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The Weyl fermions with a well defined chirality are known to demand that the dimension of space

which they inhabit must be odd. It is shown here, however, that not all odd dimensional spaces are equally

good hosts: in particular, an arbitrary number of chiral Weyl fermions can acquire a Majorana type of mass

only in three (modulo eight) dimensions. The argument utilizes (a) the precise analogy between the

Majorana mass term and the coupling of time-reversed Weyl fermions, and (b) the conditions on the

requisite time reversal operator, which are implied by the real representations of Clifford algebras. In

particular, it is shown that the latter allows only an even number of Majorana-massive Weyl fermions in

seven (modulo eight) spatial dimensions. The theorem connects the observed odd number of neutrino

flavors, the time reversal symmetry, and the dimension of our space and strengthens the argument for the

possible violation of the lepton number conservation law.
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I. INTRODUCTION

Maybe the most obvious fact about our world is that it is
three dimensional [1]. Yet, neither classical nor quantum
physics provide a very good reason why this needs to be so.
On the contrary, modern approaches to the physics beyond
the standard model based on the string theory, for example,
typically require higher number of dimensions d for inter-
nal consistency, and then their subsequent compactification
down to d ¼ 3. The significance of three dimensions poses
therefore a clear and important problem [2].

Here we point out a connection between the dimension-
ality of space and its ability to accommodate the Majorana
mass for an arbitrary and, most importantly, an odd number
of flavors ofWeyl fermions. The connection is surprising in
that it crucially involves the operation of time reversal,
which is a symmetry that a priori has little to do with any
spatial characteristics, such as the dimension. We first
show that the standard Majorana mass term in the
Lagrangian for the Weyl fermions may be understood as
a coupling between the time-reversed states of the Weyl
Hamiltonian [3]. Focusing on odd spatial dimensions in
which the notion of chirality is well defined, we find that
the time reversal (TR) operator T, requisite for the con-
struction of the Majorana mass, exists only in some of
them: in d ¼ 3þ 4n, n ¼ 0; 1; 2 . . . . The reason for the
absence of the TR operator for the Weyl Hamiltonian in
every second odd dimension is related to its antilinearity.

Furthermore, the square of the TR operator, when it
exists, in dimensions d ¼ 3 and d ¼ 7 (modulo eight),

depends on the dimension as T2 ¼ ð�1Þðdþ1Þ=4. This has
an important consequence for the mixing matrix between
different flavors of Weyl fermions: the mixing matrix is
symmetric only for d ¼ 3, whereas it is antisymmetric in
d ¼ 7 (modulo eight). The latter condition in general
implies double degeneracy of all finite eigenvalues, so

that the number of massive Weyl fermions in this case,
when n is odd, can ultimately only be even. When the
number of Weyl flavors is itself odd, this means that there
is an odd number of Weyl fermions still being left mass-
less. For three flavors in seven dimensions, for instance,
this is illustrated further by a simple and direct calculation.
The bottom line is that in order to have an arbitrary, and

in particular, odd, number of Weyl fermions with uncon-
strained values of Majorana masses, the dimension of
space has to be three, modulo eight. The ambiguity of
eight in the result is a manifestation of the Bott periodicity
in the theory of Clifford algebras [4], upon which our proof
ultimately relies. Some speculations about how to remove
it will be offered.
The standard model of elementary particles famously

contains three families of leptons, including the three
neutrinos, which may be assumed to be chiral Weyl fermi-
ons [5]. They are now believed to be endowed with small
but finite masses. Whether the masses are of the usual
Dirac type or with the Majorana component is at present
unknown, but the experiments sensitive to the character of
the neutrino mass are on their way [6]. The observation of
the neutrinoless double beta decay, for example, which
would imply a violation of the lepton number conservation
which follows from the Majorana nature of the neutrino
mass, would according to the theorem proved in this paper,
if not quite explain, then to a certain degree rationalize the
observed dimensionality of our space. The full explanation
of the dimensionality along the direction taken here would
demand an understanding of why the Majorana mass of the
three neutrinos could be required for, as opposed to only
being allowed in, our Universe [7].
The rest of the paper is organized as follows. In the next

section we deconstruct the Weyl Hamiltonian, with the
particular emphasis put on the basic assumptions behind
it. In Sec. III we lay out our main thesis: that implicit in the
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construction of the standardMajorana mass is the existence
of the time reversal operator that squares to minus one. In
Sec. IV it is shown that an operator with the requisite
properties for the time reversal exist only in the dimensions
8nþ 3. The alternative point of view, which leads to the
same conclusion but which is more in line with the stan-
dard group theory [8], is provided in Sec. V. The important
generalization to more than one flavor, with the properties
of the mixing matrix in different dimensions, is given in
Sec. VI. The last section gives the conclusion. In the
Appendix we discuss the special case of spatial dimensions
d ¼ 1þ 8n, which allow a related, but physically differ-
ent, mass term that couples independent real Majorana-
Weyl fermions, which can exist in these dimensions.

II. WEYL HAMILTONIAN

We begin by establishing the basic terminology. Define
the Weyl Hamiltonian as an irreducible, translational, and
rotational invariant Hermitian operator, linear in momen-
tum. The last requirement and the translational invariance
together imply that

HW ¼ Xd

i¼1

�ipi; (1)

where pi are the components of the momentum operator in
d-dimensional space, d � 2 [9], and �i are ‘‘coefficients’’
that commute with the momenta pi and the coordinates xi.
The rotational symmetry requires that both pi and �i

transform as components of vectors. It thus suffices [10]
that �i obey the Clifford algebra Cðd; 0Þ [11]:

½�i; �j�þ ¼ 2�ij; (2)

where ½; �s is the anticommutator for s ¼ þ and commu-
tator for s ¼ �. The generators of rotations can be now
constructed as the sum of the orbital angular momentum
operator and the generators of spinor representation of the
rotational group [SpinðdÞ] [8]

Lij ¼ pixj � xipj þ i

4
½�i; �j��: (3)

The coefficients �i are therefore promoted by the rota-
tional invariance into operators, and the Weyl Hamiltonian
HW in fact acts in the Hilbert space

H ¼ H orb �H sp; (4)

where the coordinate and the momentum act in the first,
orbital factor, and the operators �i in the second, spin
space. The irreducibility of HW immediately implies that
the representation of the Clifford algebra, and conse-

quently of the SpinðdÞ, is 2ðd�1Þ=2 dimensional, and that d
is odd. Instead of the irreducibility, one could have de-
manded that an operator � which would anticommute with
all �i does not exist. This would guarantee that an addition
of the Dirac mass term�� toHW is impossible, or, in other

words, that the masslessness of the Weyl particle is not
accidental. Viewed either way, there are two inequivalent
irreducible complex (and Hermitian) representations of
Cðd; 0Þ for odd d, which correspond to two possible chir-
alities of the Weyl Hamiltonian. Choosing the chirality
causes then the Weyl Hamiltonian to break the symmetry
of space inversion, as well known.

III. MAJORANA MASS

Having defined the fundamental Weyl Hamiltonian,
we next deconstruct the usual Majorana mass as the
‘‘off-diagonal pairing’’ term, in terminology of condensed
matter physics [3]. It will be crucial that the Weyl particles
are fermions, so consider the Lagrangian density for a
single massless Weyl fermion:

L0 ¼ �yði@t þHWÞ�; (5)

where � ¼ �ð ~x; tÞ and �y ¼ �yð ~x; tÞ ¼ ð��ÞT are inde-

pendent 2ðd�1Þ=2-component Grassmann (anticommuting)
fields. To cast the Lagrangian into the form that would
facilitate a natural addition of the mass term, we rewrite it
using Nambu’s particle-hole doubling [3] as

L0 ¼ 1

2
ð�y; ~�yÞði@t þ �3 �HWÞð�y; ~�yÞy; (6)

with ~� ¼ U��, with the unitary matrix U satisfying
UH�

WU
�1 ¼ HW . Summing the two decoupled blocks in

the last equation recovers precisely Eq. (5). But, this
construction provides the unique way to invert the sign of
the Weyl Hamiltonian for the lower (‘‘hole’’) block in L0,
which, as will be seen, is necessary for the construction of
the mass term for a single Weyl fermion. We now can
recognize the combination Tsp ¼ UK, with K as the com-

plex conjugation, as the spin part in the TR operator T for
the Weyl particle:

T ¼ Torb � Tsp; (7)

where Torb is the usual TR operator in the orbital space
[12]. The Majorana mass is then simply

LM ¼ 1

2
ð�y; ~�yÞððm1�1 þm2�2Þ � 1Þð�y; ~�yÞy; (8)

and the massive Weyl particle is described by the
Lagrangian L ¼ L0 þ LM. The mass term breaks the
global Uð1Þ particle number symmetry generated by
�3 � 1 and implies the relativistic energy spectrum

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ jmj2p

, where m ¼ m1 þ im2.
We will not be concerned here with the dynamical

mechanism of the generation of the Majorana mass, which
inevitably will be model dependent. Rather, we will focus
on the structure of the Majorana mass itself. Evidently, the
Majorana mass term is proportional to

�yU�� þ c:c: ¼ ��yUT�� þ c:c:; (9)
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with the minus sign on the right-hand side reflecting the
Grassmann nature of the fields. The mass term thus either
vanishes, or the matrix U is antisymmetric, U ¼ �UT .
Since U also must be unitary, it follows that

� 1 ¼ UU� ¼ T2
sp ¼ T2; (10)

where in the last equation we used the fact that T2
orb ¼ 1,

always [12].
Two conditions are thus implicit in the construction of

the Majorana mass for a single Weyl fermion: (a) the time
reversal operator for the Weyl Hamiltonian exists, and
(b) the same time reversal operator also has the usual
negative sign when squared.

None of the above, of course, is new when d ¼ 3. The
Clifford algebra elements then are the Pauli matrices, �i ¼
�i, i ¼ 1, 2, 3, and the TR operator in the spin space is the
familiar (and, up to a phase, unique) Tsp ¼ �2K, with the

requisite value of the square: T2
sp ¼ �2�

�
2 ¼ �1. Writing

the Lagrangian LM in terms of the Nambu components
recovers precisely the textbook form of the Majorana mass
[5]. We demonstrate next that this construction is, surpris-
ingly, possible only in every fourth odd dimension [13].

IV. TIME REVERSAL IN DIFFERENT
DIMENSIONS

A. Nonexistence in d ¼ 5

Before delving into the general proof, let us show that
already in the next odd dimension of d ¼ 5 the operator Tsp

for the Weyl Hamiltonian simply does not exist. The irre-
ducible representation of the Clifford algebraCð5; 0Þ, mod-
ulo an overall sign and an unitary transformation, is unique
and may be chosen to be, for example, �i ¼ 1 � �i, i ¼ 1,
3, �2 ¼ �2 � �2, �4 ¼ �1 � �2, �5 ¼ �3 � �2, with �i

as real for i ¼ 1, 2, 3 and as imaginary for i ¼ 4, 5. If
Tsp ¼ UK and the Weyl Hamiltonian is to be even under

time reversal, all �i must be odd. The matrix U then needs
to satisfy the conditions

½U;�i�þ ¼ ½U;�j�� ¼ 0; (11)

for i ¼ 1, 2, 3, and j ¼ 4, 5. But the only two linearly
independent matrices that anticommute with the �i, i ¼ 1,
2, 3, are �4 and �5 themselves. Since these two mutually
anticommute, obviously there is no linear combination of
them which would commute with both. In stark contrast to
d ¼ 3, in d ¼ 5 the single-flavor Weyl Hamiltonian breaks
both the symmetries of space inversion and of time
inversion.

B. Nonexistence in d ¼ 4nþ 1

It is not too difficult to prove further that Tsp cannot be

found whenever the dimension of space is d ¼ 4nþ 1.
The dimension of the irreducible representation of the
relevant Clifford algebra Cð4nþ 1; 0Þ is 22n, and it can
be chosen so that 2nþ 1 matrices are real, and the

remaining 2n matrices are imaginary [14]. Let us choose
�i, i ¼ 1; . . . 2nþ 1 as real, and with i¼2nþ2; . . .4nþ1
imaginary. The set of all different products of the first 4n
matrices is easily shown to be linearly independent, and
together with the unit matrix to provide a basis in the space
of 22n-dimensional matrices, which is 24n-dimensional.
The unitary part U of the operator Tsp would then have

to commute with all imaginary � matrices, and anticom-
mute with all real �matrices, in generalization of Eq. (11).
Let us then consider the real�1 first. Half of the matrices in
the above basis anticommute with it, whereas the other half
commute. The operator U, if it exists, would then be in the
first set of 24n�1 linearly independent matrices. Let us then
consider all the matrices in that first set that also anticom-
mute with the second real matrix �2. Again, their number
is half of the original number, so we get a set of linearly
independent candidates for U of the size of 24n�2. Each
additional condition similarly halves the number of
candidates, until we exhaust all but the very last imaginary
matrix, �4nþ1. Since the number of satisfied conditions
is at this stage 4n, there is a unique matrix left by
this construction which anticommutes with all the real
�i (i ¼ 1; . . . 2nþ 1) and commutes with all but the last
one of the imaginary�i (i ¼ 2nþ 2; . . . 4n). That matrix is
also easy to discern:

X ¼ Y4n

i¼2nþ2

�i: (12)

The same matrix X that satisfies the first 4n conditions
cannot satisfy the last condition; however, since being a
product of an odd number of�i with i � 4nþ 1, instead of
commuting, it anticommutes with the last matrix:

½X;�4nþ1�þ ¼ 0: (13)

Being unique in satisfying the first 4n conditions, we see
that the sought operator U does not exist in d ¼ 4nþ 1.

C. Nonexistence in d ¼ 9: An alternative proof

Since the case of nine dimensions provides the first
nontrivial example of the claimed nonexistence of the
time reversal operator in dimensions d ¼ 4nþ 1, here
we provide an alternative proof, which relies on some of
the properties of real representations of Clifford algebras
[15,16]. Besides the standard representation consisting of
five real and four imaginary matrices discussed earlier, the
Clifford algebra Cð9; 0Þ also allows an equivalent 16-
dimensional representation consisting of one real and eight
imaginary matrices. This follows from the fact that the real
representation of Cð1; 8Þ is 16 dimensional [15]. (See

Table 1 in Ref. [16].) The unitary operator U in the I
spin
t

would therefore need to commute with all of the imaginary
matrices in that representation and anticommute with the
single real matrix. But, since the real 16-dimensional rep-
resentation of Cð0; 8Þ is a ‘‘normal’’ representation with
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unity as its sole Casimir operator [15], the only matrix that
satisfies the former condition onU is the unit matrix, which
then obviously does not satisfy the latter condition.

In d ¼ 9, however, there is another and distinct possi-
bility for the construction of the mass term, due to the
existence of a purely real 16-dimensional representation
of Cð9; 0Þ, which would represent a real Weyl, i.e.,
‘‘Majorana-Weyl’’ fermion. We discuss this possibility in
an equivalent, but somewhat simpler, case of d ¼ 1 in the
Appendix.

D. Existence in d ¼ 4n þ 3

In odd dimensions d ¼ 4nþ 3, on the other hand, there
is no difficulty in finding the unitary part of Tsp. Choosing

�i real for i ¼ 1; . . . 2nþ 2 and imaginary for i ¼ 2nþ
3; . . . 4nþ 3, the operator U is unique and it equals

U ¼ Y4nþ3

i¼2nþ3

�i: (14)

It is easy to confirm that U now satisfies all of the 4nþ 3
desired conditions and that it anticommutes (commutes)
with all real (imaginary) � matrices.

Finally, the last equation implies that, when it exists,
T2
sp ¼ ð�1Þnþ1. Comparing with Eq. (10) we see that the

Majorana mass term for a single Weyl flavor survives only
in dimensions d ¼ 3þ 8n, with n ¼ 0; 1; 2; . . .

V. RELATION TO REALITY OF SPINOR
REPRESENTATIONS

The conclusion that there is no time reversal operator in
spatial dimensions d ¼ 4nþ 1 may appear particularly
surprising to a reader knowledgeable about the reality
properties of the spinor representations of the rotational
group [8]. Namely, the generators of the spinor represen-
tation of SOðdÞ,

Gij ¼ i

4
½�i; �j��; (15)

with �i, i ¼ 1; . . . d, satisfying Clifford algebra Cðd; 0Þ,
allow one to find a unique matrix R so that

Gij ¼ �RG�
ijR

�1; (16)

with the matrix R being either symmetric (‘‘real’’ repre-
sentations) or antisymmetric (‘‘pseudoreal’’ representa-
tions). It follows that the spinor representations of
SOðpþ 8kÞ are real when p ¼ 1, 7 and pseudoreal when
p ¼ 3, 5 [8].

The above condition can be understood precisely as the
oddness of the generators Gij under the antilinear operator

A ¼ RK. If the matrix R is unitary, one further finds that
the antilinear operator is such that either A2 ¼ 1 for real, or
A2 ¼ �1 for pseudoreal representations. If one would
identify A as the operator of time reversal, the statement
would be that the generators of the spinor representation

are odd under the time reversal operator, which is unique,
and with the square that depends on the dimension of
space. The oddness of the rotational generators then
implies that the rotations themselves are even under time
reversal, just as they are in the orbital space.
Our identification of the time reversal operator in di-

mensions d ¼ 3 and d ¼ 7 (modulo eight) is evidently in
perfect agreement with the above reality properties of
SOð3Þ and SOð7Þ, where, for each of these two dimensions,
we identified a unique time reversal operator under which
�i and therefore Gij are odd, and which has a square with

the required sign. In d ¼ 5 and d ¼ 9 (modulo eight), on
the other hand, we could not find any antilinear operator
which would anticommute with � matrices and thus rep-
resent the operation of time reversal. This conclusion,
although at first it may appear otherwise, is in fact not in
collision with the established facts about the reality of
spinor representations in the dimensions in question. This
is because the oddness of all � matrices is certainly a
sufficient but not also a necessary requirement for the
desired oddness of the rotational generators. Since the
generators are products of two � matrices and the imagi-
nary unit, obviously even if all the � matrices were even
under some antilinear operator, the rotational generators
would still be odd. This is exactly the case in d ¼ 5 and
d ¼ 9, as we now show. In the representation of Cð5; 0Þ
right above Eq. (11), the requisite antilinear operator is
unique, and

A ¼ i�4�5K: (17)

In d ¼ 5, therefore, A2 ¼ �1, and the spinor representa-
tion of SOð5Þ is indeed pseudoreal. In the 16-dimensional
representation of Cð9; 0Þ with only one matrix (�1) real,
and the remaining eight imaginary, mentioned earlier, the
desired antilinear operator is the simplest to write:

A ¼ �1K; (18)

so A2 ¼ 1, and SOð9Þ is real. In either case, and in contrast
to d ¼ 3 and d ¼ 7, while in dimensions d ¼ 5 and d ¼ 9
the generators of rotations in spinor representation are
odd under a unique antilinear operator, their building
blocks, the � matrices, are not odd but even under the
same operation. Since the Weyl Hamiltonian is linear in
both the momentum and in the �matrices, its time reversal
invariance demands a stronger condition than just
oddness of the rotational generators: the oddness of the
underlying Clifford algebra itself. It is this stronger condi-
tion that cannot be met in dimensions d ¼ 5 and d ¼ 9
(modulo eight).
Let us finally connect the antilinear operator A to the

symmetry of the Weyl Hamiltonian, and eventually to the
existence of the Majorana mass. We have concluded above
that there are two options:

½A;�i�s ¼ 0; (19)
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with the sign s ¼ �, which then imply

½A;HW��s ¼ 0: (20)

Here, s ¼ þ corresponds to dimensions d ¼ 3, 7 and
s ¼ � to dimensions d ¼ 1, 5. If the Weyl equation is

i@t� ¼ HW�; (21)

then

� i@tðA�Þ ¼ sHWðA�Þ: (22)

If s ¼ �, the spinor A� satisfies exactly the same
equation as the original spinor. We may interpret A as the
operator of the particle-hole symmetry. Since the operator
A is the unique antilinear operator under which the spinor
group generators are odd, there is no operator that would
correspond to the time reversal symmetry in these dimen-
sions. We may write the equation for the combined spinor
� ¼ ð�; A�ÞT as

i@t� ¼ ð�0 �HWÞ�: (23)

Since any matrix commutes with the two-dimensional
unit matrix �0, and by construction there is no matrix
that anticommutes with HW , there is evidently no matrix
that anticommutes with �0 �HW ; i.e., no mass term is
possible.

If s ¼ þ, on the other hand, the situation is rather
different, since the spinor A� then satisfies the same
equation as �, but with the time axis reversed. A is there-
fore nothing but the time reversal operator, whereas the
Weyl equation now does not possess the particle-hole
symmetry. The combined spinor � now satisfies the
equation

i@t� ¼ ð�3 �HWÞ�; (24)

in which we traded the reversal of the time axis for the
lower component for the sign change on the right-hand
side. Because of the appearance of the Pauli matrix �3 in
the last equation, there are now two matrices that anticom-
mute with the �3 �HW : �1 � 1 and �2 � 1. These are the
possible (Majorana) mass terms.

We conclude that the irreducible Weyl equation in dif-
ferent dimensions is either odd under time reversal or odd
under particle-hole conjugation. Since it is by its very
nature always odd under parity, it is invariant under the
combined operation of particle-hole conjugation, parity,
and time reversal, in any dimension, just as one would
expect from its Lorentz invariance [17].

VI. FLAVORS AND THEIR MIXING

The mass term for N > 1 flavors of Weyl fermions with
equal chirality now generalizes into

LM ¼ 1

2
ð�y; ~�yÞð�1 � ðmOþm�OyÞ � 1

þ i�2 � ðmO�m�OyÞ � 1Þð�y; ~�yÞy; (25)

whereO is the N-dimensional mixing matrix which acts in
the flavor space and � stands for N different Weyl fields.
Finiteness of the Majorana mass term now implies that
�OT �UT ¼ O �U, or equivalently

OT ¼ �ðT2ÞO: (26)

The mixing matrix O is therefore symmetric in d ¼ 3
(modulo eight), as well known. However, it is antisymmet-
ric in the second set of dimensions which allow the time
reversal operator T, namely, d ¼ 7 (modulo eight). In the
latter case the Majorana mass spectrum becomes severely
restricted, as we now show.
Squaring the quadratic form in the Lagrangian now

yields the spectrum

!i ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ jmj2oi

q
; (27)

where oi i ¼ 1; 2; . . .N are the eigenvalues of the positive
matrix OOy. Obviously,

YN

i¼1

oi ¼ det ðOOyÞ ¼ j detOj2; (28)

where we used the fact that detO ¼ detOT in the last
equality. On the other hand, Eq. (26) then implies that it
is also true that

YN

i¼1

oi ¼ ½�ðT2Þ�N YN

i¼1

oi; (29)

and at least one eigenvalue oi must vanish whenever
T2 ¼ 1, as in d ¼ 7 (modulo eight), and the number of
Weyl flavors N is odd.
The above conclusion is a consequence of the useful

decomposition [18] of an antisymmetric matrix: there ex-
ists a transformationO ¼ WQWT with the matrixW being
unitary, so that the matrix Q is block diagonal, with each
block as being either zero or as the two-dimensional matrix
qi�2, with complex qi. The eigenvalues of the matrixOOy
are then oi ¼ jqij2, each doubly degenerate, or oi ¼ 0. If
the number of flavors N is odd, an odd number of Weyl
fermions remains massless, while the rest are pairwise
degenerate. If the mixing matrix O is symmetric, on the
other hand, the eigenvalues oi are unrestricted, and their
degeneracies are only accidental.

A. Three flavors

Since in nature there exist three types of neutrinos, let us
examine the case of N ¼ 3 more closely. A general three-
dimensional mixing matrix can be written as

O ¼ aþX3

i¼1

biJi þ
X
i;j

cijTij; (30)

where Ji, i ¼ 1, 2, 3, are spin-one angular momentum
operators, and Tij ¼ ð1=2Þ½Ji; Jj�þ � ð2=3Þ�ij are the
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components of the antisymmetric tensor [12]. In the adjoint
representation, ½Ji�jk ¼ �i�ijk, and all three angular

momentum operators are antisymmetric matrices, whereas
the components of the tensor operator are all symmetric
matrices. In d ¼ 7 (modulo eight) then a ¼ cij � 0, to

ensure the antisymmetry of the mixing matrix. In this case

OOy ¼ X3

i;j¼1

bib
�
jJiJj (31)

and the eigenvalues are found easily to be �1;2 ¼
P

ijbij2,
and �3 ¼ 0. In contrast, in d ¼ 3 (modulo eight) the mix-
ing matrixO is symmetric, and it is then bi � 0 in Eq. (30).
The remaining six linearly independent terms in Eq. (30)
allow then an unconstrained mass spectrum.

VII. CONCLUSION

We have shown that an odd number of (Majorana)
massive Weyl fermions can be accommodated only in
three, modulo eight, dimensions. All other dimensions
are forbidden, but for different reasons: (a) first, and as
known already, in even dimensions the Weyl Hamiltonian
is reducible, (b) in five (modulo four) dimensions the
Weyl Hamiltonian breaks the time reversal symmetry, so
that the Majorana mass term is impossible, and finally
(c) in seven (modulo eight) dimensions the TR operator
for the Weyl Hamiltonian exists, but it has a positive
square, which implies an exact zero mode of the (antisym-
metric) mixing matrix, and double degeneracy of the rest
of the spectrum.

Assuming that nature avoids unnecessary masslessness
[19] but for some, at present, not well understood reason
favors having Weyl fermions in an odd number of copies
implies that the space must be three (modulo eight) dimen-
sional. The ambiguity of eight is inherent to our Clifford-
algebraic argument, and it is a mathematical consequence
of the Bott periodicity [4]. It thus seems likely that some
arguments beyond the mere consistency requirements
would be required to remove it. For example, if one sub-
scribes to the superstring or the M theory, the number of
spatial dimensions before compactification is nine and ten,
respectively. Since the next allowed dimension of space in
the present calculation is eleven, these theories would have
no choice but to be compactified down to precisely three
dimensions in order to allow three Majorana massive Weyl
fermions. Taken more conservatively, our result provides a
reason to hope that, given that we do live in three dimen-
sions, nature would not miss the rare opportunity to pro-
vide the observed three neutrinos with the Majorana type
of mass.
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APPENDIX: MAJORANA-WEYL FERMIONS
IN d¼ 1þ 8n

We have shown that the Majorana mass term that would
be analogous to the one in d ¼ 3 cannot be written in
other dimensions, and in particular not in dimensions
d ¼ 1þ 8n. On the other hand, one can easily write
down a real solution of the Dirac equation in these dimen-
sions. Consider the simplest example in d ¼ 1:

i@t� ¼ ð�3pþm�2Þ�; (A1)

with the momentum operator p ¼ �i@x. Since the imagi-
nary unit can be canceled, the spinor� is real. Is that not in
contradiction with our claim [20]?
When m ¼ 0 the above equation decouples into two

equations for the independent components of the spinor
� ¼ ð�1;�2ÞT :

@t�n ¼ ð�1Þn@x�n; (A2)

where n ¼ 1, 2. Each equation can be understood as the
Weyl equation for a one-component fermion, which, how-
ever, is real. In dimensions d ¼ 1þ 8n the irreducible
Weyl equation happens to have purely real representation,
and therefore in these dimensions we have the unique
possibility of a real ‘‘Majorana-Weyl’’ fermion.
The mass term in this case is thus not the coupling of

the (complex) Weyl fermion to its time-reversed copy,
as it was in d ¼ 3þ 8n, but rather the coupling of one
(real) Majorana-Weyl fermion to another, independent
Majorana-Weyl fermion, with opposite chirality. Indeed,
the two equations for the real �n, n ¼ 1, 2 cannot be
recombined into a single irreducible Weyl equation for
the single-component complex Weyl fermion � ¼ �1 þ
i�2. Instead, put together they are equivalent to

i@t� ¼ p��: (A3)

The standard linear irreducible (one-component) Weyl
equation for the complex fermion in d ¼ 1 is thus not
equivalent to the system of two Weyl equations for two
real Majorana-Weyl fermions of opposite chiralities. This
reconciles our demonstration that while the former
does not allow the introduction of the mass term, the latter
obviously does. The situation repeats itself, by Bott
periodicity in higher dimensions, and in particular in
d ¼ 9 [21].
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Borštnik and H. B. Nielsen, Phys. Lett. B 486, 314 (2000).

[3] Similar to the superconducting pairing term; see J. R.
Schrieffer, Theory of Superconductivity (Westview,
Boulder, CO, 1971).

[4] M. F. Atiyah, R. Bott, andA. Shapiro, Topology 3, 3 (1964).
[5] C. Giunti and C.W. Kim, Fundamentals of Neutrino

Physics and Astrophysics (Oxford University, New York,
2007).

[6] F. T. Avignone III, S. R. Eliot, and J. Engel, Rev. Mod.
Phys. 80, 481 (2008).

[7] One such popular scenario is leptogenesis. For a review,
see P. Di Bari, Contemp. Phys. 53, 315 (2012).

[8] H. Georgi, Lie Algebras in Particle Physics (Westview,
Boulder, CO, 1999), 2nd ed.

[9] Since we will view here the rotational invariance as the
raison d’etre for the Weyl Hamiltonian, we focus on
spatial dimensions d � 2, in which the notion of rotation
is sensible. Nevertheless, the case of d ¼ 1 will turn out to
be equivalent to d ¼ 9, which will be explicitly studied in
Sec. IVC, by the Bott periodicity.

[10] This is not a necessary condition, however, and in
d ¼ 3 �i can also close SUð2Þ algebra for spin s. For
any s > 1=2, however, the spectrum will then exhibit
more than one characteristic velocity, and the Lorentz

invariance will be absent, unlike when �i is close the
Clifford algebra.

[11] Cðp; qÞ is defined as a set of pþ q mutually anticommut-
ing generators, p (q) of which square to þ1 (� 1).

[12] In coordinate representation, for example, Torb ¼ K. See
K. Gottfried and T.-M. Yan, Quantum Mechanics:
Fundamentals (Springer, New York, 2004), 2nd ed.

[13] It may be more common, but equivalent to our point of
view, to understand the operator �2K as charge conjuga-
tion, under which the chirality of the Weyl Hamiltonian
becomes reversed. In d ¼ 3, L0 then manifestly violates
the charge conjugation while respecting the time reversal
symmetry. (See also Sec. V.)

[14] This is because the real representation of the related
Clifford algebra Cð2nþ 1; 2nÞ is 22n-dimensional. Upon
multiplication of the latter 2n matrices by the imaginary
unit we obtain the desired complex representation of
Cð4nþ 1; 0Þ. See Ref. [15], or the summarizing Table 1
in Ref. [16].

[15] S. Okubo, J. Math. Phys. (N.Y.) 32, 1657 (1991).
[16] I. F. Herbut, Phys. Rev. B 85, 085304 (2012).
[17] O.W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002).
[18] D. C. Youla, Can. J. Math. 13, 694 (1961).
[19] A reason possibly being the simple energetics: having a

finite mass lowers the energy of the vacuum.
[20] I am indebted to Professor Roman Jackiw for posing this

question.
[21] F. Gliozzi, J. Sherk, and N. Olive, Nucl. Phys. 122, 253

(1977).

MAJORANA MASS, TIME REVERSAL SYMMETRY, AND . . . PHYSICAL REVIEW D 87, 085002 (2013)

085002-7

http://dx.doi.org/10.1103/PhysRevLett.95.161601
http://dx.doi.org/10.1103/PhysRevLett.95.161601
http://dx.doi.org/10.1016/S0370-2693(00)00775-9
http://dx.doi.org/10.1016/0040-9383(64)90003-5
http://dx.doi.org/10.1103/RevModPhys.80.481
http://dx.doi.org/10.1103/RevModPhys.80.481
http://dx.doi.org/10.1080/00107514.2012.701096
http://dx.doi.org/10.1063/1.529277
http://dx.doi.org/10.1103/PhysRevB.85.085304
http://dx.doi.org/10.1103/PhysRevLett.89.231602
http://dx.doi.org/10.4153/CJM-1961-059-8
http://dx.doi.org/10.1016/0550-3213(77)90206-1
http://dx.doi.org/10.1016/0550-3213(77)90206-1

