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I. INTRODUCTION

There is some interest in computing the potential be-
tween two pointlike sources with the q �q color quantum
numbers in the octet (adjoint) representation of the color
group [1–8]. However, conflicting results have been re-
ported in the literature [6,7] and the question seems to still
need some clarification.

In this paper we reanalyze the problem discussing, in the
pure Yang-Mills (YM) theory, the structure of energy
eigenstates in the presence of color sources and derive
explicit formulas expressing the singlet and adjoint poten-
tials in terms of the Feynman propagation kernel (some-
times also called the Schrödinger functional) computed in
the temporal (A0 ¼ 0) gauge. The theoretical framework
we shall use is the formulation of the temporal gauge
developed in Refs. [9–11].

In Sec. II we review the general formalism. In Sec. III we
illustrate the constraints imposed by global color rotations
on the structure of the functional integral. The solution to
the problem of characterizing energy eigenstates belonging
to different color representations is given in Sec. IV in the
formal continuum theory. In Sec. V we give explicit for-
mulas for extracting the singlet and adjoint q �q potentials
from the knowledge of the Feynman kernel. In Sec. VI we
illustrate how to reformulate the previous analysis in the
lattice language, suitable for numerical simulations. A
number of technical issues are discussed in the appendices.
In Appendix A we recall some relevant group theoretical
formulas. In Appendix B we construct the projectors nec-
essary to single out states with definite global color trans-
formation properties. In Appendix C we recall the formulas
necessary to decompose the ½Nc� � ½ �Nc� tensor product
into the sum of singlet and adjoint representations. For
completeness we give in Appendix D the expression that
the Feynman kernel in the presence of q �q sources takes in
the Coulomb gauge.

II. GENERAL FORMALISM

The Feynman kernel in the presence of color pointlike
sources belonging to arbitrary color representations takes
in the temporal gauge the expression [9–11]

KðA2; fu2g;A1; fu1g;TÞ
¼

Z
G0

D�ðhÞRðUhÞfu2gfu1g ~KðAUh

2 ;A1;TÞ; (1)

whereD�ðhÞ is the Haar invariant measure over the gauge
group, G0, of the topologically trivial, time-independent
gauge transformation that tends to the identity at spatial
infinity. In Eq. (1) we have defined

~KðA2;A1;TÞ¼
Z Aðx;T2Þ¼A2ðxÞ

Aðx;T1Þ¼A1ðxÞ
DAexp½�SYMðA;A0¼0Þ�

(2)

where SYMðA; A0 ¼ 0Þ is the YM action taken at A0 ¼ 0
and

DA ¼ Y
x;T1<t<T2

dAðx; tÞ: (3)

In Eq. (1) we have set T ¼ T2 � T1 and made use of the
definitions [12]

AUh

k ðxÞ¼Uy
hAkUhðxÞþ iUy

h@kUhðxÞ; k¼1;2;3; (4)

UhðxÞ ¼ exp ½i�ahaðxÞ� 2 G0; (5)

where the matrices �a (a ¼ 1; 2; . . . ; N2
c � 1) are the

Hermitian SUðNcÞ generators in the fundamental represen-
tation ½Nc�, normalized to tr½�a�b� ¼ �ab=2 and we have
indicated with ��a ¼ �ð�aÞ? the generators in the conju-
gate fundamental representation ½ �Nc�. Finally, we have
introduced the compact notation

R ðUhÞfu2gfu1g ¼
YL
j¼1

h
exp i�½j�

a haðxjÞ
i
uj
2
uj
1

(6)

to represent a set of L sources in the color representations
½j� localized at the points xj. In Eq. (6) we denoted with
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½�½j�
a �uj

2
uj
1
the SUðNcÞ generators in the representation ½j�.

The indices uj1 and uj2 run over values appropriate for the

representation ½j�.
Since KðA2; fu2g;A1; fu1g;TÞ is the matrix element of

the (Euclidean) time translation operator exp ð�HTÞ, we
can write its spectral decomposition in the form

KðA2; fu2g;A1; fu1g;TÞ
¼ X

k

e�EkTc kðA2; fu2gÞc ?
k ðA1; fu1gÞ; (7)

where the functional c kðA; fugÞ is the eigenstate of the
Hamiltonian, H , corresponding to the eigenvalue Ek

H c kðA; fugÞ ¼ Ekc kðA; fugÞ: (8)

The state functional c kðA; fugÞ transforms, under time-
independent gauge transformations (Uw 2 G0), as

c kðAUw; fugÞ ¼ X
fu0g

RyðUwÞfugfu0gc kðA; fu0gÞ: (9)

Equation (9) is equivalent to Gauss’ law in the Hilbert
space sector of states with L external color sources, as
specified above. This can be checked by taking the func-
tional derivative of both sides of the equation with respect
to waðxÞ at waðxÞ ¼ 0.

It was shown in Ref. [9] that the kernel KðA2;fu2g;
A1;fu1g;TÞ and the eigenfunctionals c kðA; fugÞ are gauge
independent in the sense that, had we chosen to quantize
the theory in a different canonical gauge, say FðAÞ ¼ 0
[typically FðAÞ ¼ r �A], the corresponding kernel and
the related eigenfunctionals in the F gauge would coincide
with those in the temporal one, when evaluated on a gauge
field A satisfying FðAÞ ¼ 0.

Since the quantity
P

fugc �ðA; fugÞ�ðA; fugÞ is invariant
under gauge transformations [see Eq. (4)], in order to
define a scalar product we must make use of the Faddev-
Popov (FP) procedure. This is done by choosing any spatial
gauge-fixing condition, say FðAÞ ¼ 0, and accordingly
defining the scalar product by means of the formula [13]

ðc ; �Þ �
Z

D�FðAÞX
fug

c �ðA; fugÞ�ðA; fugÞ; (10)

where

D�FðAÞ ¼ Y
x

�FðAÞ�½FðAÞ�dAðxÞ (11)

is the gauge field integration measure. In Eq. (11)�FðAÞ is
the FP determinant [14] defined by

�FðAÞ
Z
G0

D�ðhÞ�½FðAUhÞ� ¼ 1: (12)

We recall that the value of the scalar product in Eq. (10)
is independent on the gauge function FðAÞ chosen to
define it.

Denoting with dk the degeneracy of the energy level Ek,
we can compute the complete trace of the Feynman propa-
gation kernel (7) obtaining

Z
D�FðAÞX

fug
KðA; fug;A; fug;TÞ ¼ X

k

dke
�EkT: (13)

The gauge invariance of the lhs of Eq. (13) implies the
gauge invariance of the quantities dk and Ek.

III. GLOBAL COLOR TRANSFORMATIONS

In this section we discuss how global color transforma-
tions are implemented in the temporal gauge when external
sources are present.
Let us denote by V a global color rotation, i.e., a constant

SUðNcÞ transformation. The global color invariance of
SYMðA; A0 ¼ 0Þ implies

~KðAV
2 ;A

V
1 ;TÞ ¼ ~KðA2;A1;TÞ: (14)

From the definition (1) we then have

KðAV
2 ;fu2g;AV

1 ;fu1g;TÞ
¼
Z
G0

D�ðhÞRðUhÞfu2gfu1g ~KðAVUh

2 ;AV
1 ;TÞ

¼
Z
G0

D�ðhÞRðUhÞfu2gfu1g ~KðAVUhV
y

2 ;A1;TÞ

¼
Z
G0

D�ðhÞRðVyUhVÞfu2gfu1g ~KðAUh

2 ;A1;TÞ

¼RðVyÞfu2gfu02g
Z
G0

D�ðhÞRðUhÞfu02gfu01g ~KðA
Uh

2 ;A1;TÞ

�RðVÞfu0
1
gfu1g

¼RðVyÞfu2gfu02gKðA2;fu02g;A1;fu01g;TÞRðVÞfu0
1
gfu1g: (15)

Notice that the functional change of variables VUhV
y !

Uh in the third equality of Eq. (15) is allowed by the fact
that VUhV

y is a (topologically trivial) gauge transforma-
tion that tends to unit at spatial infinity and hence belongs
to G0.
Equation (15) can be rewritten in the form

RðVÞfu2gfu02gKðAV
2 ; fu02g;A1; fu1g;TÞ

¼ KðA2; fu2g;AVy
1 ; fu01g;TÞRðVÞfu0

1
gfu1g: (16)

Equation (16) allows us to define the operator UðVÞ,
implementing global color transformations, which acts on
wave functionals as

½UðVÞc �ðA; fugÞ ¼ RðVÞfugfu0gc ðAV; fu0gÞ: (17)

UðVÞ provides a unitary representation of the SUðNcÞ
group in the Hilbert space of state functionals and com-
mutes with the kernel K.
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The unitarity of UðVÞ follows from the chain

ðUyðVÞc ;�Þ
¼ ðc ;UðVÞ�Þ
¼
Z
D�FðAÞc �ðA;fu0gÞRðVÞfu0gfug�ðAV;fugÞ

¼
Z
D�FðAÞ½RyðVÞfugfu0gc ðAVy

;fu0gÞ���ðA;fugÞ:
(18)

In fact, Eq. (18) shows that

½UyðVÞc �ðA; fugÞ ¼ RyðVÞfugfu0gc ðAVy
; fu0gÞ; (19)

which, together with Eq. (17), gives UðVyÞ ¼ UyðVÞ
entailing the unitarity of UðVÞ.

To prove that the Feynman kernel commutes withU we
take an arbitrary wave functional, c ðA; fugÞ, in the appro-
priate source sector [see Eq. (9)], and consider the chain of
equalities

UðVÞ
Z
D�FðA1ÞKðA2; fu2g;A1; fu1g;TÞc ðA1;fu1gÞ

¼RðVÞfu2gfu02g
Z
D�FðA1ÞKðAV

2 ; fu02g;A1; fu1g;TÞ
�c ðA1;fu1gÞ

¼
Z
D�FðA1ÞKðA2; fu2g;AVy

1 ; fu01g;TÞRðVÞfu0
1
gfu1g

�c ðA1;fu1gÞ
¼

Z
D�FðA1ÞKðA2; fu2g;A1; fu01g;TÞRðVÞfu0

1
gfu1g

�c ðAV
1 ; fu1gÞ

¼
Z
D�FðA1ÞKðA2; fu2g;A1; fu1g;TÞ½UðVÞc �ðA1; fu1gÞ;

(20)

where the third equality is a consequence of the invariance
of the measure (11) under global color rotations. Owing to
the arbitrariness of c ðA; fugÞ, Eq. (20) implies that UðVÞ
commutes with the Feynman propagation kernel.

SettingA1 ¼ A2 ¼ A in Eq. (15) and integrating overA
with the measure (11), we get the key formula

Kfugfu0gðTÞ �
Z

D�FðAÞKðA; fug;A; fu0g;TÞ

¼
Z

D�FðAÞKðAV; fug;AV; fu0g;TÞ
¼ RðVyÞfugfvgKfvgfv0gðTÞRðVÞfv0gfu0g: (21)

Equation (21) tells us that KðTÞ commutes with RðVÞ, so
that by Schur’s lemma it is a multiple of the identity matrix
within any irreducible color source representation. If we
are in a sector in which more than one color source is
present, RðVÞ can be decomposed into the direct sum of

irreducible representations of SUðNcÞ, and KðTÞ itself is a
direct sum of multiples of the unit matrix, one for each
irreducible component. We will make use of this result
below.
We end this section with some considerations on what

happens if the gauge integration over G0 is extended to the

set �G0 of transformations that also includes global color
rotations. In this case the color averaged kernel

�KðA2; fu2g;A1; fu1g;TÞ
¼

Z
�G0

D�ðhÞRðUhÞfu2gfu1g ~KðAUh

2 ;A1;TÞ (22)

satisfies the property

�KðAV
2 ; fu2g;A1; fu1g;TÞ
¼ RðVyÞfu2gfu02g �KðA2; fu02g;A1; fu1g;TÞ; (23)

that implies for the averaged state functionals, �c ðA; fugÞ,
appearing in its spectral decomposition, the invariance
property

½UðVÞ �c �ðA; fugÞ ¼ RðVÞfugfu0g �c ðAV; fu0gÞ ¼ �c ðA; fugÞ:
(24)

Equation (24) means that, for the averaged state function-
als, a global color rotation on the gauge field amounts to a
rotation RðVÞ acting only on source indices, or in other
words that any such state functional is a global color
singlet.

IV. THE q �q SOURCE SYSTEM

In this section we specialize the formulation of Secs. II
and III to the particular case of two sources with the q and
�q color quantum numbers and show explicitly how to
define and extract the q �q potential in the singlet and adjoint
representations.
The Feynman kernel in this particular source sector has

the form [9–11]

KðA2; s2; r2;A1; s1; r1;TÞ
¼

Z
G0

D�ðhÞ½exp ½i�ahaðxqÞ��s2s1
� ½exp ½i ��ahaðx �qÞ��r2r1 ~KðA2

Uh;A1;TÞ
¼

Z
G0

D�ðhÞ½exp ½i�ahaðxqÞ��s2s1
� ½exp ½�i�ahaðx �qÞ��r1r2 ~KðA2

Uh;A1;TÞ: (25)

In order to pick up the energies of the lowest lying states
one has to study the large T behavior of the expression (25)
while, at the same time, projecting out the desired color
structure. To this end one needs to classify the energy
eigenfunctionals in terms of their global color transforma-
tion properties.
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A. Classification of the energy eigenstates

Since, according to Eq. (20), the Feynman kernel com-
mutes with UðVÞ, the energy eigenstates are classified in
terms of the irreducible representations of the color group
SUðNcÞ.

Every energy eigenstate in the q �q sector is described by
a wave functional which can be parametrized as

c ðA; srÞ ¼ ½�ðAÞI þ �a�aðAÞ�sr � �ðAÞI þ �a�aðAÞ
� c ðAÞ; (26)

in terms of the 1þ ðN2
c � 1Þ functionals �ðAÞ and �aðAÞ.

The parametrization given in Eq. (26) holds for any one
of the components of an irreducible multiplet. The totality
of the members of the multiplet can be reached through
global color transformations, according to the formula

U ðVÞc ðAÞ � c VðAÞ ¼ Vc ðAVÞVy

¼ �ðAVÞIþ V�aVy�aðAVÞ: (27)

As it can be seen from Eq. (27), the global color trans-
formation of a state is composed of two different contri-
butions:

(i) the ‘‘color-spin’’ contribution coming from the ac-
tion of the matrix V on the source indices

(ii) and the ‘‘orbital’’ contribution coming from the
transformation A ! AV .

As we said, any energy eigenstate must belong to an
irreducible representation of the color group, then c ðAÞ
must span a unique irreducible representation for any value
of A, when transformed as in Eq. (27). Notice, however,
that for A ¼ 0 the orbital contribution is suppressed and
Eq. (27) becomes

c Vð0Þ ¼ Vc ð0ÞVy ¼ �ð0ÞIþ V�aVy�að0Þ: (28)

Equation (28) implies that the two terms in the rhs cannot
be simultaneously different from zero; otherwise c Vð0Þ
would belong to the reducible I � ½N2

c � 1� representation.
This means that we have the following three alternatives:

(1) �að0Þ ¼ 0 and �ð0Þ � 0
(2) �ð0Þ ¼ 0 and �að0Þ � 0 (for some a)
(3) �ð0Þ ¼ �að0Þ ¼ 0

in correspondence to three different types of irreducible
representations that we are now going to discuss.

(1)–(2) When �ð0Þ � 0 [or �að0Þ � 0], c ðAÞ must
belong to the color-spin singlet (or adjoint) represen-
tation, because the representation it belongs to cannot
change discontinuously under a smooth variation of the
‘‘parameters’’ A.

(3) For states such that �ð0Þ ¼ �að0Þ ¼ 0 we can have
more general assignments of global color quantumnumbers.

Recalling that the adjoint representation R½Ad�ðVÞ is
defined by

V�aVy ¼ R½Ad�
ca ðVÞ�c; (29)

with R½Ad�ðVÞ real, Eq. (27) can be rewritten in the form

c VðAÞ ¼ �ðAVÞI þ R½Ad�
ca ðVÞ�aðAVÞ�c: (30)

The twoA functionals in the rhs of Eq. (30) must transform
under the color group and therefore will display
‘‘magnetic’’ quantum numbers. Thus we will denote
them as �mðAÞ, �akðAÞ respectively, with transformation
properties under A ! AV given by

�mðAVÞ ¼ R½��
mm0 ðVÞ�m0 ðAÞ; (31)

�akðAVÞ ¼ R½��
kk0 ðVÞ�ak0 ðAÞ; (32)

where R½�� and R½�� are SUðNcÞ representations. Using
Eqs. (31) and (32), Eq. (30) becomes

c VðAÞ ¼ R½��
mm0 ðVÞ�m0 ðAÞI þ R½Ad�

ca ðVÞR½��
kk0 ðVÞ�ak0 ðAÞ�c;

(33)

showing explicitly that the �m’s transform according to
representation ½��, while the �ak’s belong to the direct
product ½�� � ½N2

c � 1�.
Due to the trace orthogonality of the identity and the �

matrices, the two terms in Eq. (33) must separately belong
to irreducible representations.
We conjecture that the two terms in Eq. (33) correspond

to two different types of energy eigenfunctionals, although
we cannot exclude that, when the two irreducible repre-
sentations are equivalent, both terms may simultaneously
contribute to a given eigenfunctional.
It follows from this analysis that the ½�� representation

must be irreducible and that, owing to the color invariance
of the dynamics, the ‘‘wave function’’ �ak will be such to
single out an irreducible representation from the tensor
product ½�� � ½N2

c � 1�.
In summary, depending on the structure of the source

indices and the color representation to which the gluon
wave function belongs, we can classify the energy eigen-
states in four classes.

(i) Color-spin singlet, orbital singlet states

c ½S�
½S�ðAÞ ¼ �ðAÞI �ðAVÞ ¼ �ðAÞ; (34)

with �ð0Þ � 0.
(ii) Color-spin adjoint, orbital singlet states

c ½S�
½Ad�ðAÞ¼�a�aðAÞ �aðAVÞ¼�aðAÞ; (35)

with �að0Þ � 0 for some values of a.
(iii) Color-spin singlet, orbital ½�� states with singlet

source indices, and belonging to the irreducible
color representation ½�� [see Eq. (31)]
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c ½��
m½S�ðAÞ ¼ �½��

mðAÞI
�½��

mðAVÞ ¼ R½��
mm0 ðVÞ�½��

m0 ðAÞ;
(36)

with �½��
mð0Þ ¼ 0.

(iv) Color-spin adjoint, orbital ½�� states giving
rise to an irreducible color representation ½�� 2
½�� � ½N2

c � 1� [see Eq. (32)]

c ½��
m½Ad�ðAÞ ¼ �a�akðAÞ
�akðAVÞ ¼ R½��

kk0 ðVÞ�ak0 ðAÞ;
(37)

with�akð0Þ ¼ 0. We repeat that in Eq. (37)�akðAÞ
is a tensor in the ½�� � ½N2

c � 1� space living in the
½��-invariant subspace with values of a’s and k’s
constrained so as to yield the desired value of the
index m.

We remark that, since AV ¼ A for V 2 ZNc
, where ZNc

is

the center of SUðNcÞ, the representation ½�� in Eqs. (36)
and (37) is actually bound to be a representation of
SUðNcÞ=ZNc

.

The above classification is confirmed by perturbation
theory [10,15,16]. States like those in Eqs. (34) and (35)
correspond, at zero order in the coupling constant g, to
wave functionals which do not contain any gluon compo-
nent, and are therefore nonvanishing at A ¼ 0. Excited
states consist of states with gluons added to external
sources. The presence of gluons allows the energy levels
to reach any zero Nc-ality (triality for Nc ¼ 3) representa-
tion. States of this kind, however, contain some power of
the gluon fields, so that their wave functional vanishes at
A ¼ 0. As a working hypothesis, to be checked by non-
perturbative numerical simulations, we conjecture that
similar structures also describe the nonperturbative dynam-
ics of external source sectors.

B. The structure of the A-traced propagation kernel

In this section we determine the way in which the four
classes of color multiplets, discussed in Sec. IVA, contrib-
ute to the Feynman propagation kernel traced over the field
boundary values

Ks2r2;s1r1ðTÞ �
Z

D�FðAÞKðA; s2; r2;A; s1; r1;TÞ: (38)

We remark that the gauge fixing in the A integration
in Eq. (38) is needed in order to make all the matrix
elements of Ks2r2;s1r1ðTÞ finite. In fact, although

KðA; s2; r2;A; s1; r1;TÞ is invariant only under gauge
transformations which are equal to the identity at the
location of the color sources, the color-traced kernelP

srKðA; s; r;A; s; r;TÞ is invariant under all the time-
independent gauge transformations belonging to G0, and
therefore

P
srKsr;srðTÞ would be infinite in the absence of

gauge fixing.

The contribution of the states given in Eqs. (34)–(37) to
the partial trace (38) can be computed from the expressions
of the partial traces of the corresponding projectors given
in Appendix B. We find
(i) Color-spin singlet, orbital singlet states of the form

(34)

Ks2r2;s1r1ðTÞ
��������

½S�

½S�
¼ �s2r2�r1s1

Nc

e�E½S�T: (39)

(ii) Color-spin adjoint, orbital singlet states of the form
(35)

Ks2r2;s1r1ðTÞ
��������

½S�

½Ad�
¼ 2

X
c

�c
s2r2�

c
r1s1e

�E½Ad�T: (40)

(iii) Color-spin singlet, orbital ½�� states of the form
(36)

Ks2r2;s1r1ðTÞ
��������

½��

½S�
¼ D½��

Nc

�s2r2�r1s1e
�E½��T: (41)

(iv) Color-spin adjoint, orbital ½�� states of the form
(37) with ½�� 2 ½�� � ½N2

c � 1�

Ks2r2;s1r1ðTÞ
��������

½��

½Ad�
¼ 2

D½��
N2

c � 1

X
c

�c
s2r2�

c
r1s1e

�E½��T:

(42)

C. The structure of the Kð0; s2; r2; 0; s1; r1;TÞ kernel
The previous considerations immediately imply that

only the states in Eqs. (34) and (35) contribute to
Kð0; s2; r2; 0; s1; r1;TÞ, yielding terms with a tensor struc-
ture proportional to that of Eqs. (39) and (40), respectively.
In formulas we get [see Eqs. (B2) and (B5)]

Kð0; s2; r2; 0; s1; r1;TÞ

¼ j�ð0Þj2 �s2r2�r1s1

Nc

e�E½S�T

þX
a

j�að0Þj2
X
b

�b
s2r2�

b
r1s1e

�E½Ad�T þ � � � : (43)

From the structure of states summarized in equations from
(34) to (37) and the results in perturbation theory
[10,15,16], we conjecture that only the first two terms
displayed in Eq. (43) are actually present. This statement
can be tested in lattice numerical simulations.
If we were only interested in the computation of the q �q

potential in the vacuum, the relevant quantity to study
would be Kð0; s2; r2; 0; s1; r1;TÞ. Instead, in order to ex-
plore more complicated situations such as, for instance, the
q �q potential at finite temperature, the relevant quantity to
consider is Ks2r2;s1r1ðTÞ.
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V. EXTRACTING SINGLETAND ADJOINT
POTENTIAL IN THE CONTINUUM

To extract the lowest energy eigenvalues of the singlet and
adjoint channels we have to project Eq. (38) [or Eq. (43)]
over the �r2s2�s1r1=Nc and 2

P
a�

a
r2s2�

a
s1r1 tensor projector

(see Appendix C), respectively.
Referring to the partially traced kernel (38) and using

Eqs. (39) and (41), we obtain at large times for the color-
spin singlet channels [see Eqs. (34) and (36)]

X
s2r2s1r1

1

Nc

�r2s2�s1r1Ks2r2;s1r1ðTÞ

!T!1
e�E½S�T þ � � � þD½��e�E½��T þ � � � ; (44)

where the dots stand for exponentially suppressed terms
and, as discussed before,D½�� is the dimension of the color

representation ½�� to which the energy eigenstate belongs.
Similarly, using Eqs. (40) and (42), for the color-spin

adjoint channels [see Eqs. (35) and (37)] we findX
s2r2s1r1

2
X
a

�a
r2s2�

a
s1r1Ks2r2;s1r1ðTÞ

!T!1ðN2
c�1Þe�E½Ad�Tþ���þD½�0�e�E½�0 �Tþ��� : (45)

In perturbation theory the ‘‘singlet and adjoint q �q poten-
tials’’ defined in Eqs. (44) and (45) contain divergent self-
energy contributions, independent of the relative position
of the sources. In perturbation theory these contributions
can be renormalized away, dividing the Feynman kernel
(38) by the product of the two traces (characters) of the
kernels with the insertion of a single q or �q source. This can
be done by computing, at large T, the quantity

�s2r2;s1r1ðTÞ ¼
Ks2r2;s1r1ðTÞ
KqðTÞK �qðTÞ ; (46)

where

KqðTÞ¼
Z
G0

D�ðhÞtr½ei�ahaðxqÞ�
Z
D�FðAÞ ~KðAUh ;A;TÞ;

(47)

K �qðTÞ¼
Z
G0

D�ðhÞtr½e�i�ahaðx �qÞ�
Z
D�FðAÞ ~KðAUh;A;TÞ:

(48)

We stress again that, had we included in the gauge average
also the integration over global color rotations, the states in
the spectral decomposition of the averaged Feynman ker-
nel corresponding to color nonsinglet states would be
missing [see Eq. (24)]. Consequently, in the large T limit,
we might not be any more in position to reach the desired
lowest energy eigenvalues. Another unwanted conse-
quence is that color averaging makes the Feynman kernel
contribution of a state vanish when the tensor product of
source representations does not contain the singlet. This is

precisely what would happen to the factors in the denomi-
nator of Eq. (46).
In the nonperturbative regime, where color is supposed

to be confined, the quantities defined in Eqs. (47) and (48)
could be zero anyway. So the need and mode of this
particular renormalization should be the object of numeri-
cal investigations.

VI. EXTRACTING THE q �q POTENTIAL FROM
LATTICE SIMULATIONS

In this section we discuss how to compute, in lattice
simulations, the singlet and adjoint q �q potentials. Although
it is not difficult to translate in lattice language the tempo-
ral gauge-fixing procedure presented in the previous sec-
tions and provide a discretized version of Eqs. (38) or (43),
it turns out that these formulas are not well suited to the
structure of practical numerical simulations.
The reason is that it is not easy to implement on the lattice

the conditionUh 2 G0 [i.e.,UhðxÞ ���!jxj!1
I] on the boundary

gauge integration in Eq. (1). The limitation Uh 2 G0 is,
however, absolutely crucial, as we have discussed, in order
to avoid the cancellation from the color averaged kernel of
all the global color nonsinglet states (if not dynamically
confined).
The way out of this difficulty is to isolate in the Feynman

propagation kernel on the lattice the contribution of states
belonging to given representations, averaging with the
SUðNcÞ characters. This idea is based on the formula

X
sr

Z
D�FðAÞKðAV; s; r;A; s; r;TÞ

¼ X
sr

Z
D�FðAÞX

k;m

c ½�k�
m ðAV; s; rÞðc ½�k�

m ðA; s; rÞÞ�

� e�E½�k�T

¼ X
sr

Z
D�FðAÞ X

k;m;m0
R½�k�
mm0 ðVÞc ½�k�

m0 ðA; s; rÞ

� ðc ½�k�
m ðA; s; rÞÞ�e�E½�k�T

¼ X
k

tr½R½�k�ðVÞ�e�E½�k�T

� X
k

�½�k�ðVÞ�e�E½�k�T; (49)

which shows that performing a global color rotation on one
of the boundary gauge fields and taking the full trace of the
kernel amounts to replacing the multiplicity factor appear-
ing in Eq. (13) with the character of the irreducible repre-
sentation to which each energy eigenfunctional belongs.

A. Temporal lattice gauge fixing

We start by discussing how the temporal gauge-fixing
procedure can be implemented on the lattice. Link varia-
bles are generated by some Monte Carlo algorithm with
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weight given by (minus) the exponent of the (gauge
unfixed) plaquette action, assuming periodic boundary
conditions in the four dimensions. Lattice points are de-
noted by fn0;ng, with n0 ¼ 0; 1; . . . ; NT , nk ¼ 1; . . . ; NL,
k ¼ 1, 2, 3.

On each configuration the temporal gauge fixing is
carried out by subjecting the gauge links to the gauge
transformation

�ðn;tÞ¼Uy
0 ðn;t�1;n;tÞ . . .Uy

0 ðn;1;n;2ÞUy
0 ðn;0;n;1Þ;

t¼1; . . . ;NT; (50)

�ðn; 0Þ ¼ I; (51)

which sets U0ðn; 0;n; tÞ ¼ I at t ¼ 1; . . . ; NT � 1. Under
the gauge transformation (50) the spatial links transform as

Ukðn; t;nþ k̂; tÞ
!U0

kðn; t;nþ k̂; tÞ
¼�yðn; tÞUkðn; t;nþ k̂; tÞ�ðnþ k̂; tÞ; t¼ 1; . . . ;NT:

(52)

Notice that, owing to Eq. (51), the spatial links at t ¼ 0 are
untouched.

The time ordered product of the temporal links
(open Polyakov lines) that represent [in the unfixed theory,
see also Eq. (D1) of Appendix D] the external q and �q color
sources at nq and n �q become

YNT

t¼1

U0ðnq; t� 1;nq; tÞ

¼ YNT

t¼1

�ðnq; t� 1ÞU0
0ðnq; t� 1;nq; tÞ�yðnq; tÞ

¼ �yðnq; NTÞ � �yðnqÞ; (53)

�YNT

t¼1

U0ðn �q; t� 1;n �q; tÞ
�y

¼
�YNT

t¼1

�ðn �q; t� 1ÞU0
0ðn �q; t� 1;n �q; tÞ�yðn �q; tÞ

�y

¼ �ðn �q; NTÞ � �ðn �qÞ: (54)

Configuration averages performed at this stage will inevi-
tably also include an average over global color rotations.
In the next subsection we describe a method based on
character projections which exploits this color average to
select the contribution to the Feynman propagation kernel
coming from states belonging to a given global color
representation.

B. Character projection

As discussed above, we can easily compute on the lattice
the color averaged kernel [see Eq. (25)], which in contin-
uum notation reads

�Ks2;r2;s1;r1ðTÞ �
Z

D�FðAÞ
Z

�G0

D�ðhÞ½ei�ahaðxqÞ�s2s1
� ½ei�ahaðx �qÞ��r2r1 ~KðA2

Uh ;A1;TÞ: (55)

Within the �G0 integration we can factorize the integration
over G0 times the integration over the global SUðNcÞ
group, getting

�Ks2;r2;s1;r1ðTÞ ¼
Z
SUðNcÞ

DVVs2s3V
�
r2r3

�
Z

D�FðAÞKðAV; s3; r3;A; s1; r1;TÞ;
(56)

where KðA; s3; r3;A; s1; r1;TÞ is the original Feynman
kernel in the temporal gauge defined in Eq. (25).
We will now show that the information about q �q poten-

tials can be extracted by computing the character-weighted
kernel

�K½��
s2;r2;s1;r1ðTÞ�

Z
SUðNcÞ

DVð�½��ðVÞÞ�Vs2s3V
�
r2r3

�
Z
D�FðAÞKðAV;s3;r3;A;s1;r1;TÞ;

(57)

where �½��ðVÞ is the character of the representation ½��.
In the following we will also be interested in the total
trace

�K ½��ðTÞ � X
rs

�K½��
s;r;s;rðTÞ; (58)

for which, by virtue of its G0 invariance, we have the
further benefit that there is no need for a lattice gauge
fixing while computing the boundary A integration.
The proof of these facts is based on the orthogonality

property of characters

Z
SUðNcÞ

DVð�½��ðVÞÞ��½��ðVÞ ¼ �½��;½��; (59)

where �½��ðVÞ and �½��ðVÞ are the characters of the irre-
ducible representations ½�� and ½��.
To proceed we need to study the contribution to

K½��
s2;r2;s1;r1ðTÞ and its total trace of the four types of

energy eigenstates (34)–(37) discussed in Sec. IV.

(i) From (34) the color-spin singlet, orbital singlet state

contribution to �K½��
s2;r2;s1;r1ðTÞ is seen to be

�K½��
s2;r2;s1;r1ðTÞ

��������
½S�

½S�
¼�½��;½S�

�s2r2�r1s1

Nc

e�E½S�T: (60)

Thus for the fully traced kernel we get

q �q POTENTIAL PHYSICAL REVIEW D 87, 085014 (2013)

085014-7



�K ½��ðTÞ
��������

½S�

½S�
¼ �½��;½S�e�E½S�T: (61)

(ii) From (B6) we find that the contribution of
color-spin adjoint, orbital singlet states (35) to the
character-weighted kernel is

�K½��
s2;r2;s1;r1ðTÞ

��������
½S�

½Ad�

¼2
Z
SUðNcÞ

DVð�½��ðVÞÞ�X
c

ðV�cVyÞs2r2ð�c
s1r1Þ�

�e�E½Ad�T

¼2
Z
SUðNcÞ

DVð�½��ðVÞÞ�X
ac

R½N2
c�1�

ac ðVÞ�a
s2r2ð�c

s1r1Þ�

�e�E½Ad�T: (62)

The rhs of Eq. (62) is different from zero only if
½�� ¼ ½N2

c � 1�. Tracing with �s2s1�r2r1 the result-

ing trace over the � matrices provides the factor
�ac=2 that brings in the character of the adjoint

representation
P

aR
½N2

c�1�
aa ðVÞ ¼ �½N2

c�1�ðVÞ. From
the orthogonality of inequivalent characters we
thus get for the fully traced kernel

�K½��ðTÞj½S�½Ad�¼
Z
SUðNcÞ

DVð�½��ðVÞÞ��½N2
c�1�ðVÞ

�e�E½Ad�T

¼�½��;½N2
c�1�e�E½Ad�T: (63)

(iii) Recalling the form of the projector (B9), we see that
the contribution of the color-spin singlet, orbital ½��
states (36) to the character-weighted kernel is

�K½��
s2;r2;s1;r1ðTÞ

��������
½��

½S�

¼�s2r2�r1s1

Z
SUðNcÞ

DVð�½��ðVÞÞ�

�X
m

Z
D�FðAÞ�½��

mðAVÞ�½��
mðAÞ�e�E½��T

¼�s2r2�r1s1

Z
SUðNcÞ

DVð�½��ðVÞÞ�X
mm0

R½��
mm0 ðVÞ

�
Z
D�FðAÞ�½��

m0 ðAÞ�½��
mðAÞ�e�E½��T

¼�s2r2�r1s1

Nc

Z
SUðNcÞ

DVð�½��ðVÞÞ��½��ðVÞ

¼�s2r2�r1s1

Nc

�½��;½��e�E½��T; (64)

where we have used the orthogonality of the wave

functionals �½��
mðAÞ for different Cartan indices.

For the fully traced kernel we get

�K ½��ðTÞ
��������

½��

½S�
¼ �½��;½��e�E½��T: (65)

(iv) Finally using Eq. (B13) and the orthogonality of
�amðAÞ wave functionals for different Cartan in-
dices, we find that the contribution of the color-spin
adjoint, orbital ½�� states [Eq. (37)], composing
into the irreducible color representation ½�� to the
character-weighted kernel is

�K½��
s2;r2;s1;r1ðTÞ

��������
½��

½Ad�

¼
Z
SUðNcÞ

DVð�½��ðVÞÞ� X
akk0bc

R½��
bk;ck0 ðVÞ

�
Z

D�FðAÞ�ak0 ðAÞ�akðAÞ��c
s2r2ð�b

s1r1Þ�

� e�E½��T

¼ 2
Z
SUðNcÞ

DVð�½��ðVÞÞ�X
kbc

R½��
bk;ckðVÞ

� �c
s2r2ð�b

s1r1Þ�e�E½��T (66)

and is different from zero only if ½�� ¼ ½��. For the
fully traced kernel we get

�K½��ðTÞ
��������

½��

½Ad�
¼
Z
SUðNcÞ

DVð�½��ðVÞÞ�

�X
bk

R½��
bk;bkðVÞe�E½��T

¼
Z
SUðNcÞ

DVð�½��ðVÞÞ��½��ðVÞe�E½��T

¼�½��;½��e�E½��T; (67)

since
P

bkR
½��
bk;bkðVÞ ¼ �½��ðVÞ is the character of

the representation ½��.

C. Extracting q �q potential energies from lattice data

To extract the interesting q �q potential energies from
lattice data we propose to use the lattice version of (the
large T limit of) Eqs. (61) and (63) for the singlet and
adjoint representations, respectively. These formulas sim-
ply read

�K�½S� ðTÞ
��������

½S�

½S�lat
¼ 1

Nconf

XNconf

‘¼1

½tr½�yðnqÞ�tr½�ðn �qÞ��ð‘Þþ���

!T!1
e�E½S�Tþ���; (68)
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�K�½Ad� ðTÞ
��������

½Ad�

½S�lat
¼ 1

Nconf

XNconf

‘¼1

ð�½Ad�ð�ðn1ÞÞ�

� ½tr½�yðnqÞ�tr½�ðn �qÞ��ð‘Þ þ � � �
!T!1

e�E½Ad�T þ � � � ; (69)

where Nconfð	1Þ is the number of gauge configurations
that have been generated, and the dots represent corrections
due to the finiteness of Nconf as well as terms exponentially
suppressed in the large T limit. In Eq. (69) n1 denotes the
lattice point at infinity, far from the location of the color
sources, and �ðn1Þ identifies the global color integration,
unavoidable in lattice simulations, mentioned at the end of
Sec. III [see also the step from Eqs. (55) to (56) where V is
what we are calling here �ðn1Þ].

Naturally the character of the ½S� representation is unit,

while for the adjoint character we have �½Ad�ðVÞ ¼
2
P

atr½�aV�aVy�.
For the q and �q self-energy we find

�K½q�ðTÞjlat¼ 1

Nconf

XNconf

‘¼1

ð�½q�ð�ðn1ÞÞ�tr½�yðnqÞ�ð‘Þþ���

!T!1
e�E½q�Tþ���; (70)

�K½ �q�ðTÞjlat ¼ 1

Nconf

XNconf

‘¼1

ð�½ �q�ð�ðn1ÞÞ�tr½�ðn �qÞ�ð‘Þ þ � � �

!T!1
e�E½ �q�T þ � � � ; (71)

where, we recall, �½q�ðVÞ ¼ tr½V� and �½ �q�ðVÞ ¼ tr½Vy�.

VII. CONCLUSIONS AND OUTLOOK

In this paper we have derived explicit expressions for the
singlet and the octet (adjoint) potential between two static,
pointlike sources with the color quantum numbers of a q �q
pair [see Eqs. (68) and (69)]. They have a particularly
transparent form in the temporal gauge. For completeness
in Appendix D we provide the formulas valid in the
Coulomb gauge.

We have discussed in Sec. III the importance of limiting
the gauge integration in Eq. (1) to the gauge transforma-
tions that tend to the identity at spatial infinity, showing
that otherwise only global color singlet eigenfunctionals
would contribute to the color averaged Feynman kernel.

In Sec. VI we have shown how the temporal gauge fixing
can be implemented in practical lattice simulations and
how it is possible to extract the singlet and adjoint q �q
potential energy from lattice simulations, weighting the
fully traced Feynman kernel with the character of the
representation one is interested in filtering out.

Explicit numerical lattice simulations are under way
[17] to check the validity of the analysis presented in this
paper and the viability of the formulas we have derived for
extracting singlet and octet q �q potentials.
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APPENDIX A: COMPLETENESS AND
GROUP INTEGRATION

When the degeneracy of an energy level is due to the
existence of a symmetry group, it is possible to describe the
completeness sum over the degeneracy subspace in terms
of the invariant group integration. The basic idea is easily
explained as follows.
Starting from an irreducible representation RðgÞ of a

group G and a basis jii of the representation space, we
have the definition

RðgÞjii ¼ X
j

jjihjjRðgÞjii ¼ X
j

RjiðgÞjji: (A1)

The completeness relation can be expressed as

I ¼ X
i

jiihij ¼ D½R�
Z
G
DgRðgÞj �kih �kjRyðgÞ; (A2)

with j �ki an arbitrary representation state. In Eq. (A2) D½R�
is the dimension of the space spanned by the representation
½R�. In fact, from (see Ref. [18])

Z
G
DgRjkðgÞRlmðgÞ� ¼

�jl�km

D½R�
; (A3)

we get

D½R�
Z
G
DgRðgÞj �kih �kjRyðgÞ

¼ D½R�
X
j;l

Z
G
DgRj �kðgÞjjihljRl �kðgÞ�

¼ X
l

jlihlj: (A4)

The interest of Eq. (A2) is that it allows us to write the
completeness relation by only knowing a single (arbitrary)
representation state, j �ki.

APPENDIX B: COLOR PROJECTORS

We apply the formalism developed in Appendix A to
write the color projectors necessary to single out the states
listed in Eqs. (34)–(37).
(i) We start with the normalization condition for the

color-spin singlet, orbital singlet states of Eq. (34)
which reads
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1 ¼
Z

D�FðAÞtr
h
jc ½S�

½S�ðAÞyc ½S�
½S�ðAÞ

i

¼ Nc

Z
D�FðAÞj�ðAÞj2: (B1)

The projector over a color-spin singlet, orbital sin-
glet state is given by

P ½S�
½S� ¼ �ðA2Þ��ðA1Þ�s2r2�r1s1 ; (B2)

so that it contributes to the partially traced kernel
(38) with a term

Z
D�FðAÞj�ðAÞj2�s2r2�r1s1e

�E½S�T¼�s2r2�r1s1

Nc

e�E½S�T;

(B3)

as it follows from Eq. (B1).

(ii) The normalization condition for the color-spin ad-
joint, orbital singlet states of Eq. (35) is

1 ¼
Z

D�FðAÞtr
h
c ½S�

½Ad�ðAÞyc ½S�
½Ad�ðAÞ

i

¼ tr½�a�b�
Z

D�FðAÞ�aðAÞ��
bðAÞ

¼ 1

2

X
a

Z
D�FðAÞj�aðAÞj2: (B4)

The projector over the color-spin adjoint, orbital
singlet states can be computed with the help of the
group integration formula (A3) obtaining [we recall

that R½Ad�
ab ðVÞ is a real matrix]

P ½S�
½Ad� ¼ ðN2

c�1Þ
Z
SUðNcÞ

DVðVc ½S�
½Ad�ðAV

2 ÞVyÞs2r2ðVc ½S�
½Ad�ðAV

1 ÞVyÞ�s1r1

¼ðN2
c�1Þ

Z
SUðNcÞ

DVðV�aVyÞs2r2ðV�bVyÞ�s1r1�aðA2Þ�bðA1Þ�

¼ ðN2
c�1Þ

Z
SUðNcÞ

DVR½Ad�
ca ðVÞ�c

s2r2R
½Ad�
db ðVÞð�d

s1r1Þ��aðA2Þ�bðA1Þ�

¼X
a

�aðA2Þ�aðA1Þ�
X
c

�c
s2r2ð�c

s1r1Þ�: (B5)

Using the normalization condition (B4), we conclude that a color-spin adjoint, orbital singlet state contributes to the
partially traced kernel of Eq. (21) with a term

X
a

Z
D�FðAÞj�aðAÞj2X

c

�c
s2r2ð�c

s1r1Þ�e�E½Ad�T ¼ 2
X
c

�c
s2r2�

c
r1s1e

�E½Ad�T: (B6)

As a check of Eqs. (B3) and (B6) we can trace them over color source indices obtaining 1 for the singlet and (N2
c � 1) for

the adjoint state, in agreement with the fact that the trace of a projector is the dimension of the space over which it projects.
(iii) The normalization condition for the color-spin singlet, orbital ½�� states of Eq. (36) is (no sum over m)

1 ¼
Z

D�FðAÞtr½c ½��
½S�mðAÞyc ½��

½S�mðAÞ� ¼ Nc

Z
D�FðAÞj�½��

mðAÞj2: (B7)

Equation (A2) gives for the projector over the c ½��
½S�m multiplet the expression

P ½��
½S� ¼ D½��

Z
SUðNcÞ

DV�½��
mðAV

2 Þ�½��
mðAV

1 Þ��s2r2�r1s1 (B8)

for any fixed value of m. From the transformation properties (36) and using Eq. (A3), we can further elaborate Eq. (B8)
with the result

P ½��
½S� ¼D½��

Z
SUðNcÞ

DVR½��
mm0 ðVÞ�½��

m0 ðA2ÞðR½��
mm00 ðVÞ�½��

m00 ðA1ÞÞ��s2r2�r1s1 ¼
X
m

�½��
mðA2Þ�½��

mðA1Þ��s2r2�r1s1 : (B9)

Starting with Eq. (B8), we now compute the contribution of this state multiplet to the A partial trace of the kernel, finding

D½��
Z
SUðNcÞ

DV
Z

D�FðAÞ�½��
mðAVÞ�½��

mðAVÞ��s2r2�r1s1e
�E½��T ¼ D½��

Nc

�s2r2�r1s1e
�E½��T: (B10)
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To derive Eq. (B10) we have exploited the color invariance
of the measure D�FðAÞ and the normalization of the
group measure,

R
SUðNcÞ DV ¼ 1. As before, the total trace

gives the dimension of the representation space, D½��.
(iv) In order to apply the same procedure to the

color-spin adjoint, orbital ½�� states of Eq. (37), we
start from the normalization condition (no sum
over m or k)

1 ¼
Z

D�FðAÞtr
h
c ½��

½Ad�mðAÞyc ½��
½Ad�mðAÞ

i

¼ 1

2

X
a

Z
D�FðAÞj�akðAÞj2; (B11)

and we then construct the state projector (no sum
over k)

P ½��
½Ad� ¼D½��

Z
SUðNcÞ

DV�akðAV
2 Þ��

bkðAV
1 ÞR½Ad�

ca ðVÞ

�R½Ad�
db ðVÞ�c

s2r2ð�d
s1r1Þ�: (B12)

This expression can be simplified by recalling the

transformation properties �akðAVÞ¼R½��
kk0 ðVÞ�

�ak0 ðAÞ [see Eq. (37)] and the fact that the wave
functions �ak must be such to project out the irre-
ducible representation ½�� from the tensor product
½�� � ½N2

c � 1�. We get from Eq. (B12)

P ½��
½Ad� ¼ D½��

Z
SUðNcÞ

DVR½��
kk00 ðVÞ�ak00 ðA2ÞðR½��

kk0 ðVÞ�bk0 ðA1ÞÞ�R½Ad�
ca ðVÞR½Ad�

db ðVÞ�c
s2r2ð�d

s1r1Þ�

¼ D½��
Z
SUðNcÞ

DV�ak00 ðA2Þ��
bk0 ðA1ÞR½��

ck;ak00 ðVÞðR½��
dk;bk0 ðVÞÞ��c

s2r2ð�d
s1r1Þ�

¼ X
a;k

�akðA2Þ��
akðA1Þ

X
b

�b
s2r2ð�b

s1r1Þ�; (B13)

where in the second line the matrix R½��
ck;ak0 ðVÞ is the irreducible ½�� component in the tensor product R½��

kk0 ðVÞR½Ad�
ca ðVÞ.

Going back to Eq. (B12), we see that the contribution of this state multiplet to the A partial trace of the kernel is

D½��
Z
SUðNcÞ

DV
Z
D�FðAÞ�akðAVÞ�bkðAVÞ�R½Ad�

ca ðVÞR½Ad�
db ðVÞ�c

s2r2ð�d
s1r1Þ�e�E½��T¼ D½��

N2
c�1

2
X
c

�c
s2r2�

c
r1s1e

�E½��T: (B14)

One can again check that tracing also over source indices
yields precisely D½��.

APPENDIX C: DECOMPOSING THE ½Nc� � ½ �Nc�
TENSOR PRODUCT

The ½Nc� � ½ �Nc� tensor product representation acts on
the space of complex matrices wsr, s, r ¼ 1; . . . ; Nc, en-
dowed with the scalar product

ðw2; w1Þ ¼
X
sr

w2sr
�w1sr ¼ tr½wy

2w1�: (C1)

From the normalization tr½�a�b� ¼ 1
2�ab, we have the

identity

w� INc

Nc

tr½w� ¼ 2
X
a

�a tr½�aw�; (C2)

which implies

w ¼ INc

Nc

tr½w� þ 2
X
a

�a tr½�aw�; (C3)

where INc
is the Nc � Nc unit matrix. In components

Eq. (C3) reads

ws2r2 ¼
X
s1r1

ws1r1�s2s1�r2r1

¼ X
s1r1

ws1r1

�
1

Nc

�s2r2�s1r1 þ 2
X
a

�a
s2r2�

a
r1s1

�
: (C4)

Equation (C4) is the algebraic identity

�s2s1�r2r1 ¼
1

Nc

�s2r2�r1s1 þ 2
X
a

�a
s2r2�

a
r1s1 : (C5)

The two tensors in the rhs of Eq. (C5) are precisely the two
projectors onto the singlet and the adjoint representations,
as it follows from the identities [1]

P½S�¼ 2

Nc

X
a

�a
s2s1�

a
r1r2þ

1

N2
c

�s2s1�r1r2 ¼
1

Nc

�s2r2�r1s1 ; (C6)

P½Ad�¼� 2

Nc

X
a

�a
s2s1�

a
r1r2þ

N2
c�1

N2
c

�s2s1�r2r1 ¼2
X
a

�a
s2r2�

a
r1s1 :

(C7)

Notice that within each irreducible representation space
the two tensors (C6) and (C7) act as unit operators of
appropriate dimension.

APPENDIX D: THE q �q KERNEL IN THE
COULOMB GAUGE

For completeness we give in this appendix the explicit
expression of the Feynman kernel in the presence of ex-
ternal sources in the Coulomb gauge. The formulas col-
lected in the previous sections can be straightforwardly
rewritten in the Coulomb gauge because, as proved in
Ref. [9], not only the energies (that are gauge invariant
quantities) but also the eigenstates of the Hamiltonian are
exactly the same in the Coulomb and the temporal gauge.
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In fact, in going from the Coulomb to the temporal gauge,
the Feynman kernel stays the same, as the two gauges
are related by a change of variables in the functional
integral [9].

Explicitly Eq. (25) takes the form

KðA2; s2; r2;A1; s1; r1;TÞ
¼

Z Aðx;T2Þ¼A2ðxÞ

Aðx;T1Þ¼A1ðxÞ
D�CðAÞ Y

x;T1
t
T2

dA0ðx; tÞe�SYMðA;A0Þ

�
�
T exp

�
i
Z T2

T1

A0ðxq; 	Þd	
��

s2s1

�
�
T exp

�
�i

Z T2

T1

A0ðx �q; 	Þd	
��

r1r2

; (D1)

where

D�CðAÞ ¼ Y
x;T1<t<T2

�CðAÞ�½rA�dAðx; tÞ (D2)

is the Coulomb gauge-fixed integration measure and
�CðAÞ is the corresponding FP determinant. We note
that, unlike the integration over the spatial components
of the gauge field, the integration over the temporal one
in Eq. (D1) is extended to include also the values at the
boundary times. This is related to the fact that the temporal
component of the gauge field, A0, plays the role of a
Lagrange multiplier which enforces Gauss’ law at any
instant including the initial and final times [19]. This is
why the exponentials in Eq. (D1) do not wind up in the
time direction.
Setting now as in (38), A1 ¼ A2 ¼ A and integrating

over A, again with the Coulomb integration measure, we
conclude that the resulting quantity coincides with the
expression displayed in the rhs of Eq. (38) from which
singlet and adjoint potentials can be extracted.
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