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Abelian projections of the mass-deformed ABJM theory and weakly curved dual geometry
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We construct N = 2, 4 supersymmetric Abelian projections of the N' = 6 mass-deformed Aharony-
Bergman-Jafteris-Maldacena (ABJM) theory. There are well-defined dual background geometries for the
N = 2 Abelian theory, while those geometries are unclear for the N = 4 Abelian theory. The N = 2
theory is built on the supersymmetric vacua of the mass-deformed ABJM theory, which are proven to have
a one-to-one correspondence with the Z; quotient of Lin-Lunin-Maldacena geometries. We select one
special vacuum of the mass-deformed ABJM theory and show that the corresponding geometry is weakly
curved at every point of the entire space transverse to the M2-branes in the large-N limit.

DOI: 10.1103/PhysRevD.87.085011

L. INTRODUCTION

The AdS/CFT duality is a powerful tool for studying
strongly coupled gauge theories [1-3]. This duality has
been tested in numerous examples in a string-/M-theory
framework and applied to various physical models. In
particular, there is accumulating evidence that the AdS/
CFT duality can be used to study physics in the strongly
coupled regime in condensed matter systems [4—6].

An important example of the AdS/CFT duality related
to a low-energy effective action of N coincident M2-
branes on the C*/Z, orbifold fixed point was proposed in
Ref. [7]. This effective theory is called Aharony-Bergman-
Jafferis-Maldacena (ABJM) theory and was conjectured
to be dual to type IIA string theory on AdS, X CP? or
M-theory on AdS, X S7/Z,, according to the value of the
Chern-Simons (CS) level k. Since the boundary of the
AdS, space is conformally mapped to the flat (2 + 1)-
dimensional Minkowski space, the dual field theories are
closely related to the strongly coupled theories of planar
condensed matter systems. The direct application of ABJM
theory to specific condensed matter systems seems far from
possible, due to its complicated non-Abelian structure and
huge number of degrees of freedom.

In order to make more realistic attempt, a consistent
Abelian truncation of the bosonic part of the N =6
mass-deformed ABJM (mABJM) theory [8,9] is probably
a promising direction [10]. In the construction of an
Abelian theory, an ansatz is used in terms of some constant
matrices called the Gomis-Rodfiguez-Gomez-Van
Raamsdonk-Verlinde (GRVV) matrices [9]. These matri-
ces were originally introduced to obtain discrete vacua of
the mABJM theory. The Abelian truncation in Ref. [10]
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preserves O(N) degrees of freedom out of O(N?) degrees
of freedom of the mABJM theory in which these Abelian
fields may describe the collective motions of O(N) charged
particles. It was also proposed that the Abelian action
governing the collective motions can be an effective action
of a condensed matter system. Specifically, the relativistic
Landau-Ginzburg model was constructed from the Abelian
projected model. These results suggest that the dual gravity
theories of condensed matter systems can be studied based
on the gauge/gravity duality of the mABJM theory.

In this paper, we employ a generalized ansatz that
includes the fermion part of the mABJM theory to con-
struct a supersymmetric Abelian projected theory.' First,
we show that the resulting theory has N = 4 supersym-
metry. The Abelian theory obtained in Ref. [10] is a special
representative of our construction. The backgrounds used
in the 2N = 4 Abelian theories are not supersymmetric
vacua of the mABJM theory. As a consequence, there are
some problems in finding the gravity dual. In order to
overcome these problems we propose a new ansatz based
on the vacua of the mABJM theory, and construct an
N = 2 Abelian CS theory.

Half-Bogomolnyi-Prasad-Sommerfeld (BPS) geome-
tries for M2-branes in the presence of the transverse
4-form flux in 11-dimensional supergravity are called the
Lin-Lunin-Maldacena (LLM) geometries [12,13]. These
LLM geometries were expected to be dual to the vacua
of the mABJM theory with CS level k = 1. However, the
number of classical vacua constructed in Ref. [9] was more
numerous than the partitions of N, which is the number of
the half-BPS LLM solutions for a given number N of M2-
branes. This mismatch was fixed by excluding the vacua in
which the supersymmetry is broken dynamically [14]. The
one-to-one mapping between the vacua in the mABJM

'See Ref. [11] for an alternative approach to obtain a super-
symmetric Abelian projected theory.
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(or mABJ [15]) theory with CS level k& and the LLM
geometries with a Z, orbifold and discrete torsions is
explained in Ref. [16]. (See also Refs. [17,18].)

When we consider a gravity dual for a fluctuation on the
field theory side, the corresponding background geometry
should be weakly curved everywhere in the large-N limit.
However, we will show that in general the LLM geometries
involve highly curved regions even in the large-N limit.
Therefore, the gravity duals for some fluctuations are not
well-defined.

In this paper, we select one special vacuum of the
mABJM theory and confirm that the corresponding dual
LLM geometry is weakly curved everywhere in the
large-N limit. To avoid complication, we focus on the
case of k = 1. Based on the work of Ref. [16], one can
also extend the discussion to the case of k > 1. For the
LLM geometry, we compute the Ricci scalar at every point
of the entire space transverse to the M2-branes and show
that the Ricci scalar has positive values near the boundaries
between the black and white strips in the droplet represen-
tation of the LLM geometry. Furthermore, the Ricci scalar
decreases monotonically with increasing distance from the
boundary and becomes a negative constant asymptotically.
In this asymptotic region the geometry is AdS, X S”. Over
the entire geometry, the absolute value of the Ricci scalar
decreases with increasing N.

Some fluctuations of a field theory vacuum with a
weakly curved dual geometry may lead to well-defined
dual gravity modes, according to the gauge/gravity duality.
For this reason, our /N° = 2 Abelian theory can be consid-
ered a special kind of fluctuation on the vacuum and has
a well-defined gravity dual on the corresponding LLM
geometry. Since we consider the duality on the background
of M2-branes polarized to M5-branes in the presence of the
4-form field strength [19], the gauge/gravity which we are
considering does not belong to the well-known AdS/CFT
duality. Rather, it is similar to the duality on the back-
ground of D3-branes polarized to D5(or NS5)-branes in
type IIB string theory [20].

This paper is organized as follows. In Sec. II
we summarize the mABJM theory with explicit

PHYSICAL REVIEW D 87, 085011 (2013)

SU(2) X SU(2) X U(1) global symmetry and discuss the
supersymmetric vacua of the theory. In Sec. III we
construct the N = 4 supersymmetric Abelian projec-
tion of the mABJM theory with general ansétze in terms
of the GRVV matrices and discuss its problems in rela-
tion to the gravity dual. We also construct the N = 2
Abelian theory based on the vacua of the mABJM the-
ory. In Sec. IV we select one special vacuum in the
mABJM theory and investigate the corresponding dual
LLM geometry. We conclude in Sec. V.

II. mMABJM THEORY AND
SUPERSYMMETRIC VACUA

The main purpose of this paper is to construct an
N = 2 Abelian projected mABJM theory and to propose
a weakly curved gravity dual in the large-N limit.
For completeness, we start with an explanation of the
mABJM theory in terms of the fields with manifest
SU(2) X SU(2) X U(1) global symmetry, and a summary
of the supersymmetric vacua of the theory.

A. mABJM theory with SU(2) x SU(2) x U(1)
global symmetry

The N = 6 mABJIM theory is well established as a
theory describing multiple M2-branes [8,9] in the back-
ground of a special kind of constant 4-form field strength
and its dual seven-form field strength [21,22]. There are
several methods for obtaining such a mass-deformed
theory; for instance, the N° = 1 superfield formalism [8]
and D-term and F-term deformations in the N° = 2 super-
field formalism [9]. These different versions of mass-
deformed theories are actually equivalent since they are
connected by field redefinitions [23]. The action of this
theory, which has U(N) X U(N) gauge symmetry and
SU(2) X SU(2) X U(1) global symmetry, is

S = [ A (Lo + Log + Ligm + Loo)  Q2.1)

where

Ly=t(=D,ZiD*7% — D, W1 D*W, + il y*D & + iot 'y D, w,),

k 2i A A 20 A A A
‘ECS = Ef’u ptr(A,ua,,Ap + gA,UgAVAp - AMG,,AP - ?AMAVAP>’
27
Liem = == ul(¢€l = 0™ 0 )Z°Z] = WI'W,) + 2261 + oW )(E"Z] + Wi w,)

— (£ler — w ot (2Z) 20 — W, Wity — 2(Z8 ¢ + w W)€ 20 + Ww'!?) + 240,20,

+ EW,EPW, — 22°W, P 0, — 270w, "W, + w9 ZE 0t Z] + Wieglwitt el —20teglwitz]
—oWtiglwtZ! — w,290,20 — W, £ W, &" + 20,2W, &" + 2W, 20w, — Z w19 Z} wt?

— elwtagtwtt woglwtazl ot 4 2l wtazt Wit + ipu(eles — wliw,),
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2 2
£bos = - |77T(szgza - ZaZZZb + ZaWbWTb — WTbWbZa) _ Mza

2
- I%(zgzbwa - W2z} + w,witw, — w,Wtw,) + uw,

2
, (2.2)

4ar 2 4w
— IT(W“’ZZW*“ — wheziwtby | — 7(ZZWH’ZZ —ziwitzh)

where |O]? = tr(O1 ©). For later convenience, we have split the usual four transverse complex scalar and fermionic fields
of the original SU(4)-invariant ABJM theory as

ye = (z9, wta), Y, = (€,&", —€,01?), (2.3)

where a = 1, 2, 3, 4 for the left-hand sides of these equations and a, b = 1, 2 for their right-hand sides. The action is
invariant under the JN° = 6 supersymmetry transformation,

0Z% = [e&* + ia“baﬁb, SWte = —jewte + i,B“bfb,

>
=
I

>
b
Il

2
- 7[6%(5‘122 + Whw,) + BbyH(£W), — Z'w,) + c.c.],

2
T leyu(ZlE + 0,01 + B yh (W, E — 0,29 + e

4
8¢ = eI:'y/‘D#Z“ - %(Z[“ZZZ"] + Zlew,witl — 2eabzli 7T 72) + Mza]

4 8 8
+ a”bl:y/‘DMW“’ + %(WT[”ZI 74 — wilbw, wiel) + ,uW“’:I + %éeabwﬂlzgwm - %abcwﬂczgzﬂ,

4
Swte = E[—y”DMWT“ + %(Wﬂazgzb] + Wilew, witl — 2ecbwitliw, wi2l) + ;LW*“:I

4
+ ,B”b[y“DMZ” - %(Z[bZIZC] — Zlbw witely — ,LLZb] - 8777 ee?Zllw, 72 — 8777 Bl Zlew, wtal,

where Al“B,C) = 1(A*B,C¢ — C°B,A") and &= €,
B, = (a?,)* are the supersymmetry parameters. We
also have €’ B¢, = —€’“a”, from the reality condition
of the supersymmetry parameters of the original ABJM
theory.

B. Supersymmetric vacua of the mABJM theory

In this subsection, we summarize the classical super-
symmetric vacuum solutions of the mABJM theory, which
were obtained in Ref. [9]. The vacuum equations are
obtained by setting the bosonic potential to zero, V., =
—Lyos =0, in Eq. (2.2). Since — L, is a sum of four
absolute squares, we have four equations that are cubic for
Z* and W,,. The first two are the D-term equations, while
the last two are the F-term equations. Suppose that the
scalar fields are chosen to be orthogonal to each other,
Z°W, = 0. Then the vacuum equations are simplified by
imposing this condition. The D-term equations become

(2.4)
a7t 7b _ bJraz_'u’_ka
VAYAVIR YAV 52" 2.5)
wiew,wtt — wibtw,wta = K gyt
27

and the F-term equations are trivially satisfied as

W, Z'W, — W,ZPW, =0,  ZPW,Z° — Z°W,Z° = 0.

(2.6)

The classical vacuum solutions of the D-term equations
(2.5) have been found in the form of the GRVV matrices.
A convenient way of expressing each solution is to repre-
sent it as a direct sum of two types of irreducible rectan-
gular n X (n + 1) matrices, M (a =1, 2), or a direct
sum of the Hermitian conjugates of those rectangular
matrices M) [14,16], which are
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0 1
0 V2

My = " . MY = N : 2.7)
V2 0 0 Vn—1
1 0 0 Jn

wheren = 1,..., N — 1.In order to form N X N matrices, the direct sums of rectangular n X (n + 1) matrices should also
include certain numbers of empty rows and empty columns. Explicitly, the solutions are written as follows”:

(2 \

(n;)
70 = [MX M :
27 0("1+1+1)><”[+1
K O(n/+l)><n/ ) (28)
( 0, %(n, +1) \
WTd _ /.L_k 0ni><(n[+1)
27T j_vlgliﬂ)

\ M )
The matrices M{"” are called the nth block of the first type, N-—1
while their Hermitian conjugates M) are called the nth [nN, + (n + DN,] = N,
block of the second type. Since the nonzero components of n=0 (2.10)
7 and W14 belong to different blocks, the product Z¢W, NZl ,
always vanishes and the F-term vacuum equations (2.6) are Z [(n + DN, + nN,] = N.

n=0

automatically satisfied. The solutions in Eq. (2.8) also
satisfy the D-term equations (2.5) because the rectangular
blocks J\/lg”) solve the equations block by block as follows:

2
S MPMPMP - MPOMP M) = - MP. (2.9)
b=1

One occupation number, N, with n =0,1,...,N — 1,
denotes the number of blocks of j\/lg”) contained in Z¢, and
another occupation number, N/, denotes the number of
blocks of j\/l(a”) contained in W14, In this notation N, is
the number of empty columns while N} is the number of
empty rows. Since Z¢ and W1¢ are N X N matrices,
the occupation numbers should satisfy the following
constraints:

2Similar vacuum solutions for the N = 3 mass-deformed CS
matter theory with generalized CS levels k; and k, were obtained
in Ref. [24].

At the quantum level, only a subset of these classical
vacuum solutions remains supersymmetric, and the occu-
pation numbers for the quantum-level supersymmetric va-
cua are further constrained by the value of the CS level k as

0=N, =k 0=N! =k (2.11)

for every n [14].

III. ABELIAN PROJECTIONS

A. N = 4 Abelian projection

The Abelian projection of the mABJM theory is imple-
mented by making an ansatz for the dynamical fields. They
are given by two N X N matrices, S' and S?, and are
expressed by direct sums of the rectangular blocks, ,’M(]")
and J\/l(zn), respectively. Since all Mg")’s are n X (n + 1)
matrices, their direct sum always forms a rectangular
matrix with fewer rows than columns. Therefore, in order
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to form the N X N matrices, the direct sums should contain
a certain number of empty rows. In a general ansatz a
certain number of empty columns is also allowed. More
precisely, if N, is the number of Mﬁ;’) blocks contained in
§4, Ni empty rows should be included in order to form the
N X N matrices. It is also possible to include N, empty
columns. Then the occupation numbers must satisfy the
following constraints:

N-1
> nN, +Nj=N,

n=1

N—-1
S (n+ 1N, +Ny=N. (3.1)
n=1

The S matrices of a = 1 or 2 constructed in this manner
satisfy the following properties:

sasist — sbsise = —ga,

tw(s's)) = u(s2sh) = ¥ N, ———
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In order to obtain the Abelian projected theory of the
mABJM theory, one can consider the following ansatz [10]:

Z¢ = ¢,(x)Ss°, wia = p,(x)se, &= (0S8,
o= y,(x)8% A* = ag(x)SlSIr + a{‘(x)SZS;r,
AP = ak(0)STS! + a*(x)s]s?, (3.3)

where here and from now on we understand that there is no
summation on the repeated indices (a, b), unless stated
otherwise. We notice that since for this ansatz the product
Z°W,, is nonvanishing—even when the coefficient fields
¢,(x) and p,(x) are made constant—Eq. (3.3) does not
satisfy the vacuum equations of the mABJM theory.
Therefore, this ansatz cannot be considered a fluctuation
on a supersymmetric vacuum. By inserting the ansatz (3.3)
into the mass-deformed Lagrangian in Eq. (2.1), and by
using the properties of the S matrices in Eq. (3.2),
we obtain

L= B{—(D#%)*D“(ﬁa ~(Dup )t Dlp,+ith ¥ Dythy + iXa¥* Dyuxa + iewp(ai‘a”aé’ +abaval)

2771

dar

- T[(W/ﬂz =12l = 1p2l?) + (2> = X2 U1 1? = |p11?) +2(dh1 by + x151)(Yaba + pair)

) _ dari o o
+2(¢2¢/2+X2[72)(¢1¢1+p1/?l)]_77n[¢1¢2/?1/?2+¢1¢2X1)(2+ﬁlp2¢1¢2+p1p2l//1¢2

— 1p1Yaks — Bip1axa — DiPax1Yr — Prpax 1 — Babali X — bapa i X1 — 2P X — Papiixa]

2
- éllclz[(ldnl2 +1pi P2l = 192l + (12* + 1p2l) (1 2 = 11 17)*] =

1672

2 L2 + 182111 Plpal®

161 PI2 P11+ 1P+ (o = Xaxa) = 12 Batha + pupd) + 21 P1al? = 11 PlsP).

where a summation over repeated indices is implied in this
Abelian Lagrangian, and

N—1
+1 _ .
p=3 N D g —x
=0 2 (3.5)
DeX, = It X, + ia"X,,

The Abelian projection considered in Ref. [10] corre-
sponds to a special case of the ansatz (3.3) in which
Ny—1 =1 and Njj = 1 are the only vanishing occupation
numbers and all other occupation numbers are zero. In this
case the overall constant in the Lagrangian in Eq. (3.4)
becomes 8 = N(N — 1)/2.

The Abelian projection is also applied to the supersym-
metry transformation rules in Eq. (2.4). It turns out that the
Abelian theory obtained in Eq. (3.4) preserves only

(3.4)

N = 4 supersymmetry. We begin with the Abelian pro-
jection of the supersymmetry variation of one scalar field,

87" = ief' +ia 0t + ia',w? — §¢,S!
=iy, S +ial x,S' +ial, x2S (3.6)
Recalling that the S' and S? are linearly independent
matrices, the above equation is satisfied only if we set
@', to zero. Now we set @!; = —m and have
O = i€y —inx,. (3.7)
Similarly, the application of the Abelian projection to
the supersymmetry variations of the remaining bosonic
and fermionic fields in Eq. (2.4) results in the following
N = 4 supersymmetry transformation rules:
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O = i€d —inxy, op = —iex; —inYy,

O, = i€y + inxy,
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0py = —i€x, T iny,,

277 _ - _ _ _
dal' = — 7[67’”(¢2¢2 + Xap2) + 0Y*(Papy — Xaba) + cc],

277 - _ _ _ _
dal = _7[67”(1//%151 + x1ip1) — 9y py — x1¢1) +ccl,

i dar

27 T
o =€ v*D, ¢, — 7¢1(|¢2|2 —lpa) + noy |- 7&252/?1/02

o, =

m

: , :
¥* Dyt = == balldi P = |piP) + s | -

Vi -
+ 7779{’19{’2/)1,

4
A7 Dud) + i1k~ 1p:P) — i | -

27 49 _
+ W[V”Dypl + 7P1(|¢2|2 —lpal®) = Mpl] - 777¢1¢2P2,
4 _ - _ 2ar 5 5
& PP, + ) Y¢Dupr — 7p2(|¢1l —1pil?) + mps
_ 2 4 _
ox1 = —E[YMDMM + 7P1(|¢2|2 —|pal?) — Mpl] + 76¢1¢2P2

T _
777¢2P1P2:

B 2ar 4 B
Ox, = _G[V”DMM + 7P2(|¢1|2 —1pi») — ,U~P2:| + 7€¢1¢2P1

2 47 _
+ 77[7”@,%% + 7¢2(|¢1|2 —lpil?) = Md’z] + 777¢1P1P2-

With a straightforward but tedious calculation, the Abelian
action in Eq. (3.4) is shown to be invariant under this
N = 4 supersymmetry transformation.

The supersymmetry enhancement for k = 1, 2 in the
(m)ABJM theory is realized by using the monopole
operators [25], which relate the bifundamental fields
and the antibifundamental fields. The GRVV matrices
S4 and S;r in the ansatz (3.3), which represent the bifun-
damental and antibifundamental representations, respec-
tively, are independent of each other. For this reason,
the monopole operators related to the supersymmetry
enhancement do not exist in Abelian projected theories.
Therefore, no supersymmetry enhancement is expected
in these Abelian theories. In general, however, monopole
operators [26] in three-dimensional gauge theories create
a U(1) magnetic flux in the gauge group under consid-
eration. The Abelian projection can be considered as a
special way to extract the U(1) sector in which mono-
pole operators can live. Therefore, monopole operators
that are not related to the supersymmetry enhancement
can exist in the Abelian projected theories.

The next point to clarify is that the Abelian projection is
a consistent truncation of the original mABJM theory. In
Ref. [10] this was argued in the sense that the solutions to
the equations of motion of the truncated theory are also
solutions to the original theory. This is indeed the case,
because by using the properties of the S$¢ matrices in
Eq. (3.2) one can easily verify that D,D*(X,S) =
(D,D#X,)S. Using the same set of properties, other
expressions in the equations of motion of the mABJM
theory involving products of more than two §¢ matrices
can be reduced to expressions involving only one matrix.

(3.8)

I

As a result of these simplifications the equations of motion
of the original mABJM theory can be reduced to the
equations of motion of the Abelian projected theory using
the ansatz (3.3).

As a matter of fact, the above criteria of a consistent
truncation allows a further truncation of the Abelian
theory to a simpler Abelian theory involving fewer scalar
fields. In particular, a truncation involving two scalar fields
can be obtained by setting any two of the four scalar fields
and the corresponding fermionic fields to zero. There are
three inequivalent such truncations: (i) ¢, = p, =0,
@i1) ¢; = p, =0, and (iii) p; = p, = 0. Other cases are
related to these three cases by field renaming [10].

In case (i) the truncated action is

L= ﬁ[—(@ml)mwl — (Dup )t DHp,
+igy* Dy + iy  Duxi

k :
+ Epragf;/p + lﬂ(|¢1|2 - |X1|2)

— w2l + |p1|2>],

where " = g*a? — 9”al" are the field strengths of the
Abelian gauge fields. The gauge field a4 is an auxiliary
field and its equation of motion is f1"” = 0, which means
ai is a pure gauge degree of freedom. Therefore, the
truncation results in a theory of two massive bosonic
and two massive fermionic fields without self-interactions
of the scalar fields and Yukawa-type interactions. This
theory is invariant under the N = 4 supersymmetry
transformation.

(3.9

085011-6



ABELIAN PROJECTIONS OF THE MASS-DEFORMED ABIM ...

In case (ii) the truncated action is

PHYSICAL REVIEW D 87, 085011 (2013)

dar

- k
L= ﬁl:(fDﬂff’z)TiD“d’z ~(D,p)'DFpy + ithyy*Dyths + i1 ¥ Dyuxs + —— €unp(ald”al + aboval)

,LL2k2> 211

4772
+ ?<|¢2|2|Pl > + -

+piPlal? = 2x1p1ads — 2adapi i) + in(Pahy — /?1/\/1)]-

(121> + 1oy *) + T(|¢2|2|X1|2

(3.10)

Only N = 2 supersymmetry remains, with the supersymmetry transformation rules

O, = i€, op; = —i€xy,

20 _
dal = _T(GVMXIPI + x1v*epy),

B 2
ox) = _6<YMDMPI +791|¢2|2 - MP])-

2 - -
dal = _T(E’)’M'ﬁzd’z + Yoy ed,),

2
oY, = G(YMD,MM + %¢2|P1|2 + M(f’z),

(3.11)

The bosonic potential in Eq. (3.10) has no Higgs vacuum, and as such nontopological vortex-type BPS solutions are

supported [10].

Case (iii) is the most interesting because of its relevance in describing some condensed matter models [10].

The truncated action is

. k
L= p[ ~(Dub) Dy + ity  Dutha + €puylatd’af + at9"al)

2771

- T(|¢1|2|¢2|2 1Yol 1> + 2¢ 4oty + 2042001 )

2
ST PIG L+ P 1) + iy = w2Bathy + 11 Pl |

This action is also invariant under the N = 2 super-
symmetry transformation using the transformation rules
obtained from Eq. (3.8) by setting the supersymmetry
parameter m to zero.

B. Comments on the gravity dual of the
N =4 Abelian theories

Ansitze of Abelian projections similar to Eq. (3.3)
were commonly used in the literature to implement the
Abelian projection of the ABJM theory [10,27,28].
However, as it was pointed out in the pervious subsec-
tion, these ansitze do not satisfy the vacuum equations
of the mABJM theory unless we set ¢, or p, to zero. If
the latter is not the case, the ansitze can not be consid-
ered as fluctuations on the supersymmetric vacua of the
mABJM theory. Then the identification of the gravity
dual is unclear, since there is no known geometry which
is dual to the configurations given by Eq. (3.3). Because
of this reason, for the N' = 4 Abelian gauge theories,
we cannot use the holographic duality relations between
the supersymmetric vacua of the mABJM theory and the
LLM geometries. One has to find some other ways to
identify the gravity dual of the N = 4 Abelian gauge
theories.

(3.12)

f

When ¢, or p, are set to zero, one can identify the dual
gravity solutions; however, there are still some obstacles
involved with these solutions. We discuss these obstacles
in this subsection, and we construct an JN' = 2 Abelian
projection based on the vacua of the mABJM theory in the
next subsection.

Let us consider a particular vacuum solution with occu-
pation numbers {N,, N} satisfying the supersymmetric
condition (2.11). In Ref. [16], the Z, quotient of the
LLM geometry [12] is identified as the holographic dual
of the vacua of the mABJM theory. This geometry is
represented in terms of an infinite strip of white and black
regions in Fig. 1, which are called droplets. In this repre-
sentation the two colors correspond to = % boundary values
of the function that characterizes the metric; however, we
leave its clarification until Sec. IV B. The strip is divided
into excitation levels of length k, which are labeled by non-
negative integers n = 0, 1, 2, ... starting at the Fermi level
(EF). In this strip representation, the occupation number N,,
corresponds to the length of the black region in the nth
level above the Fermi level, while N/, corresponds to that of
the white region in the nth level below the Fermi level.
Since the length of the black/white strip in a given level
cannot be bigger than the length of the level itself, the
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(0

(a) A droplet representation of the Z, quotient of the LLM geometry. The horizontal lines do not correspond to any

coordinate, but rather are fictitious lines added for clarity. (b) A droplet representation for the k = 1 case. (c) The Young diagram

corresponding to the droplet (b).

occupation numbers should satisfy the condition (2.11),
which is also required in order to have supersymmetric
vacua [14].

An alternative representation of those gravity solutions
is expressed in terms of a Young diagram. For the LLM
geometry corresponding to the k = 1 case, the lengths of
the white/black strips are equal to those of the horizontal/
vertical edges of the Young diagram, as shown in Figs. 1(b)
and 1(c). The Young diagrams for small-curvature solu-
tions should all have very long edges and a very large total
number of boxes [12]. In other words, a small-curvature
geometry is represented by a Young diagram whose shape
is a square or almost a square. If the Young diagram has a
large number of corners, it is most likely that some of
the edges are short and the geometry includes highly
curved regions. In Sec. IV we will discuss the structure
of LLM geometry and its various limits.

Based on the discussion in the above two paragraphs,
we notice that there are two obstacles with the dual
gravity solutions to the Abelian projection ansatz in
Eq. (3.3) with ¢, or p, set to zero. The first one is the
fact that since the ansatz is based on matrices that are
built from only n X (n + 1) rectangular blocks, we have
to add N empty rows, where N is equal to the total
number of rectangular blocks used. Unless n is of the
order of N, one has to use a large number of blocks to
form an N X N matrix, and as a result N(’) can be larger
than k, in contrast to the requirement from supersymmet-
ric vacuum solutions (2.11). The second obstacle is re-
lated to the cases when the rectangular building blocks
have sizes of the order of N, so that only higher-level
occupation numbers (such as Ny_;, Ny_,,...) are non-
zero. Since the N X N matrices representing the vacuum
solutions can not contain more than one MEJN D or

.’]—VIE,N - ., these nonvanishing occupation numbers are
also of the order of one unit. Therefore, in the droplet

representation, the length of either the black strip or the
white strip is of the order of one unit. In these cases, the
corresponding Young diagrams will have some edges that
have lengths of the order N and others with lengths of the
order of one unit. For instance, in the case of Ref. [10],
the Young diagram is a 1 X N rectangle. As pointed out
before, for a Young diagram with short edges, the dual
geometry includes highly curved regions and the gravity
approximation of the fluctuations on such a geometry
cannot be trusted. However, one can still consider the
identification of the solitonic objects in the dual gravity
for the Young diagram with a 1 X N rectangle [10,17].

The prime motivation for considering the Abelian trun-
cation of the mABJM theory in Ref. [10] is to achieve a
better understanding of the gauge/gravity duality in con-
densed matter systems. The authors obtained the Abelian
Higgs theory—the relativistic version of Landau-Ginzburg
theory—through the Abelian projection of the mABJM
theory. It was suggested that the strong-coupling regime
of this theory can be investigated by using the gauge/
gravity duality, though this point was not explicitly ad-
dressed. However, due to the two obstacles discussed in the
pervious paragraph, it seems that the Abelian projection
ansatz (3.3) is not suitable for the consideration of a weakly
curved gravity dual.® Since the weakly curved limit is the
only region where one can trust the gravity approximation
of the dual theory, it is not clear if it is practically possible
to implement the idea of the gauge/gravity duality for
condensed matter models obtained from the N =4
Abelian theory of Sec. III A. In the next subsection, we
will introduce an alternative truncation ansatz to circum-
vent these obstacles.

3An alternative way of realizing the gauge/gravity duality in
condensed matter systems was suggested by adding fundamental
fields to the ABIM theory [11].
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C. 2N = 2 Abelian projection

In this subsection, we consider an Abelian projection of
the mABJM theory where the ansatz for the dynamical
fields is made in terms of four matrices, S and T“. The
ansatz is identified by the occupation numbers {N,, N’ },
where N, is the number of blocks lMSJ") contained in S¢,
and N/, is the number of blocks j\4§,”> contained in 7¢. The
blocks M and 17_\/15,") must be fitted as in Eq. (2.8) so that
the products of S with T;r are zero and the occupation
numbers satisfy Eq. (2.10). It is easy to see that

sestsh — sbsise = —g9,
T T — T°TiT% = T°,

N—1
tw($esh) = > Nyn(n + 1), (3.13)

n=0
N—1

(7T = Y Nin(n + 1).
n=0

The occupation numbers should also satisfy the supersym-
metric vacuum condition (2.11).

PHYSICAL REVIEW D 87, 085011 (2013)
We introduce the following truncation ansatz:
24 =, ()8, WT=p, ()T,
=08 @l =y, ()T,
AR = (x)S'ST + a (x)S2ST + b5 () T'TT + bt (x)T2T],
AP = (x)STS" + al (x)S1S2 + b5 ()T T" + b1 () TI T2,
(3.14)

where b!* are a new pair of Abelian gauge fields. Since all
the vacuum equations are satisfied by this ansatz when ¢,
and p, are set to 1’%’ this ansatz can be considered as a

special fluctuation on the supersymmetric vacua of the
mABIM theory when we set

¢a(x>=J§—E+$a<x>, pa<x>=‘/§—j’j+ﬁa<x>. (3.15)

Inserting the ansatz (3.14) into the mass-deformed
Lagrangian in Eq. (2.1), and using the properties of the
(89, T%) matrices given in Eq. (3.13), we obtain

.- k
Lo = Bl (Du@) Dr b, + 18,7 Dyty + 4 €unylal 97ah + aeral)

277

- T[|¢1|2|¢2|2 1Yol 1> + 21 hath1hy + oy haih)]

2
TG Fal + 181 PI6a1) + ity — w2 Bathy + 11l

k
+ B’{—(D,Lpa)*ﬂ“pa iV DyuXa = —— €4y} 37D5 + b5 7 BY)

2771

+ T[|/\/1|2|Pz|2 + Ix2lPlpy 1?

4772 o ~ 8T
- 7(|p1|“|p2|2 +1p1lPlp2l®) = ingaxa — w*Pupa — T|p1|2|p2|2}r

where

N—1 N—1
n(n+1) nn+1)
=YN,——, "= N,———

B n=0 2 B n=0

2

dar

+2(p1p2x1 X2 + P2P1 X2X1)]

(3.16)

Do o) = (0" + iag) (g, o).
(3.17)

D (par Xa) = (0% = ib& )Py Xa)-

As they appear here, Abelian projected theories obtained
with different choices of the occupation numbers are
the same except for the difference in the overall factor 8
or B'. On the other hand, as was discussed in Refs. [14,16],
different supersymmetric vacua obtained by different
choices of the occupation numbers are related to different
dual gravity backgrounds. This fact suggests that the over-
all factors in the Abelian projected theories have a more

[

important physical meaning than it at first appears. Below,
we will consider a special choice of the occupation num-
bers and discuss the physical meanings of this choice in
relation to the background geometry of the gravity dual.

The application of the Abelian projection ansatz (3.14)
to the supersymmetry transformation rules in Eq. (2.4)
preserves only N = 2 supersymmetry. The resulting
supersymmetry transformation rules are
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0 = i€y, O, = i€y, op, = —i€xy,

Say = _2777(@7”‘#1(1_’1 + 1ytedy),
8by = —2777@7")‘(1;71 + x1v*€py),

002 = (1 D = Tl P + i),
Sx2 = —E(YMD#pz + 2%pzlpllz - Mpz)

Unlike the N' = 4 Abelian theory, in the current case the
set of fields (¢,, ¢, ai/) do not mix with the other set
(pa» Xa» bh), and the parts of the Lagrangian that depend
on the first and second sets are separately invariant under
the N' = 2 supersymmetry transformation. A model simi-
lar to Eq. (3.16) was considered in Ref. [29] to describe the
phase transitions of quantum antiferromagnets in two spa-
tial dimensions. Identifying the set of fields (¢4, py,...)
with the second set (¢, po, .. .), we obtain the well known
2 + 1-dimensional N° = 2 CS matter theory [30,31].

The merits of the N' = 2 Abelian theory discussed in
this subsection over the N =4 Abelian theory of
Sec. III A are twofold. First, the Abelian projection ansatz
in Eq. (3.14) is a fluctuation on a supersymmetric vacuum,
and it is natural to expect to find the gravity dual. This is
true because for a particular supersymmetric vacuum
specified by a set of occupation numbers, (N,, N/),
the dual gravity solution is identified as the Z, quotient
of the LLM geometry represented by a droplet with the
same occupation numbers [16] [see Fig. 1(a)]. The N = 2
Abelian theory is then expected to be dual to a gravity
theory on such a background. Second—unlike the case of
the N = 4 theory—now the projection ansatz is based on
both the n X (n+ 1) and the (n+ 1) X n matrices.
Therefore we can adjust the number of each of these block
matrices in such a way that they are not large enough to
violate the upper bound set by &. In Sec. IV, we will discuss
one particular example to clarify this point.

IV. A SPECIAL VACUUM AND WEAKLY CURVED
DUAL GEOMETRY

In Ref. [20], Polchinski and Strassler discussed the
duality relation between the 2N = 1* theory—a
mass-deformed theory of the N =4 super Yang-Mills
theory—and type IIB string theory (or IIB supergravity)
in the presence of a self dual 5-form flux. The duality
includes quantitative maps for perturbative fluctuations
and nonperturbative solitonic objects.

Like the vacua of mABJM theory, the vacua of N = 1*
theory are discrete due to the mass deformation [32].
This implies that the duality relation of the N = 17
theory can be compared with that of the mABJM theory.
As we mentioned previously in Sec. III B, it was found
in Ref. [16] that there is a one-to-one correspondence

opy = —iexy

PHYSICAL REVIEW D 87, 085011 (2013)

2 - -
oa; = _7(67“1//2¢2 + Yoy ed,),

20 _
ObY = = —=(&"Xap2 + X2¥"€P2),

2
our = (¥ Duds — 7 sl + i)

k

_ 2ar
Sx1 = —6<7“D#p1 +=—pilpal* — ,um)

(3.18)

between the supersymmetric vacuum space of the
mABJM theory and the Z; quotient of the LLM geometry.
It is naturally expected that the mABJM theory is related
by duality with the M-theory on the LLM geometries.
Though this duality relation has not yet been confirmed,
the correspondence between the spectrum of BPS charged
particles and the energy of the fractional M2-branes in the
LLM geometries was obtained in a reliable region [16].

In the previous section, we constructed the N =2
Abelian theory on the supersymmetric vacua of the
mABJM theory, which is a consistent subset of
the mABJM theory. According to the argument stated in
the above paragraph, one can consider the duality relation
for the N = 2 Abelian theory as some subset in the
M-theory on the LLM geometries. One can consider the
correspondence for perturbed fluctuations or nonperturbed
solitonic objects on both sides.

In general, the LLM geometries include highly curved
regions, even in the large-N M2-branes limit. Gravity
theories built on such background geometries should in-
clude higher-derivative corrections. Therefore, in these
cases, if one attempts to find the duality between the field
theory fluctuations on some vacua and the gravity fluctua-
tions on the LLM geometries, then the simple Einstein-
Hilbert gravity approximation is not enough. If one has
some criterion for the weakly curved LLM geometries in
the large-N limit, it will be useful in the study of the gauge/
gravity duality. In the Young diagram for k = 1 shown in
Fig. 1(b), small-curvature LLM geometries are only those
where the Young diagram has a small number of corners
and a large number of boxes [12].

In this section, we confirm the above criterion clearly. We
select a special supersymmetric vacuum on the field theory
side and analyze the corresponding dual geometry on the
gravity side. We find that the corresponding dual geometry
is weakly curved everywhere in the large-N limit.

A. A special vacuum in the mABJM theory

Let us consider a particular supersymmetric vacuum of
the mABJM theory satisfying the constraints (2.10) and
(2.11). Our choice of the occupation numbers is

N():Nl:"':Np:k,
Ny=N|=---=N, =k

4.1)
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where p represents the number of the .’Mf,") or .7_\/15,") blocks
used to build the vacuum solution. In the droplet picture for
general k [16], the choice (4.1) represents a droplet with a
black strip of length pk above the Fermi level and a white strip
of the same length below the Fermi level, shown in Fig. 1(a).
Here we focus on the case of k = 1. Inserting Eq. (4.1)
into Eq. (2.10), we obtain the relation between p and N,

p—1

Y (@n+1)=N.

n=0

4.2)

From this relation we read the number of nonvanishing
blocks in the vacuum solutions of Z¢ or W1 in Eq. (2.8),

p=+N.

The droplet and Young diagram for our choice is as in Fig. 2.
If we use this vacuum in the construction of the N = 2
Abelian action (3.16), the overall factors 8 and B’ are given by

JN-1

1 1
B=H=§MW$%7LEnM+U

(4.3)

1
= (N3/2 — N1/2), 4.4
In the next subsection we discuss the dual LLM geometry for
the special vacuum (4.1).

B. Weakly curved dual LLM geometry

The metric of the LLM geometry is completely deter-
mined by two functions z(x, y) and V(x, y), where (x, y) are
two of the eight coordinates transverse to the M2-branes. In
the notation of Refs. [12,16], the metric is given by

_ 20

ds? = e5(—di* + dwi + dw3) + e S[h*(dy* + dx?)
+ yeCdsg, + ye 9ds3],

PHYSICAL REVIEW D 87, 085011 (2013)

FIG. 2. The droplet representation and the corresponding
Young diagram for our special vacuum with k = 1.

where w( is a mass parameter fixed by the transverse
4-form field strength. The functions z and V are

L y) = 2mz+:1 (=) (x — x;)
2m+1 (_1)i+1

Vix,y) = ,
o) i:zl2V(x—x,-)2+y2

(4.6)

where the x;’s represent the locations of the boundary lines
between the black and white strips in the droplet represen-
tation of Fig. 1(b), and m is the number of black or white
strips. The black/white strips in such a droplet representa-
tion indicate the 1% values of the function z along the
y = 0 boundary. For clarity of presentation and easier
numerical evaluations, here we consider the case with a
pair of finite-sized black and white strips. If we fix the
x = 0 position at the Fermi level of the droplet and denote
the length of the black strip by b and that of the white strip
by w, then the functions z and V are given by

x+b—w

X—w
Jix + b2 +y? \/(x—i-b—w)z+y2+\/(x—w)2+y2i|,

4.7)

e 20 = po2(h? — h2V2), h™2 = 2ycoshG,
1
7= 3 tanh G, 4.5)
|
1 x+b
z(x,y) = 5[
1 1
Vixy) ==
(x,y) 2[

1 1 ]
+ .

VGi Pt Jaib-wriy@ o wriy

The Young diagram corresponding to such a geometry
is a rectangle with a horizontal side w and vertical side
b. Since the number of boxes or the area of the Young
diagram is N, we can write w = N/b, so that we have only
two parameters.

In order to identify the choices of the parameter b that
result in a weakly curved geometry in the large-N limit,
one has to calculate the Ricci scalar for the metric

described by Eq. (4.7). For a generic spacetime point
(x,¥), an analytic calculation of the curvature gives a
long expression and it is not easy to study. Therefore, we
split the transverse spacetime into three regions according to
the distance r from the position of the boundary between
black and white strips. These are the near-boundary region
r< \/]V), the intermediate region (r ~ \/IV ), and the
asymptotic region (r > VN). For the near-boundary and
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p2

(a)

FIG. 3 (color online).

(a) The droplet representation of the extremely asymmetric choice with b = 1. (b) The plots of the Ricci

scalars (Ip = 1) for the extremely asymmetric choice at three selected points in the (x, y) plane.

asymptotic regions, analytic treatments are possible for some
choices of the parameter . However, for the intermediate
region we can study the geometry only numerically.

By the statement of guage/gravity duality, we expect to
have a weak curvature in the large-N limit. In order to find
some LLM geometries that can be the background geome-
tries in the gauge/gravity duality, we investigate these
geometries by evaluating the Ricci scalar in terms of b
and N. We find that the absolute value of the Ricci scalar
becomes small at large values of N for some choices of the
parameter b, while it remains large for the other choices. In
Sec. III B, we cited that the Young diagram for a weakly
curved geometry should have long edges and few corners
[12]. In particular, in the case of Eq. (4.7), the geometry
should be weakly curved if b =w = \/N . This is the
choice which is dual to the special vacuum used in
Sec. IVA (see Fig. 2) for the corresponding droplet and
Young diagram. On the other hand, if » = 1 and w = N,
which is the choice of Ref. [10], the geometry may have
some highly curved region. Since the other choices are in
between these two extreme cases, we show that the former
choice corresponds to a weakly curved geometry, while the
latter has a highly curved region in the large-N limit.

The Ricci scalar of the metric described by Eq. (4.7) is a
function of the coordinates (x, y) with the parameters b and
N. Before we proceed to the discussion of our choice, we
briefly discuss the extremely asymmetric case with b = 1
and w = N. We start by plotting the graphs of the Ricci
scalar against N at some selected points. The plots in Fig. 3
show that the Ricci scalars for the selected points approach
significantly large constant values, as we increase N.
Though we only take several points into account in these
plots, the numerical results are enough to conclude that the
extremely asymmetric choices (b < w or w < b) are
related to geometries which have some highly curved
regions in the large-N limit. From now on we mainly focus
on the symmetric choice with b = +/N.

1. The near-boundary region (r < JN)

When we calculate the Ricci scalar in this region, ana-
lytic approaches using the large-N expansion are possible.*
Since the behavior of the geometry near the boundaries at
X, and x; (or x3) in Fig. 2 are slightly different, we inves-
tigate these two cases separately.

(a) x = x, region: We call this boundary the symmetric
boundary. To obtain the behavior of the metric (4.5), it is
convenient to use polar coordinates (7, 6),

X = Fcos 6, y = Fsin#, O=0=m), 439

where 7 represents the distance from the boundary. The
metric behavior near this boundary is given by

N _2
1 (N\} 27 20> (45
ds? 3(—) <1 + ~)d 2+ = (—~)
BV NI PN
F | e

X (1 — 3\/ﬁ>(zdr + 7 dsS7>
2 1 2r 4
a5(1 2N§|:<1 + —)dsz L —
(PIU“O) 3\/N R2H! Iu,%r\/ﬁ

r 1
X1 — —dr? + rzds27>:|,
( 3Jﬁ>(4 §

where dslz22+l represents the worldvolume metric of the
M?2-branes. In the second line of Eq. (4.9) we have used

4.9)

F=2mluor, N = Qu@lu)*N,  (4.10)
where r is the rescaled dimensionless coordinate. The
rescaling in Eq. (4.10) is based on the flux quantization

in 11-dimensional supergravity. The quantization implies

“Since r/+/N is the expansion parameter of the LLM metric
near the boundary region, the large-N expansion is the same as
the small-r expansion.
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3

Xip1 — X = 27l uol. 4.11)

Atthe boundary (r = 0), the metric (4.9) has a coordinate
singularity. To clearly see the behavior of the geometry at
the boundary, we consider the coordinate transformation

r=p’ (4.12)
Then the metric (4.9) is rewritten as
) 1 2,02 4 p2
ds> = (1 2N§|:<1 s (1)
( PIU’O) 3\/]v R2 M(z)\/]v 3\/N
X (dp? + pzds§7):|. (4.13)
At p = 0, we have the metric of R® along the space trans-

verse to the M2-branes [16]. Near the symmetric boundary
the Ricci scalar has the form

4 1\; 29 p? p?\2
y S (—)[1 + B2 (9(_) ] 414
e\ T w AW ¢
This shows that the Ricci scalar is positive and decreasing
with increasing N. We also notice that the Ricci scalar has a
local minimum at the boundary; see Fig. 5.
The regularity of the geometry can also be confirmed by

evaluating other invariants. For instance, the contraction of
the Ricci tensor R,y is given by

80 [1\i 371 p? p*\2
Dl mrolz) ] @
97%1;<N)[ noyn  O\Ww) I ¢
Similarly, the evaluation of the Kretschmann invariant
gives the following regular result:

52 (1\;
KLMN _ -
Rttt 91} (N) [1

RMN —

RMN

+39 5_; + @(5_%)2 |
(4.16)
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where R;ypy is the Reimann tensor. The expressions
(4.15) and (4.16) also confirm that our geometry is weakly
curved in the large-N limit. This analysis can be repeated
for other regions.

(b) x = x; region: Because of the symmetry of our
droplet, the Ricci scalar near the boundary at x = x5 is
the same as the one near the boundary at x = x;. Using the
polar coordinates in Eq. (4.8) with 7 indicating the distance
from the boundary at x;, we obtain the metric near this
boundary,

ds® = (4m)3(lppo)>N3

X[(1+(1_9C086)r)d2 N 1
T Vs, 4 ———
oN ) TN

x (1 - %)Gdﬂ + rzds§7)]. @.17)

We use the coordinate transformation (4.12) to see the
behavior of the geometry at r = 0. We obtain the metric of
R3, and the corresponding Ricci scalar is given by

2% 1\ 107 — 45cos 0 p? p2\2
mo 2 (L[ NI et 2 o2y
3mE\JN. 48 VN VN

(4.18)

This also shows that the Ricci scalar is decreasing with
increasing N. It has a local maximum at the boundary
(p = 0); see Fig. 5.

2. The intermediate region (r ~ JVN)

As we stated above, for the intermediate region we can
only rely on numerical methods to study the curvature. In
the case of our symmetric choice, the absolute value of
the curvature is decreasing in the entire intermediate
region with increasing N. To verify this fact, we plot
some three-dimensional graphs of the Ricci scalars versus

Xi»wn 3

FIG. 4 (color online). Three-dimensional plots of the Ricci scalars versus the (x, y) coordinates for \/1—\7_ = 10?2 (yellow), \/]_V- = 10°
(red), and /N = 10* (blue). The (x, y) plane in gray is included to trace the line of the zero Ricci scalar.

085011-13



HYUN et al.

0.3

0.2

0.1

XAIN

-0.1

-0.2

-0.3

FIG. 5 (color online).
VN = 10* (blue).

the coordinates (x, y) for large values of N; see Fig. 4.
In this three-dimensional plot, we exclude the numerically
problematic regions near y = 0, which need special treat-
ments. In the regions where the numerics behave well, the
three-dimensional plot in Fig. 4 shows that the geometry
is weakly curved in the large-N limit. The plot also shows
that the Ricci scalar is positive when the distance r from
the symmetric boundary is small, and it is negative
when this distance is large. In between these two regions
there is an ellipse-like line in the (x, y) plane where the
Ricci scalar is zero.

The region near the y = 0 boundary can be treated in
either of the following two ways. If the distance from any
of the boundaries separating the black and white strips is
much less than \/N then this region falls under the same
|

sm20 Zutl

1
z2(r, 0) = 3 cos 6 —

m+1

2
Vi) ~ 5+ ) > 1

Since the detailed shapes of droplets are not distinguish-
able in the asymptotic limit, the metric only depends on N.
For this reason, we here treat an arbitrary droplet. With the
above expansions we obtain

N 1 0
e 2% ~ — h?~_—, eC = cot—, (4.20)
/"L()r 2r 2

where the parameter N is given by
5 2m+1
N = —( Z (—

The relation between N and N was given in Eq. (4.10).

2m+12m+1

> Z(—l)“fx,-xj). 4.21)
i=1 j=1

)i+1x12 _

SHere r represents the distance from the symmetric boundary.
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The plot of the Ricci scalar versus the x coordinate at y = 0 for JN =
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102 (yellow), VN = 10° (red), and

category as the near-boundary region, which has already
been discussed in Sec. [IVB 1. On the other hand, if this
distance is of the order of \/]V , we expand the functions z
and V in powers of y to the leading orders, and then
calculate the Ricci scalar from these expansions. The plot
of such simplified Ricci scalars versus N also confirms the
claim that the curvature is small in the intermediate
regions; see Fig. 5. The plots also show that the Ricci scalar
is decreasing with increasing N.

3. The asymptotic region (r > +/N)

Like the near-boundary limit (r < JN), for the asymp-
totic limit (r > +/N) an analytic treatment is possible. We
proceed by expanding the function z and V for large r as’

_ 3cos fsin?6 2mil "
i _1yitl,2
42 Z ( 1) Xis

i=1
1 2m+1

Z( 1)1+1 2

(4.19)

Inserting Eq. (4.20) into Eq. (4.5), we obtain the asymp-
totic metric

R2T (8713 o\ dr
dsgsymp = ZI:( ;;LO ) (_dtz + dW% + dW2 ?2 :|
+ R%ds3,
R
= (5) dshus, + RO, (4.22)

where R = (2572N)"/%[,. Since 7 has a rescaling symme-
try in the first line of Eq. (4.22), one can see that the
asymptotic AdS, X S’ geometry does not depend on the
mass parameter wy. We also notice that the result is inde-
pendent of the shape of the droplet. Therefore, for any
droplet with N M2-branes—including our special choice—
the asymptotic geometry is AdS, X S7 and it is weakly
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curved in the large-N limit, as expected. This completes
the verification of the fact that in the case of our symmetric
choice the LLM geometry is weakly curved everywhere in
the large-N limit.

V. CONCLUSION

In this paper we have constructed N = 2, 4 super-
symmetric Abelian projections of the mABJM theory. We
selected an N = 2 supersymmetric Abelian theory on a
particular vacuum of the mABJM theory and verified that
the background geometry of its gravity dual is weakly
curved everywhere. Our work was motivated by a poten-
tial application of the Abelian projected mABJM theory
to describe some condensed matter systems. If an effec-
tive action of a condensed matter system is formulated
as a truncation of a well-established theory with a well-
understood dual gravity, the strong-coupling regime of the
system can be studied via gauge/gravity duality. In order
for this to be realized, the background geometry of the
gravity dual must be weakly curved.

Our first attempt in identifying such a theory was based
on a consistent truncation of the mABJM theory with
N = 4 supersymmetry. We found such a truncation prob-
lematic because of either of the following two reasons.
First, some of the truncation ansitze violate the conditions
required by the supersymmetry invariance of the vacua at
the quantum level. Since the gauge/gravity duality maps
the supersymmetric vacuum solutions of the mABJM the-
ory to the Z, quotient of LLM geometry, the map is unclear
for the Abelian theories built on nonsupersymmetric vacua.
Second, when the truncation ansitze do not violate the
condition required by quantum supersymmetric vacua,
we found that the dual geometry has highly curved regions,
and the gravity approximation of the fluctuations on such a
geometry cannot be trusted.

In order to overcome these problems, we constructed an
N = 2 Abelian theory by using another consistent trun-
cation of the mABJM theory. Our truncation ansétze in-
volved special fluctuations on the supersymmetric vacua of
the mABJM theory, and the gravity duals can be built as
fluctuations on the geometries that are dual to these super-
symmetric vacua. It turns out that some of the dual geome-
tries contain highly curved regions and the study of gravity
theories on those geometries should include higher-
derivative corrections. For this reason, focusing on the
k =1 case, we selected a particular vacuum for which
the dual LLM geometry is weakly curved everywhere.
We carried out a detailed study of this geometry.

Our assessment can be repeated for a more general
LLM geometry, but in this paper we focused on the
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geometries for which the droplet representation has
only a single pair of finite-length black and white strips.
The metric is characterized by three parameters, which
are the mass parameter, the lengths of the black/white
strips, and the total number of M2-branes (). We found
that the geometry is weakly curved when the lengths of
the black and white strips are the same and equal to JN
in the large-N limit. To verify this, we studied the
behavior of the metric by splitting the transverse space
into three intervals depending on the distance r from the
boundary between the black and white strips. For the
near-boundary region (r < +/N) and the asymptotic re-
gion (r > VN), we showed analytically that the absolute
value of the Ricci scalar is small and decreases with
increasing N. We found that the Ricci scalar is always
positive near the boundary whereas it is negative in the
asymptotic region, in agreement with the expectation
that the geometry is AdS; X S; in the latter region.
In the intermediate region (r ~+/N), we could study
the geometry only numerically. By plotting the graphs
of the Ricci scalar versus the transverse space coordi-
nates, we verified that in the intermediate regions the
geometry is weakly curved as well, and the curvature
decreases with increasing N.

In this paper we clarified the map between the vacuum
of a special N = 2 Abelian projected mABJM theory
and the LLM background geometry of the gravity dual.
It still remains to figure out the type of fluctuations
on this geometry that result in the gravity theory dual
to the N =2 Abelian theory. There are also other
interesting aspects of the map. It is evident that the
N =2 Abelian theory supports soliton solutions, such
as vortices and domain walls. It is interesting to find the
corresponding objects in the gravity dual. One can also
consider more general fluctuations on our special vac-
uum and study the gravity dual. These issues will be
discussed elsewhere.
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