

This is the number density including the Berry curvature
correction, Eq. (16).

Similarly, the number current of right-handed fermions
is decomposed as

jR ¼ hc y
þv�cþvi þ hc y

þv�c�vi
þ hc y�v�cþvi þ hc y�v�c�vi

� jþþ þ jþ� þ j�þ þ j��; (72)

where jþþ is given by

jþþ ¼
Z d4p

ð2�Þ4 trð�GvÞ ¼
Z d3p

ð2�Þ3 vnl: (73)

Using Eq. (48), summation of jþ� and j�þ can be written
as

jiþ� þ ji�þ ¼ i

2�

Z d4p

ð2�Þ4 tr½ðDi
x? þ i�ijkvkDj

xÞGv

�GvðDyi
y? � i�ijkvkDyj

y Þ�; (74)

while j�� � 1=�2 is higher order in 1=� and is negligible
to the order under consideration. One can then rewrite
Eq. (74) by changing the coordinates from ðx; yÞ to the
center-of-mass and relative coordinates ðX; sÞ and perform-
ing the Wigner transformation in a gauge-covariant way.
One finds

jiþ� þ ji�þ ¼
Z d3p

ð2�Þ3
1

2�

�
��ijkvj @nl

@Xk

þ ðB � vÞ @nl
@li

� Bi

�
v � @nl

@l

��
: (75)

Putting them together and writing in terms of the momen-
tum p, we arrive at

jiR ¼
Z d3p

ð2�Þ3
�
@�p
@pi np � Bi

�
p̂

2�
� @np
@p

�
� �ijk

p̂j

2�

@np

@Xk

�
;

(76)

where we used the dispersion relation (51). This is the
same form as the current (21), including the chiral mag-
netic effect and the inhomogeneous term; the Berry curva-
ture corrections in Eq. (21) microscopically originate from
the mixing between cþ and c�.

IV. CORRELATION FUNCTIONS

In this section we compute the one-loop polarization
tensor in the presence of chiral fermions at finite chemical
potential � at zero temperature using the perturbation
theory and the kinetic theory constructed in Sec. II B.
We confirm that both calculations give the same result,
not only to the leading order but also to the next-to-leading
order in 1=�. In particular, we find the kinetic theory with
Berry curvature corrections reproduces the parity-odd
polarization tensor beyond the leading-order hard dense
loop approximation in the perturbation theory.

A. Perturbation theory

We first compute the parity-even and parity-odd one-
loop polarization tensors in the perturbation theory under
the hard dense loop approximation.3 The time-ordered
Dirac fermion propagator at finite chemical potential �
and zero temperature is given by

Sðx;yÞ¼hTc ðxÞ �c ðyÞi

¼
Z d3p

ð2�Þ3
��p
2p0

½�ðx0�y0Þð�pe
�ipðx�yÞþ ��pe

ipðx�yÞÞ

��ðy0�x0Þð�pe
�ipðx�yÞþ ��pe

ipðx�yÞÞ�; (77)

where �p ¼ �ðp0 ��Þ, �p ¼ �ð�� p0Þ, ��p ¼ 1, and
��p ¼ 0.

The one-loop polarization tensor in the presence of
chiral fermions is then

��
ðx� yÞ ¼ 1

2
tr½ð1þ �5Þ��Sðx; yÞ�
Sðy; xÞ�: (78)

In the momentum space, it is given by (see Ref. [40] for the
case of Dirac fermions)

3The parity-odd hard dense loop action was previously derived
in Ref. [39].
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��
ðkÞ ¼ 1

2

Z d3q

ð2�Þ3
1

2p0

1

2q0

�
T�
ðp;qÞ

�
�p�q

p0 � q0 � k0 � i�
� �q�p

p0 � q0 � k0 þ i

�

þT�
ðp; �qÞ
�

�p ��q

p0 þ q0 � k0 � i�
� �p

��q

p0 þ q0 � k0 þ i

�
þT�
ð �p;qÞ

�
��p�q

p0 þq0 þ k0 � i
�

��p�q

p0 þ q0 þ k0 þ i�

�

þT�
ð �p; �qÞ
�

��p
��q

p0 � q0 þ k0 � i
�

��p ��q

p0 �q0 þ k0 þ i�

��
; (79)

where p ¼ ðp0;pÞ, �p ¼ ðp0;�pÞ, q ¼ ðq0;qÞ, �q ¼
ðq0;�pÞ, p0 ¼ jpj, q0 ¼ jqj, p ¼ qþ k, and T�
ðp; qÞ ¼
tr½ð1þ �5Þ�� 6p�
 6q�. An infinitesimal quantity  takes
 ¼ � for the time-ordered function ��


T , and  ¼ ��
for the retarded function �

�

R .

Substituting explicit expressions of the distribution
functions, we find the �-dependent part of the retarded
function (hereafter we suppress the index ‘‘R’’),

��

� ðkÞ ¼ 1

2

Z d3q

ð2�Þ3
1

2p0

1

2q0

�
�
½�ð��q0Þ� �ð��p0Þ� T�


� ðp;qÞ
p0 �q0 � k0 � i�

� �ð��p0Þ T
�

� ðp; �qÞ

p0 þ q0 � k0 � i�

� �ð��q0Þ T�

� ð �p;qÞ

p0 þq0 þ k0 þ i�

�
; (80)

where �� and T
�

� denote parity-even and -odd parts,

T�

þ ðp; qÞ ¼ trð�� 6p�
 6qÞ and T�
� ðp; qÞ ¼ trð�5�

� 6p�
 6qÞ.
The parity-even part ��


þ is the leading contribution in
the hard dense loop approximation, while the parity-odd
part ��
� is suppressed compared with ��


þ by a factor
of jkj=�.

For completeness, let us first recall the computation
of �

�

þ . Under the hard dense loop approximation (where

k0; jkj � �), we end up with [34]

�
�

þ ðkÞ ¼ � 1

2

Z d3q

ð2�Þ3 �ð�� jqjÞ

�
�
�v�v
 þ v�v
 � 2!

v�v


v � kþ i�

�

¼ � �2

2�2

�
��0�
0 �!

Z dv

4�

v�v


v � kþ i�

�
; (81)

where v ¼ ð1; vÞ, �v ¼ ð1;�vÞ with v ¼ q=jqj.
Let us now turn to the parity-odd part ��
� ðkÞ. Using

trð�5�
����
��Þ ¼ �4i���
�, we have

��
� ðkÞ ¼ � 1

2

Z d3q

ð2�Þ3
1

4jqj2

�
�
k � v�ð�� jqjÞ 4i�

�
��k�v�jqj
k � vþ i�

� �ð�� jqjÞ2i��
��ðk� �v� þ �k�v�Þ
�
: (82)

The second term is vanishing while the first term remains
nonzero only when ð�;�Þ ¼ ð0; kÞ and ðk; 0Þ. Collecting
both contributions, we obtain the expression

�ij�ðkÞ ¼ �

4�2

�
i�ijkkk þ i�ijk!

Z dv

4�

!vk � kk

k � vþ i�

�
; (83)

where i, j, k denote the spatial indices [��
� ðkÞ is vanishing
otherwise]. Performing the angular integration, we finally
arrive at

�ij�ðkÞ ¼ �

4�2
i�ijkkk

�
1� !2

jkj2
�
½1�!LðkÞ�; (84)

where

LðkÞ ¼ 1

2jkj ln
!þ jkj
!� jkj : (85)

Equation (84) reduces to a simple form in the static or
long wavelength limit:

�ij�ðkÞ ¼
8<
:

�
4�2 i�ijkkk ð! � jkjÞ
�

12�2 i�
ijkkk ð! 
 jkjÞ: (86)

That the latter lim jkj=!!0�
ij�ðkÞ is smaller than the former

lim !=jkj!0�
ij�ðkÞ by a factor of 3 is consistent with the

result of the ‘‘chiral magnetic conductivity’’ in Ref. [41].

B. Kinetic theory with Berry curvature

We now compute the same retarded correlation function
from the kinetic theory (15) constructed in Sec. II B
through the linear response theory

j�ðxÞ ¼
Z

d4y��
ðx� yÞA
ðyÞ; (87)

or in the momentum space

j�ðkÞ ¼ ��
ðkÞA
ðkÞ: (88)

Here we are interested in the current induced by a linear-
order deviation of the gauge field A�. For definiteness, we

set up the following power counting scheme: A� ¼ Oð�Þ
and @x ¼ Oð�Þ, where � and � are small and independent
expansion parameters. Under this counting scheme, we
compute the deviation of the distribution function �np
and the current j� to Oð��Þ.
Remembering that @np=@x or @�p=@x can be nonvan-

ishing at least when @np=@x ¼ Oð�Þ or @�p=@x ¼ Oð�Þ in
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Eq. (15), it is sufficient to consider the following kinetic
equation of order Oð��2Þ [or np of order Oð��Þ],�

@

@t
þ v � @

@x

�
np þ

�
Eþ v� B� @�p

@x

�
� @np
@p

¼ 0; (89)

in which the v�B term does not contribute since
ðv� BÞ � v ¼ 0. The distribution function np is decom-

posed as

np ¼ nð0Þp þ nð�Þp þ nð��Þp þ � � � ; (90)

where

nð0Þp ¼ �ð�� �pÞ ’ �ð�� jpjÞ þ B � v
2�

�ð�� jpjÞ;
(91)

which follows from the dispersion relation (43). Note that
the second term in Eq. (91) is also Oð��Þ, but this is

separated from nð��Þp in our definition. In the calculations

below, we have to add both contributions at the same order
of Oð��Þ [see Eq. (93) below].

The kinetic equation can be written down at each
order as �

@

@t
þ v � @

@x

�
nð�Þp ¼ E � v�ð�� jpjÞ; (92)

�
@

@t
þ v � @

@x

��
nð��Þp þ B � v

2�
�ð�� jpjÞ

�

� v � @

@x

�
B � v
2�

�
�ð�� jpjÞ ¼ 0: (93)

The second equation is further simplified to�
@

@t
þ v � @

@x

�
nð��Þp ¼ � @

@t

�
B � v
2�

�
�ð�� jpjÞ: (94)

Using the method of characteristics, we can solve these
equations; the operator in the left-hand sides of equations
v � @x is the time derivative along the characteristic v ¼
dx=dt. The solutions are given by

nð�Þp ¼ �ð�� jpjÞ
Z 1

0
d�e��v �Eðx� v�Þ; (95)

nð��Þp ¼ ��ð�� jpjÞ
Z 1

0
d�e�� 1

2�
v � _Bðx� v�Þ;

(96)

where  is a small positive parameter which ensures
Eðt ! �1;xÞ ! 0 and Bðt ! �1;xÞ ! 0.

Now let us compute the current defined in Eq. (18).
The current can be written down at the orders of Oð�Þ
and Oð��Þ, respectively, as

j�ð�ÞðxÞ ¼
Z d3p

ð2�Þ3 v
�nð�Þp ; (97)

jið��ÞðxÞ ¼
Z d3p

ð2�Þ3
�
vinð��Þp þ Bi

2�
�ð�� jpjÞ

� �ijk
vj

2�

@nð�Þp

@xk

�
; (98)

where v� ¼ ð1; vÞ. The zeroth component of the four

current of order Oð��Þ, i.e., the number density nð��ÞðxÞ,
is found to vanish after the angular integration.

First consider the four current j�ð�Þ. Substituting
Eq. (95) into Eq. (97), the current reads

j�ð�ÞðxÞ¼
Z d3p

ð2�Þ3v
��ð��jpjÞ

Z 1

0
d�e��v �Eðx�v�Þ:

(99)

Using the useful formula

Z
d4xeik�x

Z 1

0
d�e��fðx� v�Þ ¼ ifðkÞ

v � kþ i
; (100)

and the linear response theory (88), we obtain the retarded
parity-even polarization tensor [42]

��

þ ðkÞ ¼ � �2

2�2

�
��0�
0 �!

Z dv

4�

v�v


v � kþ i�

�
;

(101)

which agrees with Eq. (81) derived from the perturbation
theory.

We then turn to the subleading three current jið��Þ.
Substituting Eqs. (95) and (96) into (98), and using the
formula (100), the current reads

jið��ÞðkÞ ¼
Z d3p

ð2�Þ3 �ð�� jpjÞ
�
� i�klmvivk!klAm

2�ðv � kþ i�Þ
þ i�ijkkjAk

2�
þ i�iklvkkl½!ðv �AÞ � ðv � kÞA0�

2�ðv � kþ i�Þ
�
;

(102)

among which the A0 term in the brackets vanishes after the
angular integration. Using the linear response theory (88),
we obtain the parity-odd polarization tensor

�ij�ðkÞ ¼ �

4�2

�
i�ijkkk þ i!

Z dv

4�

ð�jklvi � �iklvjÞvkkl

v � kþ i�

�
:

(103)

After the angular integration, this reduces to the form

�ij�ðkÞ ¼ �

4�2
i�ijkkk

�
1� !2

jkj2
�
½1�!LðkÞ�; (104)

where LðkÞ is defined in Eq. (85). This is equivalent to
Eq. (84) derived from the perturbation theory, which con-
firms that the physics in the next-to-leading order hard
dense loop approximation can be described by the kinetic
theory with Berry curvature corrections. Note that contri-
butions of the inhomogeneous term in the current (21) and
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the magnetic moment in Eq. (43) are necessary for the
matching of the correlation functions.

V. CONCLUSION

In this paper, we have shown a way to bridge between
quantum field theories and the kinetic theory with Berry
curvature corrections that exhibits triangle anomalies and
the chiral magnetic effect. The field theoretic procedure to
derive such a kinetic theory developed in this paper can, in
principle, be generalized to higher order in gauge fields
and/or derivatives. We have also computed the parity-odd
correlation function using this kinetic theory, which was
found to agree with the perturbative result beyond the
leading-order hard dense loop approximation.

It should be remarked that our derivation of the kinetic
theory from underlying quantum field theories is limited to
low temperature region T � � where the Fermi surface is
well defined and the high density effective theory is appli-
cable; a generalization to higher temperature regime would
be desirable. We also remark that our formulation based on
the Berry curvature is not manifestly Lorentz covariant by
construction. It might be possible to formulate the kinetic

theory in a Lorentz covariant way similarly to the usual
Vlasov equation. Without referring to the Berry curvatures,
such a solution of the kinetic equation in the hydrodynamic
regime was obtained in Ref. [11], which also reproduces
the chiral vortical effect [20,43–46].
The inclusion of collision terms in the kinetic theory

(15) is straightforward. This gives the modified Boltzmann
equation taking into account the anomalous effects.
We hope that our work motivates numerical applications
of the new kinetic equation (15) with or without collisions
in various systems such as hot and dense quark matter,
neutrino gas, the early Universe at large lepton chemical
potential, and doped Weyl semimetals.
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