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Low-energy effective field theory describing a nonrelativistic three-body system is analyzed in the

Wilsonian renormalization group method. No effective auxiliary field (dimeron) that corresponds to two-

body propagation is introduced. The Efimov effect is expected in the case of an infinite two-body

scattering length and is believed to be related to the limit cycle behavior in the three-body renormalization

group equations (RGEs). If the one-loop property of the RGEs for the nonrelativistic system without the

dimeron field, which is essential in deriving RGEs in the two-body sector, persists in the three-body sector,

it appears to prevent the emergence of limit cycle behavior. We explain how the multiloop diagrams

contribute in the three-body sector without contradicting the one-loop property of the RGEs and derive the

correct RGEs, which lead to the limit cycle behavior. The Efimov parameter, s0, is obtained within a few

percent error in the leading orders. We also remark on the correct use of the dimeron formulation. We find

rich renormalization group flow structure in the three-body sector. In particular, a novel nontrivial fixed

point of the three-body couplings is found when the two-body interactions are absent. We also find, on the

two-body nontrivial fixed point, the limit cycle is realized as a loop of finite size in the space of three-body

coupling constants when terms with derivatives are included.
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I. INTRODUCTION

Nonrelativistic three-body systems have many interest-
ing features. There have been long-standing discrepancies
and anomalies between theoretical calculations and the
experiments for several physical quantities in the three
nucleon systems. (See Ref. [1] for a review.) So-called
Borromean nuclei, three-body bound states, any two of
whose constituents do not form a bound state, are known
to exist. (See Ref. [2] for a review.) Efimov showed that
there are infinitely many three-body bound states with the
ratios of the binding energies of the subsequent bound

states being a universal constant, Enþ1=En � e�2�=s0 ¼
1=515:03 . . . , when the two-body scattering length is
infinite [3,4]. This ‘‘Efimov effect’’ has recently been
attracting much attention because of the advancing experi-
mental control over the very cold atomic systems by using
Feshbach resonance.

At low energies, the internal degrees of freedom of
the particles (i.e., nucleons, nuclei, and atoms) become
irrelevant, and the system is well described by an effective
field theory (EFT), in which only the particles without
internal structure interact locally. EFT is an efficient,
model-independent approach and admits a systematic
improvement of the description.

Bedaque et al. [5] first noticed that the Efimov effect is
related to the renormalization group (RG) limit cycle

behavior of the three-body nonderivative coupling of the
EFT. RG analysis has played an important role in recogniz-
ing that the Efimov effect is a new kind of universal phe-
nomena in the three-body systems [6]. There are several
papers that deal with the Efimov effect in the light of non-
perturbative RG analysis. For a recent review, see Ref. [7].
In their analysis, as well as subsequent studies by other

authors, the so-called dimeron field [8], an auxiliary
effective field that represents two-body propagation, is
exploited. To our best knowledge, there is no literature in
which the connection between the limit cycle behavior and
the Efimov effect is established without a dimeron field.
One might wonder if the limit cycle behavior can be
obtained without introducing a dimeron field.
Although dimeron is a useful device, its introduction

needs some care. It is difficult to establish the relations
between a set of the coupling constants in the theory with
dimeron and that in the original theory because of a non-
trivial factor in the path-integral measure arising from the
field transformation, an awkward contribution that depends
on the regularization of how to define a functional deter-
minant. (In Appendix A we explain how the additional
contribution from the Jacobian affects the relations among
the couplings.) It is thus easier to think of the theory with
dimeron as another EFT, the couplings of which are to be
determined by a matching procedure, than to make a direct
connection between the two theories.
In this paper, we perform an RG analysis for a non-

relativistic three-body system of a single (complex)
scalar field without introducing the dimeron. (It is straight-
forward to extend our analysis to the fermionic case.)
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The renormalization group equations (RGEs) are derived
and the limit cycle behavior of the three-body coupling is
identified for the first time in this formulation. We also find
that the usual formulation with the dimeron field misses a
certain contribution, which seems essential for obtaining
the Efimov parameter s0 within a few percent error.

It is well known that nonperturbative RGE has the
‘‘one-loop’’ property; i.e., the running of the coupling
constants is determined by a sum of one-loop diagrams
with the propagator being the full one. In a nonrelativistic
system, because of the particle number conservation and
the absence of the antiparticle, there is no dressing for the
propagator. This nonrelativistic feature divides the space of
states into sectors labeled by particle numbers and makes
the RGEs in the two-body sector very simple: one only
needs to consider actual one-loop diagrams that satisfy the
particle number conservation, with the free propagator.

If this one-loop property (with the free propagator) of
the RGEs persists in the three-body sector, there appears to
be no chance for the RGEs to have a limit cycle solution:
the RGE for the three-body coupling obtained only with
the one-loop diagrams does not have a quadratic term
in the three-body coupling, which is necessary to have a
limit cycle solution. This is a puzzling situation: on one hand,
the Efimov effect implies the limit cycle behavior when the
two-body couplings are tuned to the critical values; on the
other hand, the general consideration given above implies
the one-loop property, which seems to prevent the limit cycle
behavior. It is one of our main results to explain how the
one-loop property of the RGEs is consistent with contri-
butions from multiloop diagrams in the three-body sector.
The resulting RGEs do allow limit cycle behavior.

We find very rich structures in the RG flow of the three-
body coupling constants. In the leading-order calculation,
in which only the nonderivative three-body coupling is
included, we find a nontrivial fixed point on the two-
body trivial fixed point. It implies the existence of a
three-body strong coupling phase with the phase boundary
on which the nontrivial fixed point resides. Note that such a
nontrivial fixed point would only be revealed in the for-
mulation without dimerons.

Extending the space of three-body operators up to and
including the terms with two derivatives, we find that, on
the two-body nontrivial fixed point, the limit cycle is
realized as a loop of finite size and a nontrivial fixed point
associated with it.

We also emphasize that the nonzero values of the two-
body effective range and the off-shell parameter, which
does not affect the on-shell two-body amplitude, modify
the ratios of the binding energies of the three-body bound
states. Although the effects of the nonzero value of the two-
body effective range have been investigated [9,10], those
of the off-shell parameter have never been considered.

Several comments on the literature are in order.
Although Bedaque et al. [5] first showed the connection

between the RG limit cycle and the Efimov effect, it does
not come as a direct consequence of the RGE analysis, but
rather from the scale-invariant behavior of the three-body
amplitude. Actually they obtained the cutoff dependence of
the coupling of the three-body nonderivative contact inter-
action after determining the Efimov parameter. Moroz
et al. [11] derived the Efimov parameter in the functional
RG formulation with the dimeron field. Their leading-
order value of the Efimov parameter contains about 40%
errors. Their numerical calculation for the full RGE shows,
however, that the resulting value of the Efimov parameter
is in good agreement with Efimov’s.
There are several other papers devoted to the RG analy-

sis of the three-body systems. For example, Diehl et al.
[12] study the ratio of the dimeron-particle scattering
length of to that of the particle-particle. Krippa et al. [13]
do a similar study for the ratio of the dimeron-dimeron
scattering length to that of the particle-particle. All of these
employ dimerons in their analysis.
The paper is organized as follows. In Sec. II, we reca-

pitulate the importance ofWilsonian RG analysis in reveal-
ing the physical features of few-body systems described by
EFT. The one-loop property puzzle is explained and the
solution is given in Sec. III. Several examples are shown for
illustration. We derive the RGEs for the coupling constant
for the three-body interaction in the leading order in de-
rivative expansion in Sec. IV. Comments on the difference
between the dimeron formulation and ours are also given.
In Sec. V, we first concentrate on the case in which the two-
body effective range and the off-shell parameter are zero.
The RG flows are given, and the Efimov parameter is
obtained on the two-body nontrivial fixed point. The other
cases are also examined. A novel nontrivial fixed point in
the three-body coupling is identified. We examined the
next-to-leading order corrections in Sec. VI. The RG flow
in the three-body coupling space is presented. The limit
cycle is found to be realized as a loop of finite size in this
space. We summarize the results in Sec. VII.
In Appendix A we illustrate a systematic way of intro-

ducing the dimeron field in the path integral formulation.
We argue that there is a nontrivial Jacobian in the measure
due to the nonlinear change of variables. It leads to a
change of coupling constants, which has been neglected
in the literature. In Appendix B, we demonstrate the deri-
vation of the RGEs by using an example. In Appendix C we
identify the shell-mode contribution of a two-loop diagram
that is not obvious. In Appendix D, we explain that the pole
appearing in the RGE for the three-body coupling is due to
the existence of the two-body bound state.

II. EFFECTIVE FIELD THEORY IN THE
THREE-BODY SECTOR AND WILSONIAN RG

In this section, we recapitulate the basic idea of EFT [14]
and the usefulness of Wilsonian RG [15] in the context
of EFT.
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A. EFT

The field theoretical description of nature has a hier-
archical structure: at every scale there are relevant degrees
of freedom, and the interactions among them are described
in terms of local operators subject to the symmetry of the
system. Even though the system is composed of composite
particles, if the momentum scale in question is smaller than
the scale of the internal structure, one may neglect the
structure and describe the system in terms of the fields
corresponding to the particles. The effects of heavier
particles that are not included in the EFT are encoded in
the values of the coupling constants of local operators.
A physical system may be described by various EFTs at
various momentum scales.

The EFT description is very general: an EFT is defined
by the relevant degrees of freedom, the dimensions of
spacetime, and the symmetries. It contains all possible
operators with these attributes, which are infinitely many.
A single EFT may describe several different systems that
share the same attributes. Features of a specific system are
reflected in the values of the coupling constants. Thus the
EFT description is model independent.

The accuracy of the EFT description is controlled by
power counting rules. Power counting rules tell us the
degrees of importance (‘‘orders’’) of operators. The higher
the order is, the less important the contributions are. To a
given order, one only needs to consider a finite number
of operators and a restricted set of diagrams. If the
power counting rules are consistent, counterterms are
also supplied to the order. Thus the EFT description is
systematically improvable.

B. Wilsonian RG reveals nonperturbative
aspects of EFT

In several cases, nonperturbative physics shows up in the
EFT context. It is of central importance to establish the
power counting rules for such a case to extract physical
information out of EFT. An example is the nuclear effec-
tive field theory (NEFT) [16–18] for the two-nucleon
system in the S waves. The existence of a bound state,
deuteron, in the spin-triplet channel, is a clear sign of
nonperturbative dynamics.

It is the Wilsonian, or nonperturbative, RG analysis
[15,19–22] that reveals properties of the nonperturbative
dynamics. The effects of quantum fluctuations are
examined scale by scale by changing the cutoff in the
Wilsonian RG analysis, without relying on the perturbative
approximation.

The application of such analyses to the NEFT in the two-
nucleon sector is given in Refs. [23–25]. The nonperturba-
tive feature of the system is translated into the RG language
as the existence of a nontrivial fixed point. Because of the
large anomalous dimensions, the power counting rules are
modified from the perturbative ones based on the naive
dimensional analysis.

C. Efimov effect in the light of RG

More than 40 years ago, Efimov considered the case
where the two-body scattering length is much larger than
the range of the two-body force in a nonrelativistic system,
probably motivated by the large two-nucleon scattering
lengths in the S waves. He started with the Schrödinger
equation with a short-range two-body potential and derived
an effective three-body Schrödinger equation. He then
noticed that there are an infinite number of three-body
bound states with the ratios of binding energies of subse-
quent states being a universal constant. The result does
not depend on the details of the short-range two-body
potential.
One may think that this phenomenon can be explained in

the language of RG in an EFT. Such a formulation would
make the universal feature of the phenomenon more trans-
parent. Let us consider the EFT Lagrangian of a single
nonrelativistic boson of mass M:

L ¼ �y
�
i@t þ r2

2M

�
�� c0

4
ð�yÞ2�2

þ c2
4
½ð�2Þyð�r$2

�Þ þ H:c:�

þ b2
2

�
ð�2Þy�

�
i@t þ r2

2M

�
�þ H:c:

�

þ � � � � d0
36

ð�yÞ3�3 þ � � � ; (2.1)

where r$2 ¼ rQ 2 � 2rQ � ~rþ ~r2
and the ellipses stand for

the terms with more derivatives. Throughout this paper, we
concentrate on the S waves, so that the operators contrib-
uting to higher partial waves are not included. We do not
consider the operators that act on more than three-body
states, e.g., ð�yÞ4�4, ð�yÞ5�5, becausewe are interested in
the three-body sector and they do not contribute to the
sector. Note that we have included the so-called redundant
operators such as the one on the third line in Eq. (2.1),
which are necessary to renormalize the theory off
shell [26].
In an important paper, Bedaque et al. [5] use another

version of EFT with the so-called dimeron field D. In the
leading order the Lagrangian is given by

LD¼�y
�
i@tþ r2

2M

�
�þg0D

yDþg1½Dy�2þð�2ÞyD�
þg2D

yD�y�þ��� : (2.2)

They find the limit cycle behavior for g2 from the scale
invariant property of the three-body amplitude in the limit
of an infinite scattering length,

Hð�Þ � �2g2ð�Þ
4Mg21ð�Þ ¼ � sin ½s0 ln ð�=��Þ � arctan ðs�1

0 Þ�
sin ½s0 ln ð�=��Þ þ arctan ðs�1

0 Þ� ;

(2.3)
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where s0 is called the Efimov parameter, s0 ¼ 1:00624 . . . ,
� is the floating cutoff, and �� is a constant.

Note, however, that although they find the intimate
connection between the Efimov effect (as a consequence
of discrete scale invariance) and the RG limit cycle behav-
ior, they obtain the (floating) cutoff dependence of the
coupling constant not from the RGEs. Note also that their
analytic results are given only for the case of an infinite
scattering length, and the case with a finite scattering
length is considered only numerically.

More recently a field-theoretical derivation of the limit
cycle behavior directly from the RGEs is given by
Moroz et al. [11]. They also use the dimeron field. Their
formulation admits an arbitrary momentum dependence of
the coefficient functions. In the leading-order approxima-
tion (the pointlike approximation), the RGEs are solved
analytically, but in the higher orders they are solved only
numerically.

Even though the use of dimeron is useful, it is just an
option. The RGEs and the limit cycle behavior should be
obtained even if the dimeron field is not introduced. Such a
demonstration would provide a better insight into the use
of the dimeron field.

III. THE ONE-LOOP PROPERTY PUZZLE

In this section, we explain the one-loop puzzle and its
solution. For simplicity, we consider a nonrelativistic
bosonic system described by the Lagrangian (2.1). The
dimeron field is not introduced.

A. One-loop property of nonperturbative RGEs

It is well known that nonperturbative RGEs have a kind
of ‘‘one-loop’’ property. The Wegner-Houghton equation
[19] for the Wilson action Seff , for example,

@tSeff ¼ 1

2dt

Z 0

p

(
ln

�
�2Seff

��p���p

�

� �Seff
��p

�
�2Seff

��p���p

��1 �Seff
���p

)

þ ðcanonical scaling termsÞ; (3.1)

has the ‘‘one-loop’’ term (the first line), together with the
‘‘dumbbell’’ term (the second line), where the integration
with prime means the integration over shell mode,
1� dt < p < 1. In the functional flow equation [21,22],

@t�k ¼ 1

2
Tr½@tRkð�ð2Þ

k ½�� þ RkÞ�1�; (3.2)

where �k½�� is an averaged action with the momentum-
shell parameter k, on which the regularization function Rk

depends, �ð2Þ
k is the second derivative of �k with respect to

�, and t � ln ðk=�0Þ, the whole contributions come from
the ‘‘one-loop’’ diagrams. In both cases, the ‘‘one-loop’’
diagrams are composed of the full propagators, so that

the actual structure is much more complicated than it
appears.
In nonrelativistic systems, because of the absence of

antiparticles, the ‘‘one-loop’’ diagrams are really one-
loop; i.e., the propagators are bare ones. There are no
tadpole-type diagrams, in which an internal line starts
and ends at the same vertex.
In the two-body sector, there is only one type of one-

loop diagrams, with various kinds of vertices. It gives rise
to the RGEs of the couplings of two-body contact inter-
actions. Note that, since the two-body amplitude is given as
the sum of bubble chains, the cutoff independence of the
two-body amplitude also leads to the same RGEs.
For the theory under consideration, if the one-loop prop-

erty persists in the three-body sector, there appear to be
only three types of one-loop diagrams that contribute to the
running of three-body coupling constants. See Fig. 1. It is
clear that the RGE for d0 would not exhibit periodic
behavior. To be concrete, the RGE for d0 would be

dv

dt
¼ �4vþ �x3 � �vx; (3.3)

where x and v are dimensionless coupling constants
defined by

x ¼ M�

4�2
c0; v ¼ M�4

6ð2�2Þ2 d0; (3.4)

and t ¼ ln ð�0=�Þ with � being the floating cutoff, and �
and � are positive dimensionless constants. In the limit of
infinite scattering length, x ! �1, the RGE (3.3) can be
easily solved, but the periodic behavior cannot be obtained.
Note that the inclusion of arbitrary momentum and energy
dependent terms should not alter the conclusion given above
because the Efimov effect, as a universality of long-distance
physics, should be incorporated in the lowest orders in the
derivative expansions of the effective field theory.
It seems that multiloop diagrams must contribute to the

RGE for d0. But how?

B. Normal ordering

It is important to note that, in nonrelativistic systems, the
interaction operators are all (implicitly) assumed to be
normal ordered. Under this assumption, we can consider
the sectors labeled by the particle number separately, and
the n-body operators, such as ð�yÞn�n, do not affect the
m-body sectors with m< n. This is a very favorable fea-
ture we would like to keep to simplify the calculations.

FIG. 1. Three types of time-ordered one-loop diagrams that are
apparently the only diagrams contributing to the running of
three-body coupling constants.
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To make the operator structure explicit, let us consider
an operator-formalism implementation of the Wilsonian
RG transformation, where the field operator is Fourier
transformed with the magnitude of momentum p bounded
by the floating cutoff (0 � p � �). The RG trans-
formation amounts to the contractions of only the shell
modes (�� ��<p � �) of the logarithm of the Dyson
operator

S���� � �i ln ½hT exp ½iS��ishell-mode contractions�: (3.5)

The field renormalization rescaling is unnecessary in our
nonrelativistic theory. Diagrammatically it is represented
as a sum of one-loop diagrams with the loop momenta
being in the shell mode and with the operators with lower-
momentum modes being attached to the external lines.

The crucial point is that the counterterms generated by
RG transformations are in general not normal ordered. To
obtain the correct RGEs for the coupling constants for the
normal-ordered operators, one needs to rewrite the coun-
terterms in the normal-ordered form. This rewriting of an
n-body couterterm leads to normal-ordered m-body opera-
tors with m � n.

Let us explain what is going on by using examples. The
first example is the diagram shown in Fig. 2. With the loop
momentum being in the shell �� ��< p � �, it gen-
erates an effective local interaction that can be canceled by
three-body counterterms that are all normal ordered. Note
that the diagram is a time-ordered one. It is impossible to
contract any external outgoing and incoming lines without
going backward in time. If we assign an external outgoing
line and an incoming line with the creation and annihilation
operators, ay and a, respectively, this diagram has the
ðayÞ2ðayaÞa2 structure, which is already in the normal-
ordered form. On the other hand, in the second example
shown in Fig. 3 with the loop momentum being in the shell,
the diagram generates the contributions that are not normal
ordered. In this case, it is possible to contract the external
lines without going backward in time. In other words, the
diagram has the ðayÞ2ðayaÞðayaÞa2 structure that can be
rewritten as a sum of ðayÞ4a4 and ðayÞ3a3. The latter
contributes to the three-body sector, though naively the
diagram appears to affect only the four-body sector. Note
also that a contraction of the lines amounts to an additional

loop; thus the latter contribution actually comes from the
two-loop diagram.
When the diagram with the additional loop is consid-

ered, we should treat it in a Galilean invariant way. We
need to impose the cutoff on the relative momentum of the
two lines to maintain Galilean invariance. In this way,
we realize that the ‘‘total momentum’’ of the loop must
be the shell mode, while cutoff is imposed on the relative
momentum, as shown in Fig. 4.
We go on to the third example in Fig. 5. The diagram has

six incoming and six outgoing external lines. Naively it

FIG. 2. A time-ordered diagram that contributes to three-body
local counterterms when the loop momentum is set in the shell.
The resulting counterterms are already in the normal-ordered
form.

FIG. 3. A time-ordered diagram that contributes to four-body
local counterterms when the loop momentum is set in the
shell. The resulting counterterms are not normal ordered. The
rewriting of them in the normal-ordered form generates normal-
ordered three-body operators as well as normal-ordered four-
body operators.

FIG. 4 (color online). The diagram obtained from Fig. 3 by
normal ordering. The external energies and momenta are set to
zero for simplicity. The momenta are assigned so that the
Galilean invariance is maintained. The double lines indicate
that the propagators have momenta of order of the cutoff �.
Note that all the momenta of the internal lines are related to the
shell-mode momentum.

FIG. 5 (color online). A time-ordered diagram that contributes
to six-body local counterterms when the loop momentum is set
in the shell. The resulting counterterms are not normal ordered.
The rewriting of them in the normal-ordered form generates
normal-ordered three-body operators, as well as operators that
act only on other sectors. All the momenta of the lines of the
additional loops are related to the shell mode.
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only produces effective six-body operators. However, since
it is not normal ordered, rewriting it in the normal-ordered
form is necessary to obtain the correct running of the
coupling constants for the normal-ordered operators.
There are several ways of contracting the lines. In particu-
lar, it gives rise to three-body operators, which actually
come from four-loop diagrams because the contractions
amount to loops. In a similar way, we can go on to one-loop
diagrams with an arbitrary number of external lines. Again,
Galilean invariance forces a particular momentum assign-
ment so that the momenta of the lines of the additional
loops are related to the shell mode.

There is another kind of diagrams generated by normal
ordering, in which the contractions give rise to internal
lines that get across the shell-mode loop. See Fig. 6 for
examples. Such diagrams do not contribute to the RGEs. In
the usual relativistic field theory, such diagrams can be
obtained after constructing the effective local vertex by
connecting the legs. That is one of the reasons why the
RGEs have the ‘‘one-loop’’ property mentioned above. In
the nonrelativistic field theory, because there is no antipar-
ticle, tadpole-type diagrams cannot occur. We can just
disregard these contractions. The crucial difference be-
tween the diagrams considered in the previous paragraphs
and the ones with lines across the shell-mode loop is that in
the former the additional lines are forced to be related to
the shell mode, while in the latter they are not.

The analysis given above provides the solution of the
puzzle. The one-loop property persists even in the three-
body sector, but the generated diagrams are not in general
in the normal-ordered form. To obtain the running of the
coupling constant for the operators in the Lagrangian of a
nonrelativistic theory, one needs to rewrite the contribu-
tions in the normal-ordered form because the operators in
the Lagrangian are usually assumed to be normal ordered.
In this rewriting, some contractions may be needed. A
contraction amounts to an additional loop. The diagrams

obtained by normal ordering in which all the lines of the
additional loop are forced to be related to the shell mode,
with an arbitrary number of loops, may contribute to the
running of three-body operators.
Note that no multiloop contribution can occur in the

two-body sector. This is a special feature of the two-body
sector. On the other hand, it is much more involved in
many-body sectors. In the three-body sector, as wewill see,
even though infinitely many diagrams contribute to the
running of the three-body coupling d0, they can be
resummed.

C. Breakdown of the naive one-loop property
in nonrelativistic theory

In this section, we consider the results obtained in the
previous section from a different side. Let us start with
the reason why the one-loop property arises in the usual
formulation of nonperturbative RGEs.
Consider the cutoff dependence of a diagram with an

arbitrary number of loops, whose momenta are cut off at�.
The differentiation with respect to the cutoff� picks up the
shell mode of each of the loops, and the result is a sum of
the diagrams, in each of which only one of the loops has the
shell-mode momentum.
Thus, if we have a counterterm that has the same cutoff

dependence with opposite sign as that of the loop in the
shell mode, the addition of the diagram in which each loop
of the original diagram is replaced with the corresponding
counterterm cancels the cutoff dependence of the loop.
Note that the diagram with the counterterm has a reduced
number of loops. One can proceed iteratively and deter-
mine all the counterterms that are necessary to make the
original diagram finite. This is a physical picture of how
the one-loop property arises.
Let us consider a simple two-loop example shown in

Fig. 7 to illustrate how the above procedure goes in a
relativistic theory. The loop momenta are cut off at �.
[We have to work in Euclidean space and impose the
condition on the magnitude of the four-momentum of
each propagator in order to maintain Lorentz (rotational)
invariance.] The differentiation of the amplitude with
respect to � is given by two terms: each has a single
loop whose momentum is in the shell. The point is that
we can consider each loop and the corresponding counter-
term individually. The cutoff dependence of each loop can
be compensated by adding the diagram with the corre-
sponding counterterm. Note that the fourth diagram in

FIG. 6 (color online). Examples of the diagrams in which the
additional lines get across the shell-mode loop. The momentum
associated with these lines are not related to the shell mode.

FIG. 7 (color online). The shell-mode diagrams of a two-loop
example and the corresponding diagrams with the shell-mode
loop is replaced with the counterterm in the relativistic theory.
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Fig. 7 contains the tadpole loop. As we explained in the
previous paragraph, this tadpole contribution is required to
make the amplitude cutoff independent.

Let us now suppose the same diagram arises in a non-
relativistic theory. Apart from the fact that there is no way
to maintain Galilean invariance by imposing a cutoff on the
magnitude of the three-momentum of each propagator, we
have a trouble with the tadpole: because of the absence of
anti-particle, there are no tadpole contributions so that we
cannot make the amplitude cutoff independent. This is the
reason why the naive one-loop property must be broken in
nonrelativistic theory: the counterterms obtained by one-
loop diagrams do not renormalize the theory.

A careful examination of the cutoff dependence of
multiloop diagrams in nonrelativistic theory shows that
the loops cannot always be treated individually because
of Galilean invariance. There are contributions in which
more than one loop should be simultaneously in the
shell mode. They compensate the lack of the tadpole con-
tributions absent in the nonrelativistic theory. Such contri-
butions are obtained by the procedure described in the
previous section.

Note also that the cutoff dependence of the multiloop
diagrams in Fig. 6 can be compensated by the counterterms
of the individual loops, because the internal lines are not
related by the symmetry so that the loop momenta do not
need to be the shell mode simultaneously. See Fig. 8.

There is another simple way to see that the naive one-
loop property of RGEs should break down in nonrelativ-
istic theory. Consider the case where only the ð�yÞ3�3

interaction is present. In this case, two-body interactions
are not generated (because of the absence of the tadpole
contributions), and the three-body amplitude is given by a
sum of the chains of the two-loop diagrams, depicted in
Fig. 9. To renormalize the amplitude, one needs the coun-
terterm for the two-loop diagram. The one-loop diagram
does not give rise to such a counterterm because the tad-
pole cannot contribute in the nonrelativistic theory. Note

that the momenta of the two loops must be in the shell
simultaneously because of the symmetry among the three
propagators and cannot be treated individually.
Let us summarize the consideration given in this section.

In a nonrelativistic theory, because of the absence of the
tadpole diagram, the naive one-loop property of non-
perturbative RGEs does not hold. The absence may be
compensated by taking into account diagrams obtained
from a one-loop diagram by contracting some of its exter-
nal legs, giving a (multiloop) diagram with a given number
of external legs. The contractions occur in two types: the
one with the contracted lines across the original loop, and
the one without. Examples of the former are given in Fig. 6.
We argue that they do not contribute to the RGEs. Only
diagrams with contractions of the latter type contribute to
the RGEs. A diagram with contractions of the latter type
would have a tadpole (or tadpoles) when the loop shrinks
into a point (an effective vertex). Those diagrams may also
be obtained by ‘‘normal ordering’’ in the RG transforma-
tion in an operator formalism.

IV. DERIVATION OF RGES

As we explained in the previous section, there are multi-
loop contributions to three-body operators obtained by
normal-ordering rewriting of the one-loop diagrams that
are not in the normal-ordered form. It turns out that there
are five types of such ‘‘normal-ordered one-loop’’ (NOOL)
diagrams, together with two genuine (i.e., already normal-
ordered) one-loop ones. They are given in Fig. 10. Note
that the multiloop contributions are neatly written in terms
of the two-body scattering amplitude (a blob in Fig. 10),
which satisfies the Lippmann-Schwinger equation depicted
in Fig. 11. Note also that the diagram in Fig. 2 appears as a
part of the first diagram in Fig. 10.
The RGEs can be obtained by setting the loop mo-

menta of the seven diagrams in the shell and canceling

FIG. 8 (color online). The cutoff dependence of the two-loop
diagram considered in Fig. 6 can be compensated by the counter-
terms of the individual loops.

FIG. 9. The Lippmann-Schwinger equation for the three-body
amplitude in the case where only the three-body interaction is
present.

FIG. 10. The NOOL diagrams together with the two genuine
one-loop diagrams. The shaded blob stands for the two-body
amplitude defined in Fig. 11.

FIG. 11. The Lippmann-Schwinger equation for the two-body
scattering amplitude, represented as a shaded blob. The vertex
actually stands for a collection of vertices, c0, c2, and b2 in the
present approximation.
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their cutoff dependence by adding suitable three-body
counterterms, as we depicted in Fig. 12.

It is important to notice that a sum of additional loops, as
those in Fig. 5, together with the two-body counterterms,
forms the cutoff-independent two-body amplitude so that it
does not contribute to the running of the coupling constants
of the three-body operators. Similarly, the cutoff depen-
dence of the additional loops on the oblique sides of the
trapezoids in the second, third, and fourth diagrams in
Fig. 12 is already taken into account by the sixth and
seventh diagrams in Fig. 12.

In this section, we consider only the terms that are
explicitly shown in Eq. (2.1), that is, two-body operators
up to and including Oðp2Þ and a three-body operator
without derivatives. This truncation makes our RGEs
approximate. Higher order corrections are discussed
in Sec. VI.

The two-body amplitude can be treated separately.
We assume that the cutoff � is small enough so that the
two-body amplitude is given in the effective range expan-
sion form. The renormalized off-shell amplitude may be
written as

Að�;k21;k
2
2Þ

¼8�

M

�
1

a2
��þ1

2
re�

2�3h

a2
ð2�2þk21þk22Þ

��1
; (4.1)

where a2 and re are the scattering length and the effective
range, respectively, k1 and k2 are incoming and outgoing
relative momenta,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�MP0 þ P2=4� i�

q
; (4.2)

with P� ¼ ðP0;PÞ being the total momentum. [Note that
Eq. (4.1) is different by a symmetric factor 1=2 from that
for the ‘‘spinless nucleon’’ given in Ref. [26] for which, to
mimic the nucleon case, we intentionally ignore the factor.]
We have an off-shell parameter h coming from the redun-
dant operator. Note that in the on-shell amplitude, the
fourth term vanishes. The parameters a2, re, and h are
cutoff independent.

The RGEs for the coupling constants for the two-body
operators can be obtained in Ref. [26]:

dX

dt
¼ ð1� XÞðY þ 3X2Þ=X; (4.3)

dY

dt
¼ �Yð6X3 � 5X2 þ 2XY � YÞ=X2; (4.4)

dZ

dt
¼ �ð6X3Z� 3X2Zþ 2XYZþ Y2Þ=X2; (4.5)

where X, Y, and Z are combinations,

X ¼ 1þ 1

3
ðyþ zÞ; (4.6)

Y ¼ x� 1

5
ðyþ zÞ2; (4.7)

Z ¼ 2yþ 1

3
ðyþ zÞ2; (4.8)

of the dimensionless coupling constants,

x¼M�

4�2
c0; y¼M�3

4�2
4c2; z¼ �3

4�2
b2: (4.9)

The parameter t is defined as t ¼ ln ð�0=�Þ, where �0 is
the physical cutoff, which is the limit of the applicability
of the EFT, and � is the floating cutoff. There is a non-
trivial fixed point, ðX�; Y�; Z�Þ ¼ ð1;�1;�1Þ, besides the
trivial one, (1,0,0).
These RGEs have an analytic solution:

X ¼ ðC�Þ�1 � 1

ðC�Þ�1 � 1� C0�2
;

Y ¼ ðC�Þ�1 � 1

½ðC�Þ�1 � 1� C0�2�2 ;

Z ¼ C00�� 1

½ðC�Þ�1 � 1� C0�2�2 ;

(4.10)

where C, C0, and C00 are the integration constants. They are
related to the effective range expansion parameters, a2, re,
and h, by

C ¼ 2a2
�

; C0 ¼ h; C00 ¼ �

4
re: (4.11)

In terms of them, the three-body RGEs are written as
follows:

dv

dt
¼
�
3b2

1

S2

�
T � 2

b
U

�
� c

�
v2

þ
�
12b

V

S2

�
T �

�
3þ 1

b

�
U

�
� 4� 6V

�
v

þ 12
V2

S2
ðT � 6UÞ; (4.12)

where we have introduced several combinations,

FIG. 12 (color online). A diagrammatic representation for the
RGEs of the three-body operators. Propagators with the momen-
tum being in the shell are denoted by double lines.
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S ¼ X2 � aY; (4.13)

T ¼ YSþ 3

4
ðX2Zþ Y2Þ; (4.14)

U ¼ XðX� 1ÞðX2 þ YÞ; (4.15)

V ¼ Y þ 3ðX � 1Þ þ 9

5
ðX � 1Þ2; (4.16)

together with numerical constants,

a ¼
ffiffiffi
3

p
4

�� 1;

b ¼ 1�
ffiffiffi
3

p
4

�þ
ffiffiffi
3

p
2

arctan

ffiffiffi
3

p
2

;

c ¼ 7

3
�

ffiffiffi
3

p
4

�� 7
ffiffiffi
3

p
18

arctan

ffiffiffi
3

p
2

:

(4.17)

Note that in these equations, X, Y, and Z are the solution,
Eq. (4.10), with the integration constants, Eq. (4.11).

In Appendix B, a sample calculation of a contribution to
the RGE is given for the purpose of illustration. It is a bit
difficult to determine the shell mode contribution of the
two-loop diagram shown in the fifth diagram in Fig. 12. In
Appendix C, we explain how to identify the shell mode
contribution.

It is important to note that the RGE now has terms
proportional to v2. The appearance of these terms allow
the periodic behavior of v in the RG evolution, as we will
see in the next section.

It is interesting to note that these seven diagrams in
Fig. 10 are the irreducible building blocks of which the
three-body amplitude is composed, just as simple two-
point bubbles are the building blocks of the two-body
amplitude.

The amplitude composed of these blocks can be com-
pared with that obtained in the formulation with the
dimeron field. The two-body amplitude is equal to the
(dressed) dimeron propagator multiplied by the factor g21
coming from the two-particle-dimeron vertices at the ends.
See Fig. 13. With this identification, one easily sees the
correspondence between the three-body amplitude in our
formulation and that in the formulation with dimeron.

There is, however, a difference: in our formulation, a
one-loop diagram with a two-body vertex and a three-body
vertex (which we call a ‘‘two-three loop’’) contributes,
while in the existing calculations with dimeron these con-
tributions are not included.

Note that the cutoff dependence of the two-three loop
cannot be renormalized as a part of two-body amplitude
because the two-body amplitude is composed solely of
two-body vertices but is canceled by three-body counter-
terms, as we explained earlier. See the sixth and seventh
diagrams in Fig. 12. The momentum dependence becomes

important when the two-three loop is embedded in the
three-body amplitude. When the shell-mode momentum
is considered as in the second, third, and fourth diagrams in
Fig. 12, the momentum dependence of the two-three loops
becomes an additional source of the cutoff dependence.
In the existing calculations with dimeron, the D�-D�

vertex is momentum independent even for the full dimeron
lines. On the other hand, as depicted in Fig. 14, a single
insertion of the three-body vertex in the two-body ampli-
tude cannot be represented by a momentum-independent
D�-D� vertex, but has momentum dependence due to the
two-three loops.

V. RG FLOWS AND THE EFIMOV PARAMETER

A. Flows in the re¼ h¼0 subspace

Let us begin, for simplicity, with the RG flows on which
the effective range, re, and the off-shell parameter, h, are
zero. In this case, the RGEs are drastically simplified and
are written in terms of � � Y=X2, as

FIG. 13. The dimeron representation of the two-body ampli-
tude, composed of the dressed dimeron propagator and the two-
particle-dimeron vertices at the ends.

FIG. 14. The insertion of the three-body vertex in the two-
body amplitude. In the third line, the two-body amplitudes are
replaced by the full dimeron propagator. Because of the two-
three loops, it is not equal to the (momentum-independent)
D�-D� vertex.
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d

dt
� ¼ ��ð1þ �Þ; (5.1)

d

dt
v ¼ 12�3

1� a�
þ
�
12b�2

1� a�
� 4� 6�

�
v

þ
�
3b2�

1� a�
� c

�
v2: (5.2)

Note that the RGE for � is the same as that for x in the
leading order approximation. The RG flow in the �-v plane
are shown in Fig. 15. The line � ¼ �1 corresponds to
the nontrivial fixed point of the two-body RGEs. The
flow there goes down periodically, exhibiting the limit
cycle behavior. In addition to the trivial fixed point,
we find a nontrivial fixed point ð�?; v?Þ ¼ ð0;�4=cÞ ¼
ð0;�8:126 . . .Þ, which we call the Borromean fixed
point, though it apparently has nothing to do with the
known Borromean systems. In the full set of RGEs,
the Borromean fixed point is at ðx?; y?; z?; v?Þ ¼
ð0; 0; 0;�4=cÞ, so that there are no two-body interactions
but only the three-body interaction.

One may notice that there is a singularity in Eq. (5.2)
at � ¼ 1=a. This is due to the pole of the two-body
amplitude, which corresponds to the bound state. See
Appendix D for more details.

B. Limit cycle

The limit cycle behavior is due to the v2 term in the
RGE for v. With ðx; y; zÞ ¼ ð�1;�1=2; 1=2Þ [ðX; Y; ZÞ ¼
ð1;�1;�1Þ], where a2 ¼ 1 and re ¼ h ¼ 0, the RGE for
v becomes

dv

dt
¼ Aþ Bvþ Cv2; (5.3)

with

A ¼ � 48ffiffiffi
3

p
�
; B ¼ 2þ 48bffiffiffi

3
p

�
; C ¼ � 12b2ffiffiffi

3
p

�
� c;

(5.4)

so that the discriminant is negative,

D � B2 � 4AC ¼ �4:27374 . . .< 0: (5.5)

Thus the solution is given by

v ¼ �Bþ ffiffiffiffiffiffiffiffiffi�D
p

tan ð
ffiffiffiffiffiffi�D

p
2 ðtþ t0ÞÞ

2A
; (5.6)

where t0 is a constant of integration. It shows the periodic
behavior with the period

T ¼ 2�ffiffiffiffiffiffiffiffiffi�D
p ’ 3:03932: (5.7)

The period is related to the ratios of the binding energies

of the subsequent three-body bound states, Enþ1=En �
e�2�=s0 . Since the energy scales as �2 / e�2t, we see
that T ¼ �=s0, where s0 is the Efimov parameter. Thus,
the result is written as

s0 ¼ �

T
’ 1:03365; (5.8)

which is only 2.7% off Efimov’s value.
It is interesting to compare the value with that obtained

in the ‘‘pointlike’’ approximation in the dimeron formula-
tion [11], s0 ’ 1:393, which is about 40% off Efimov’s
value. The difference is due to the contributions from the
two-three loops, as we explained in the previous section.

C. Off-critical cases

We can investigate the off-critical, i.e., finite scattering
length, behavior. Figures 16 and 17 show the running of v
and � as functions of t starting with �ðt ¼ 0Þ þ 1 ¼
�0:001 and �ðt ¼ 0Þ þ 1 ¼ 0:001, respectively. If the
flow is close enough to the critical line (� ¼ �1), v
diverges (to negative infinity) a finite number of times
before going to the trivial fixed point (for � >�1) or to
the positive infinity (for � <�1). We suspect that the
occurrence of divergences corresponds to the existence of
three-body bound states, as for the critical case in which
the flow diverges infinite times, corresponding to an infi-
nite number of bound states. Thus, if the flow is close
enough to the critical line, there are a finite number of
three-body bound states.
The behavior in the two-body strong-coupling phase

(� <�1) is particularly interesting from the NEFT point
of view. In the 3S1-

3D1 channel, the two-nucleon system is
in the strong-coupling phase and very close to the critical
case. There is a shallow two-body bound state, deuteron.

8

4

0

-4

-8

-12

201-2- 1

FIG. 15 (color online). The RG flow in the �-v plane.
The arrows indicate the directions of the flow to the infrared
(larger t).
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The binding energy of the triton (Et ¼ 8:48 MeV),
which is in the spin one-half channel in the neutron-
deuteron system, is larger than that of deuteron
(Ed ¼ 2:2246 MeV). Even though the present theory is
bosonic, we expect that the same RG structure persists
in the fermionic theory and that the interplay between the
three-body and the two-body bound states of the bosonic
theory may explain that of the nucleon systems.

The coupling � diverges to negative infinity at a finite
value of t (t2) in the two-body strong-coupling phase. It
implies the existence of the two-body bound state, and the
value t2 would correspond to the binding energy of it. Once
� diverges to negative infinity, the flow appears from the
positive infinity of �, decreasing to the trivial fixed point,
� ¼ 0. [The continuity may easily be seen by introducing a
change of variable from � to 	 � tan�1�. The RGE (5.1)
becomes d	=dt ¼ � sin 	ðcos 	þ sin 	Þ. The transition

from the negative infinity to the positive infinity of �
corresponds to passing ��=2 of 	.]
When v diverges to negative infinity in the two-body

strong-coupling phase (� <�1), it occurs before �
diverges. In the positive � region, on the other hand, we
numerically find, by examining the flow, that all the flows
that come from the two-body strong-coupling phase never
diverge to negative infinity. The above observation implies
that, if both the two-body and the three-body bound states
exist, the binding energy of the two-body bound state is
always smaller than the three-body bound state.

D. Borromean fixed point

To our best knowledge, the existence of the Borromean
fixed point has never been noticed in the literature. The
existence of it and of the critical surface on which the
Borromean fixed point resides implies a new phase where
the two-body interactions do not support the two-body
bound states, but the strong three-body interaction gives
rise to the three-body bound states.
We linearize the RGE near the fixed point, ð�; vÞ ¼

ð�?; v?Þ þ ð��; �vÞ,
d

dt

�
��

�v

�
¼

�1 0
24
c

�
1þ 2b2

c

�
4

 !�
��

�v

�
: (5.9)

By diagonalizing it, we see that the scaling dimension of
the relevant coupling is þ4. In the next section, we inves-
tigate the Borromean fixed point once again with higher
order corrections.

E. Effects of nonzero values of re and h

Going back to the full set of RGEs, Eq. (4.12) together
with Eq. (4.10), we can investigate the effects of nonzero
values of h and re. The results are shown in Fig. 18. It is

-100
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0 2 4 6 8 10 12

FIG. 17 (color online). The running of v and � as functions of t
in the two-body weak-coupling phase (� >�1). The initial
value is taken as vðt ¼ 0Þ ¼ 0 and �ðt ¼ 0Þ ¼ �0:999.
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FIG. 16 (color online). The running of v and � as functions of t
in the two-body strong-coupling phase (� <�1). The initial
value is taken as vðt ¼ 0Þ ¼ 0 and �ðt ¼ 0Þ ¼ �1:001.
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FIG. 18 (color online). The effects of nonzero values of h and re.
The solid (red) line is the solution of Eq. (5.6), with re ¼ h ¼ 0. The
dotted (green) line is the casewith re�0 ¼ 1 and h ¼ 0, where�0 is
thephysical cutoff.Thedash-dotted (blue) line is thecasewithre�0 ¼
h�2

0 ¼ 1. Three of them have asymptotically the same period.
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interesting to note that they affect the flow of d0, espe-
cially the ‘‘period,’’ even though their effects dampen as
t grows. Physically speaking, it implies that the ratios
of the binding energies of the three-body bound states
vary and asymptotically become the universal value

e�2�=s0 for the bound states accumulated toward the
threshold. It is surprising to see that the parameter h,
corresponding to the redundant operator, has such ob-
servable effects, even though it does not contribute to the
two-body observables. Furthermore, it does not even
appear in the off-shell amplitude, Eq. (4.1), in the critical
case (1=a2 ¼ 0).

VI. HIGHER ORDER CORRECTIONS

In this section, we concentrate on the cases in which the
two-body sector is on the nontrivial and the trivial fixed
points, and we consider the effects of higher order three-
body operators. Note that all the irrelevant two-body
operators do not contribute in these cases.

We include the following three-body operators,

Lhigher¼d2
48

½ð�3Þy�ð�r$2
�ÞþH:c:�

þ e2
24

�
ð�3Þy�

�
�

�
i@tþ r2

2M

�
�

	
þH:c:

�
; (6.1)

and obtain the RGEs for the dimensionless coupling
constants, v, s, and w; the latter two of them are
defined as

u¼ M�6

ð2�2Þ2d2; w¼ �6

ð2�2Þ2e2; s¼uþ1

3
w: (6.2)

A. On the nontrivial fixed point

On the nontrivial fixed point of the two-body sector,
ðx; y; zÞ ¼ ð�1;�1=2; 1=2Þ, RGEs are given by

dv

dt
¼ � 48ffiffiffi

3
p

�
þ
�
2þ 48bffiffiffi

3
p

�

�
v�

�
12b2ffiffiffi
3

p
�
þ c

�
v2

þ
�
3

2
þ 4ffiffiffi

3
p

�

�
s�

�
7

120
þ 1

12
ffiffiffi
3

p
�

�
s2

�
�
2bffiffiffi
3

p
�
þ 1

3

�
vs; (6.3)

ds

dt
¼ 64

3
ffiffiffi
3

p
�
�
�
2� 24bffiffiffi

3
p

�
þ 8

9
ffiffiffi
3

p
�

�
s�

�
1

6
þ bffiffiffi

3
p

�

�
s2

�
�
2þ 32b

3
ffiffiffi
3

p
�

�
v�

�
12b2ffiffiffi
3

p
�
þ c

�
vs; (6.4)

dw

dt
¼ 576ffiffiffi

3
p

�
þ 48bffiffiffi

3
p

�
w�24

�
1þ 8ffiffiffi

3
p

�

�
bþ4

7

��
v

�
�
6þ 8ffiffiffi

3
p

�
ð9bþ4Þ

�
sþ6

�
eþ 8bffiffiffi

3
p

�
ðbþ3dÞ

�
v2

þ
�
1

4
þ 4ffiffiffi

3
p

�

�
3

4
bþ 1

12

��
s2

þ
�
3cþ 4ffiffiffi

3
p

�
ð9b2þ2bþ3dÞ

�
vs

�2

�
12b2ffiffiffi
3

p
�
þc

�
vw�

�
2bffiffiffi
3

p
�
þ1

3

�
sw; (6.5)

where the constants b and c are given in Eq. (4.17) and d
and e are defined as

d ¼ � 2

7
þ

ffiffiffi
3

p
6

��
ffiffiffi
3

p
3

arctan

ffiffiffi
3

p
2

;

e ¼ � 2

3
þ

ffiffiffi
3

p
6

�þ
ffiffiffi
3

p
9

arctan

ffiffiffi
3

p
2

:

(6.6)

Note that RGEs for v and s do not depend on w, so that
they can be solved without solving the RGE for w. In the
following we mainly consider the flows in the v-s plane.
These RGEs can be solved numerically. The t depen-

dence of the coupling constants, v and s, together with the
leading order one for v, is shown in Fig. 19. The result is
qualitatively consistent with that of Ref. [27], though a
direct comparison is difficult. Note that after an initial
transient region, they exhibit periodic behavior. Note also
that they do not diverge in the periodic region. The RG flow
in the v-s plane is shown in Fig. 20.
We numerically read off the period of the limit cycle as

2.9810, which corresponds to the value of Efimov parame-
ter s ’ 1:0539. The value is about 4.73% off Efimov’s
value. Compared with the leading order result, it deviates

-100
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0 2 4 6 8 10 12 14

FIG. 19 (color online). The t dependence of the three-body
coupling constants, v and s. The dash-dotted (blue) line stands
for the leading order solution of v. The initial values are
ðv0; s0Þ ¼ ð0:9; 0:7Þ.
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a bit more from Efimov’s value, though it is still very close.
It might suggest that the convergence is not monotonous.

It is interesting to see that the limit cycle behavior
emerges very differently from the leading-order one dis-
cussed in the previous section. In the leading order, since
there is only one coupling, the periodicity is not possible
unless it gets through the infinity. On the other hand, in the
higher order, it is possible for the flows to have a period-
icity while staying finite. It explains why the drastic change
of the behavior of the RG flows occurs when the higher
order contributions are taken into account.

Another difference comes from the existence of the
transient region. In the leading order, exact periodicity
appears from the beginning. Actually the structure of the
RG flow in the higher order is much richer. First of all,
there is a nontrivial fixed point, numerically found to
be at ðv?; s?; w?Þ ¼ ð�3:14; 10:05;�60:73Þ. As shown in
Fig. 20, the flows from this nontrivial fixed point gradually
approach the limit cycle. On the other hand, the flows
outside the limit cycle loop are grouped into two catego-
ries: some flows are directly attracted by the limit cycle and
gradually approach it, and the others go to infinity (and
come back from the opposite side) and then approach the
limit cycle. The existence of these two categories is related
to another nontrivial fixed point at (� 135:52, 403.62,
�1069:65). See Fig. 21.

The eigenvalues of the linearized RGEs at the fixed
point located inside the limit-cycle loop are numerically
obtained as 0:3288� 2:3212i and 1.9817. The eigenvector
of the real positive eigenvalue is in the w direction. It is
known that the imaginary part of the complex eigenvalues
	 gives approximately the period of the limit cycle,

T ’ 2�

Im	
: (6.7)

With 	 ¼ 2:3212, we find T ¼ 2:7069, which corresponds
to the value of Efimov parameter s0 ¼ 1:1606.

B. On the trivial fixed point

As explained in Sec. VD, we find a nontrivial fixed point
of the three-body coupling d0 on the two-body trivial fixed
point. In this section, we examine the effects of the higher
order operators on it.
The RGEs on the trivial fixed point of the two-body

sector are given by

dv

dt
¼�4v�cv2�1

3
vs� 7

120
s2;

ds

dt
¼�6s�cvs�1

6
s2;

dw

dt
¼�6wþ6ev2þ1

4
s2þ3cvs�2cvw�1

3
sw:

(6.8)

The RG flow in the v-s plane is shown in Fig. 22.
We find the Borromean fixed point at the same value
of v. In the v-s-w space, the fixed point is at
ð�4=c; 0;�48e=c2Þ � ð�8:13; 0;�74:80Þ. This strongly
suggests that the existence of the Borromean fixed point
is not an artifact of the restriction of the set of operators.
By linearizing the RGEs at the Borromean fixed

point, we find the eigenvalues, 
, and the corresponding
(unnormalized) eigenvectors, ð�v; �s; �wÞ;

100100
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0

-40 -30 -20 -10 0 10

FIG. 20 (color online). The limit cycle behavior in the v-s
plane. The blue loop is the limit cycle. Inside the loop there is a
nontrivial fixed point (red bullet).

500
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0

-250
-200 -100 0 100

FIG. 21 (color online). The RG flows in the v-s plane in a wide
view. Another fixed point is shown together with the limit cycle
loop.
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4:

c

0

24e

0
BB@

1
CCA; 2:

0

0

1

0
BB@

1
CCA; �2:

2c=3

�3c2

4e� 9c2

0
BB@

1
CCA: (6.9)

Note that there are two relevant operators.
We also find other fixed points at (� 18:45, 18.48,

�58:81) and at (� 247:09, 693.75, �917:51). The former
is located at the center of the whirl, and the latter, which is

not displayed in Fig. 22, is related to the fixed point shown
in Fig. 21.
Actually Fig. 22 transforms into Fig. 21 (or Fig. 20) if� is

treated as a parameter changing from zero (the trivial fixed
point) to�1 (the nontrivial fixed point approached from the
weak-coupling phase). See Figs. 23–25. The Borromean
fixed point and the fixed point at the origin move together to
fuse and disappear, while the whirl becomes enclosed by
the limit cycle. This is an example of bifurcation.
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FIG. 22 (color online). The RG flow on the two-body trivial
fixed point (� ¼ 0). We find another nontrivial fixed point in
addition to the trivial and Borromean fixed points.
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FIG. 23 (color online). The RG flow in the v-s plane with
� ¼ �0:25. The Borromean fixed point and the trivial fixed
point move together and eventually fuse and disappear.
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FIG. 25 (color online). The RG flow in the v-s plane with
� ¼ �0:75. A large limit cycle loop emerges.
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FIG. 24 (color online). The RG flow in the v-s plane with
� ¼ �0:5. There is no Borromean or trivial fixed point.
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VII. SUMMARY

In this paper, we performed the Wilsonian RG analysis
of nonrelativistic three-body systems of identical bosons
without introducing the dimeron field. We explained
why the multiloop diagrams contribute to the RGEs and
obtained the RGEs in the restricted space of operators.
The periodic behavior in the case of infinite two-body
scattering length is obtained with the value of the Efimov
parameter being very close to Efimov’s value. The differ-
ence between our result and that obtained by using the
dimeron field is clarified.

We found very rich structures of the RG flows: beside
the periodic behavior responsible for the Efimov effect, we
found the Borromean fixed point, which, to our best knowl-
edge, has never been noticed in the literature. It implies the
existence of the three-body strong-coupling phase. We also
investigated the effects of finite values of the effective
range and off-shell parameters and found that they affect
the ratios of the binding energies of the three-body bound
states.

We also try to explain that the binding energy of triton is
larger than that of deuteron on the basis of the study of the
RG flows in our bosonic system.

We then extended our set of three-body operators to
Oðp2Þ and considered the case of the two-body fixed
points. On the two-body nontrivial fixed point, the limit
cycle of the three-body couplings is realized as a loop of a
finite size, and two nontrivial fixed points are found. On the
two-body trivial fixed point there is a nontrivial fixed point
around which a whirling of the RG flow occurs, in addition
to the Borromean and the trivial fixed points.

The three-body strong-coupling phase, with the phase
boundary on which the Borromean fixed point resides, has
a clear physical picture: it corresponds to the situation in
which there are no (or very weak) two-body interactions,
but a strong (short-range) attractive three-body interaction
among the particles. We do not know if such a situation is
possible in the real world.
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APPENDIX A: USE OF A DIMERON

In this appendix, we illustrate a way of introducing a
dimeron field in the path integral formalism and emphasize
that it is difficult to obtain the relations between the cou-
pling constants of the original theory and those in a theory
with a dimeron.

Let us start with the (Euclidean) partition function,

Z ¼
Z

d�yd�e�
R

d4xLE ; (A1)

whereLE is the Euclidean version of the Lagrangian given
by Eq. (2.1). We insert the identity,

1 ¼
Z

dDydDe�
R

d4x�DyD; (A2)

where� is assumed to be a positive constant for simplicity.
It can also contain derivatives. In such a case, the resulting
free part of the dimeron Lagrangian contains derivatives.
We then make a change of variables,

D ¼ D0ð1þ a�y�þ � � �Þ þ�2ðbþ c�y�þ � � �Þ;
(A3)

Dy¼ðD0Þyð1þa�y�þ���Þþð�yÞ2ðbþc�y�þ���Þ;
(A4)

where a, b, and c are real constants. Here and hereafter the
ellipses denote the terms of �’s and �y’s with derivatives.
Note that we assign D and Dy the particle number �2 and
þ2, respectively, with the assignment of the particle
number �1 to �. We may include terms of higher powers
in�y�,D, andDy, but such terms do not contribute to the
three-body sector and are thus ignored.
Under the change of variables, we have

�DyD ¼ �ðD0ÞyD0 þ b�ððD0Þy�2 þ H:c:Þ
þ 2a�ðD0ÞyD0�y�

þ ðcþ abÞ�ððD0Þy�y�3 þ H:c:Þ
þ b2�ð�y�Þ2 þ 2bc�ð�y�Þ3 þ � � � : (A5)

This is not the whole story, however. One needs to
consider the Jacobian contribution unless one uses dimen-
sional regularization,

dDydD ¼ dD0ydD0Jð�;�yÞ: (A6)

The Jacobian may be written as an action,

Jð�;�yÞ ¼ exp

�
�
Z

d4xLJacobian

�
; (A7)

up to a numerical constant, with LJacobian being expanded
in terms of local terms,

LJacobian¼�M�y�þAa2ð�y�Þ2þBa3ð�y�Þ3þ��� ;
(A8)

where �M, A, and B are regularization dependent real
constants. The calculation of the Jacobian must be consis-
tent with the regularization of the other parts, and it is
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difficult to ensure the consistency. See Ref. [28] for an
example of consistent calculation of a Jacobian factor in
the lattice regularization. Here we do not try to calculate it,
since it does not affect the following argument.

The first term in Eq. (A8) may be absorbed in the
definition of the mass. With the other terms being included,
the total Lagrangian becomes

L0
E ¼ LE þ�ðD0ÞyD0 þ b�ððD0Þy�2 þ H:c:Þ

þ 2a�ðD0ÞyD0�y�

þ ðcþ abÞ�ððD0Þy�y�3 þ H:c:Þ
þ ðb2�þ Aa2Þð�y�Þ2
þ ð2bc�þ Ba3Þð�y�Þ3 þ � � � : (A9)

Thus, to eliminate the terms ð�y�Þ2, ð�y�Þ3, and
ðD0Þy�y�3 þ H:c: in the whole Lagrangian, we choose
a, b, and c to satisfy the following relations:

0 ¼ ðcþ abÞ�; (A10)

0 ¼ � c0
4
þ b2�þ Aa2; (A11)

0 ¼ � d0
36

þ 2bc�þ Ba3: (A12)

By eliminating b and c we have

�
� 1

2
B� A

�
a3 þ c0

4
aþ d0

72
¼ 0: (A13)

There is at least one real solution for a. Once the solution
for a is obtained, the solutions for b and c are obtained
easily. We have shown that, even in the presence of the
contributions from the Jacobian, the terms ð�y�Þ2,
ð�y�Þ3, and ðD0Þy�y�3 þ H:c: can be eliminated but, as
we claimed before, the relations between the coupling
constants of the original theory and those in the theory
with the dimeron are not simple at all.

APPENDIX B: AN EXAMPLE OF NOOL DIAGRAM
CONTRIBUTIONS TO THE RGE FOR d0

In this appendix, we illustrate how the NOOL diagram
contributions are evaluated by showing an example. The
amplitude of the diagram shown in Fig. 26 is given by

Z d4k

ð2�Þ4
�
�ic0 � i4c2k

2 � i
b2
M

k2
�
2
�
�iA

�
�;

k2

4
;
k2

4

��"
i

k0 � k2

2M þ i�

#
2 i

�k0 � k2

2M þ i�

¼ � i

2�2

Z �

0
dk

�
c0 þ 4c2k

2 þ b2
M

k2
�
2
A
� ffiffiffi

3
p

k

2
;
k2

4
;
k2

4

�
k2

½�k2=Mþ i��2 ; (B1)

where the external energies and momenta are set to zero. The first factor comes from the two two-body vertices.A stands
for the two-body amplitude (4.1), corresponding to the blob in Fig. 26. We have integrated over k0 by picking up the pole at
k0 ¼ �k2=2Mþ i� by the contour integration on the upper half plane. Note that other poles and the cut in the amplitude
are on the lower half plane. The cutoff is introduced for the relative momentum, in order to preserve the Galilean invariance
of the theory [24].

The contribution to the RGE comes from the shell-mode part of the integral, �� d�< k<�:

�i

2�2

�
c0 þ 4c2�

2 þ b2
M

�2

�
2
A
� ffiffiffi

3
p

�

2
;
�2

4
;
�2

4

�
�2

½��2=Mþ i��2 d�

¼ �iM2

2�2�2

�
c0 þ 4c2�

2 þ b2
M

�2

�
2
A
� ffiffiffi

3
p

�

2
;
�2

4
;
�2

4

�
d� ¼ �4i

2�2

�4
ðxþ yþ zÞ2A

� ffiffiffi
3

p
�

2
;
�2

4
;
�2

4

�
d�: (B2)

We have the same contributions from the interchanges of the external momenta, so that we multiply it with 3	 3,
obtaining

� 36i
2�2

�4
ðxþ yþ zÞ2A

� ffiffiffi
3

p
�

2
;
�2

4
;
�2

4

�
d�: (B3)

The two-body amplitude in terms of X, Y, and Z is given by

A ð�; k21;k
2
2Þ ¼

4�2

M�

�
1� �

2

�

�
þ X2

Y
þ�2

�2

�
X2Z

Y2
þ 1

�
� 3

�
2�2

�2
þ k21 þ k22

�2

�
XðX � 1Þ

Y

�
X2

Y
þ 1

���1
: (B4)

The combination 1þ X2=Y is written in terms of the two-body scattering length, a2, as
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1þ X2

Y
¼ �

2

1

a2�
; (B5)

and the combination X2Z=Y2 þ 1 is written in terms of the
two-body effective range, re, as

X2Z

Y2
þ 1 ¼ �

4
re�: (B6)

Note that the cutoff � is small enough so that the effective
range expansion is valid. If we denote the two-body cutoff

�ð2Þ
0 , above which the effective theory description breaks

down, we assume

� 
 �ð2Þ
0 : (B7)

We also assume that the effective range is of a natural size,
i.e.,

re�
ð2Þ
0 �Oð1Þ; (B8)

while the scattering length may (or may not) be fine-tuned.
Thus, we have

re� 
 1: (B9)

The combination 3XðX � 1ÞðX2=Y þ 1Þ=Y is related to the
off-shell parameter h through

XðX� 1Þ
Y

�
X2

Y
þ 1

�
¼ �

2

h�2

a2�
: (B10)

We assume that h is also of a natural size,

hð�ð2Þ
0 Þ2 �Oð1Þ; (B11)

thus

h�2 
 1: (B12)

Therefore the quantity in Eq. (B10) is much smaller than
the one in Eq. (B5).

We may expand the corresponding terms in

Að ffiffiffi
3

p
�=2;�2=4;�2=4Þ, keeping 1þ X2=Y in the

denominator. We finally get

� 72i
ð2�2Þ2
M�5

V2

S2
ðT � 6UÞd�; (B13)

where S, T, U, and V are defined in Eq. (4.16).

APPENDIX C: SHELL MODE CONTRIBUTION
OF THE TWO-LOOP DIAGRAM

WITH THREE SYMMETRIC LINES

In this appendix, we consider the shell mode contribu-
tion of the two-loop diagram shown in the fifth diagram
in Fig. 12.
This NOOL diagram is obtained by contracting two legs

of the one-loop diagram as shown in Fig. 27. The additional
line connects the same vertices as the two lines in the
original diagram do. As we explained in Sec. III B, the
three lines should be treated in a symmetric way, and we
should impose the cutoff so that Galilean invariance is
maintained. By doing so, the momenta of the three lines
are related to the shell mode.
The trouble is that there seems to be no obvious way to

do so by just ‘‘modifying’’ the shell mode momentum
assignment, as we did in Fig. 4. Fortunately, however, there
is a trivial way to identify the shell mode contribution of
the diagram starting from the amplitude,

Ið�Þ � 1

6
ð�id0Þ2

Z d4k

ð2�Þ4
Z d4l

ð2�Þ4
i

�k0 � k2=2Mþ i�

	 i

k0=2þ l0 � ðk=2þ lÞ2=2Mþ i�

	 i

k0=2� l0 � ðk=2� lÞ2=2Mþ i�
; (C1)

where the external energy and momentum are set to zero
for simplicity. The domain of the momentum integrations
is restricted to the region jkj<� and jlj<�. These
cutoffs do not break the Galilean invariance. Thus, the
shell mode contribution is identified as Ið�Þ�Ið��d�Þ.
A simple calculation leads to

Ið�Þ � Ið�� d�Þ ¼ 6
ið2�2Þ2
M�5

cv2d�: (C2)

APPENDIX D: POLE AT � ¼ 1=a

In this appendix, we demonstrate that the pole at
� ¼ 1=a appearing in Eq. (5.2) is due to the existence of
a two-body bound state.
In Appendix B, we have shown how the two-body

amplitude is embedded in the three-body NOOL diagrams
and contributes to the RGE for v. The two-body amplitude
in the shell mode is given by

FIG. 27 (color online). The NOOL diagram, in which the
identification of the shell mode contribution is not so obvious.

FIG. 26. An example of the NOOL diagram contributing to the
RGE for d0.
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A
� ffiffiffi

3
p

�

2
;
�2

4
;
�2

4

�
; (D1)

and we have argued that the effective range and the off-
shell parameter terms can be expanded, so that effectively
the amplitude appears as

A� 8�

M�

�
1

a2�
��

�

��1
; (D2)

with � ¼ ffiffiffi
3

p
�=2. In the usual off-shell amplitude, � is

written as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�MP0 þ P2=4� i�

q
; (D3)

and the value of � corresponds to the energy

P0 ¼ �
� ffiffiffi

3
p
2

�
2 �2

M
; (D4)

when the total momentum P is zero. On the other hand,
because of Eq. (B5),

1þ 1

�
¼ �

2

1

a2�
; (D5)

and � ¼ 1=a corresponds to

1

a2�
¼

ffiffiffi
3

p
2

: (D6)

Substituting it in Eq. (D4), we get

P0 ¼ � 1

Ma22
; (D7)

which is nothing but the energy of a two-body bound state
in the present approximation.

In the two-body RGEs, no value of the cutoff hits the pole
of the amplitude, since� is pure imaginary for any physical

energy and momentum. In the present case, the two-body
amplitude is embedded in the three-body diagrams; thus the
‘‘total energy and momentum’’ of the two-body amplitude
can take any real values so that � can be real and hits the
pole of the amplitude Eq. (D2) as the value a2� changes.
When � comes close to 1=a, the three-body shell-mode
contributions become huge, and the value of v changes
rapidly to cancel the cutoff dependence. Near � ¼ 1=a,
the flows thus run almost vertically as shown in Fig. 28.
There is however a ‘‘gate,’’ (1=a, �2=ab), at which the

right-hand side of Eq. (5.2) is finite when � approaches
1=a. Apparently no flow can pass the � ¼ 1=awall without
getting through the gate.
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