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We attempt to calculate the point separated noise kernel for the self-similar Tolman-Bondi metric, using

a method similar to that developed by Eftekharzadeh et al. for ultrastatic spacetimes, referring to the work

by Page. In the case of formation of a naked singularity, the noise kernel thus obtained is found to be

regular except on the Cauchy horizon, where it diverges. The behavior of the noise in the case of the

formation of a covered singularity is found to be regular. This result seemingly renders backreaction non-

negligible, which causes us to question the stability of the results obtained from the semiclassical

treatment of the self-similar Tolman-Bondi metric.
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I. INTRODUCTION

Cosmic censorship, ever since its proposition in 1969,
has been an issue studied mostly within the framework of
classical relativity. This includes important conjectures
like the hoop conjecture, studies on stability of scalar fields
on spherically symmetric collapse metrics, as well as
particular examples of gravitational collapse metrics.
Some studies have addressed gravitational collapse at the
semiclassical level, though most of the work concerns 1þ
1-dimensional metrics. In the semiclassical theory [1,2],
the quantum expectation of the energy-momentum tensor
(also referred to as RSETor the renormalized stress energy
tensor) is central to studying quantum fields on spacetimes.
One line of investigation in applying this to gravitational
collapse is to question features such as trapped surfaces
that arise earlier and the final fate of the collapse [3,4].
Another line of investigation is to work out the quantum
stress tensor when one employs, as a background space-
time, the classical relativistic examples of gravitational
collapse and to study its effects. In the latter, in particular,
the metric representing pressureless fluid collapse in
spherical symmetry, the Lemaitre-Tolman-Bondi (LTB)
metric, is a common choice. We follow this line of inves-
tigation in this work.

The classical LTB metric exhibits both naked and cov-
ered singularities which can be easily related to data on the
initial Cauchy surface. The transition from covered to
naked singularities appears to occur on account of inho-
mogeneities in initial data. Furthermore, at the semiclassi-
cal level it appears that this increasing inhomogeneity
causes a drastic change in the behavior of the quantum
stress tensor. In fact, it is found that the quantum stress
tensor diverges in the naked singularity case where the

Cauchy horizon is expected to form, whereas there is no
divergence anywhere in the covered singularity case. This
divergence is physically interpreted as an energy burst on
the Cauchy horizon [5].
It is still not clear if such a behavior is generic, as the

results obtained are in fact exact in 1þ 1-dimensional
cases and for a few cases of background metrics. Also,
the calculations involve a background metric which re-
mains unaffected by the quantum stress tensor. In other
words, the backreaction is not implicitly incorporated in
the results. However, physical arguments are offered for
the divergence which rely on high curvature regions of
spacetime causing particle production. Such regions would
not be exposed in the covered case, unlike the naked case,
and it is likely that the semiclassical divergence is actually
a general feature.
Semiclassical gravity is, however, fraught with its share

of interpretational issues, apart from operational difficul-
ties like backreaction. Since the idea by Rosenfeld of using
the quantum stress tensor on the right of the Einstein field
equations, several issues have been raised [6]. At least
some of them involve serious objections to employing an
averaged quantity for the stress tensor. Indeed, one can
imagine that, in situations where fluctuations are impor-
tant, the use of the semiclassical quantum-averaged stress
tensor would not be justified for any physical interpretation
like the one above. So for a complete consideration it
seems natural to address the fluctuations as well, whenever
they can be argued to be significant.
Stochastic gravity seeks to remedy this situation, ad-

dressing the effect of including fluctuations of the energy-
momentum tensor and possibly its backreaction on the
metric as well. This is accomplished using the Einstein-
Langevin equation [7,8]. The central object in the calcu-
lations of stochastic gravity is the noise kernel, which gives
an idea of the stochastic source, in addition to the quantum
stress tensor source. The noise kernel is the vacuum ex-
pectation value of the symmetrized stress-energy bitensor
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for a quantum field in curved spacetime [9,10]. It charac-
terizes fluctuations of the stress tensor which play, as
mentioned above, a significant role in the analysis of
quantum effects in curved spacetime. These fluctuations
lead to fluctuations in the metric, which are themselves
understood as induced or passive fluctuations [7]. Induced
fluctuations have played an important role in many studies
involving backreaction. Backreaction problems in gravity
and cosmology, for example, have been addressed [11]
using Einstein-Langevin equations.

Thus far, the effect of quantum fluctuations has not been
studied in the context of gravitational collapse, the physical
scenario for studying cosmic censorship. This is, first of all,
because of the operational difficulty in calculating the
central quantity, the noise kernel, which gives us an idea
of the stochastic source term. Second, the quantum stress
tensor does not add significantly to the classical source for
most of the spacetime regions. This would support any
interpretation ignoring backreaction effects of the quantum
stress, especially regarding the effects on quantum fields
like pair creation or Hawking radiation (at ‘‘late’’ times)
[12]. However, it is physically important to assure that the
quantum-averaged source is indeed a good approximation
to the quantum field contribution to the source. Any effect
of the fluctuations, which appear as the stochastic source
described above, would have to be negligible. However, it
has been a challenge in stochastic gravity to come up with a
method to calculate the noise kernel for specific back-
ground metrics. There are various approaches that have
been used for such calculations, in the case of Minkowski,
de Sitter, anti–de Sitter, and Schwarzschild spacetimes in
the coincidence limit [13–18]. Recently, Eftekharzadeh
et al. [19] have devised a method to compute the noise
kernel for conformally invariant quantum fields in
Schwarzschild spacetime under the Gaussian approxima-
tion. This is based on the method developed by Page [20]
and provides a possibly general way to estimate the noise
kernel approximately.

We seek to apply stochastic gravity techniques in the
study of cosmic censorship to the gravitational collapse
scenario, particularly to the LTB metric. This metric has
been hitherto studied only at the level of quantum fields on
spacetime. It has been demonstrated that the stress energy
tensor diverges at the Cauchy horizon, despite the Cauchy
horizon being perfectly regular [5]. Such results do not take
into account backreaction of the quantum fields on space-
time. The motivation for calculating the noise kernel in a
LTB background is to test the validity of the above-
mentioned result in view of backreaction. Our aim in
carrying out this work has been to investigate this in the
context of gravitational collapse and suggest interpreta-
tions of the particular calculations for the noise kernel. In
this paper, we employ a similar method to that of Ref. [19]
and compute the noise kernel on the self-similar LTB
metric background for conformally invariant fields under

a Gaussian approximation. We obtain the noise kernel, in
this case, which diverges at the Cauchy horizon, seemingly
making backreaction important for consideration and
hence questioning any attempt to study the spacetime in
a semiclassical or perturbative manner.
The paper is organized as follows. In Sec. II we intro-

duce the building blocks of stochastic gravity, the noise
kernel, and the required Wightman function. Section III
describes the conformal rescaling of the Tolman-Bondi
metric, and its conformally equivalent ultrastatic form is
obtained. We obtain the expansions of the Synge function
and the Van Vleck-Morette determinant in the coordinates
of this ultrastatic metric. In Sec. IV we relate the noise
kernel of this metric to that of the self-similar Tolman-
Bondi metric. We argue here for a plausible divergence.
In the end we summarize the results and discuss the
interpretation of the divergence.

II. NOISE KERNEL IN ULTRASTATIC
SPACETIMES

The noise kernel is introduced briefly and related to the
contribution of stress fluctuations to the source in Einstein
equations. The nature of the assumed quantum state is
described for this situation. Its relation to the noise kernel
is mentioned, and its expression is provided in the case of
an ultrastatic spacetime.

A. Einstein-Langevin equation and the noise kernel

The noise kernel for a quantized matter field is given by

Nabc0d0 ðx; x0Þ ¼ 1

2
hft̂abðxÞ; t̂c0d0 ðx0Þgi; (1)

where

t̂ abðxÞ � T̂abðxÞ � hT̂abðxÞi
and h� � �i is the quantum expectation value taken with

respect to a normalized state. T̂ab is the stress tensor
operator of the field. The classical stress tensor of a con-
formally invariant scalar field � is given by

Tab ¼ ra�rb�� 1

2
gabrc�rc�

þ 1

6
ðgabh�rarb þGabÞ�2: (2)

Then, the scalar field� is quantised raising it to the level of
and operator, whereas g�� is treated classically.

The noise kernel embodies the contributions of the
higher correlation functions in the quantum field, on
account of which it may be used to interpret issues related
to the quantum nature of spacetime. Two point functions of
the energy-momentum tensor involve fourth order correla-
tions of the quantum field, for example, which would affect
the coherence of the geometry [21], if we were to employ
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the Einstein-Langevin equations (often referred to as semi-
classical Einstein-Langevin equations)

G�� ¼ hT̂��i þ �̂��; (3)

where �̂�� is a random variable (tensor) which is closely

related to the noise kernel. The relations

h�̂��ðxÞis¼0 h�̂��ðxÞ�̂�0�0 ðx0Þis¼N���0�0 ðx;x0Þ (4)

completely characterize the variable �̂��ðxÞ. The statistical
expectation h is is taken over various stochastic realiza-

tions of the Gaussian source �̂��ðxÞ. Each of the realiza-

tions leads to a metric solution

h��ðxÞ¼hð0Þ��ðxÞþ8�
Z
d4y0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðy0Þ

q
GðretÞ

���0	0 ðx;y0Þ��0	0 ðy0Þ;
(5)

where hð0Þ�� is the solution to the semiclassical equation

G�� ¼ hT̂��i
and GðretÞ

���0	0 serves as the retarded propagator of the semi-

classical Einstein-Langevin equations with vanishing ini-
tial conditions. The stochastic realization contains

information about coherence of geometry, with �̂��ðxÞ
being treated as a random variable.

B. The quantum state for the noise kernel:
Wightman function

Before physically interpreting any particular noise cal-
culation, the nature of the quantum state of the field needs
to be taken into account. The state we consider in our
calculations turns out to be of Hadamard type, in addition
to our assumptions of it being quasi-free and thermal. We
discuss these three qualifiers of the state below.

First, theHadamard nature of the state guarantees that the
stress tensor is well defined within the maximal Cauchy
development and obeys the Wald axioms [2]. We will
analytically continue the state across the Cauchy horizon.
This consideration can be straightforwardly generalized to
Schwarzschild spacetime, as considered in Ref. [19].
Operationally, we are not interested in the stress tensor
and would not require any coincidence limits, even for the
noise kernel, for addressing issues of fluctuations. However,
the fluctuations obtained would be specific to the quantum
state, and a physically reasonable choice of state is war-
ranted. Hence, the Hadamard nature of the state is accorded
physical significance in the discussion of our results.

In our calculations below, we have emphasized the
singularity structure of the symmetrized form of the two
point function we use. Represented by a Hadamard expan-
sion, we conclude that the quantum state being used is of
Hadamard type. The expressions we use are for a general
quasistatic spacetime and based on the approximation
carried out by Page, and so the conclusion would be

more general. However, a careful interpretation of the
divergent expression in 1=
, with 
2 being the Synge
function, is required to support the claim that the state is
of Hadamard type. Such an interpretation, in the sense of
distributions, is provided by Kay andWald [22]. A rigorous
definition is provided by Radzikowski [23] based on mi-
crolocal analysis, but we do not attempt to use that in this
paper. Second, we operationally assume that the Wightman
two point function defined as

G ðx; x0Þ ¼ h�ðxÞ�ðx0Þi

determines the quantum state of the field. Indeed, that is
true if one is working with quasi-free (or Gaussian) states.
Quasi-free states have been extensively used [2] in curved
spacetime. They conveniently lead to Fock space represen-
tations of one particle Hilbert spaces via the Gelfand-
Naimark-Segal construction on the Weyl algebra of
observables. One advantage of this is that it can admit a
concept of particles in a limited manner, despite having
curved spacetime at hand. For example, large fluctuations
implied by the noise kernel could be interpreted as highly
fluctuating particle creation.
Third, it is assumed that the state is thermal or of the

Kubo-Martin-Schwinger type with temperature �. It turns
out that the Wightman function can be approximated for
thermal states in a particular manner, called Gaussian
approximation. We employ the related expression in the
last subsection for ultrastatic spacetimes.
Our results would thus be applicable to a quasi-free

thermal Hadamard state of a conformally invariant field.
The state-specific information is not contained in the sin-
gularity structure. So changing to a different quasi-free
Hadamard state would amount to adding an analytic func-
tion to the symmetrized two point function. We find that
the noise kernel expression would amount to adding an
analytic function to the symmetrized two point function,
and that the noise kernel expression would not change at
the �0 level. The divergence on the Cauchy horizon, being
at all orders in �, is expected to persist for any quasi-free
Hadamard state.

C. Noise kernel in terms of the Wightman function

The properties and the expressions of a noise kernel,
given a quasi-free (or Gaussian) state of a quantum matter
field, are obtained in Ref. [24]. Furthermore, for confor-
mally invariant fields the noise kernel is given in terms of
the Wightman function as [19]

Nabc0d0 ¼ Ref �Kabc0d0 þ gab �Kc0d0 þ gc0d0 �K
0
ab þ gabgc0d0 �Kg;

(6)

where
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9 �Kabc0d0 ¼4ðG;c0bG;d0aþG;c0aG;d0bÞþG;c0d0G;ab

þGG;abc0d0 �2ðG;bG;c0ad0 þG;aG;c0bd0

þG;d0G;abc0 þG;c0G;abd0 Þ
þ2ðG;aG;bRc0d0 þG;c0G;d0RabÞ
�ðG;abRc0d0 þG;c0d0RabÞGþ1

2
Rc0d0RabG2;

(7a)

36 �K0
ab¼8ð�G;p0bG

p0
; aþG;bG

p0
;p0a þG;aG

p0
;p0 b Þ

þ4ðG p0
; G;abp0 �G p0

;p0 G;ab�GG p0
;abp0 Þ

�2R0ð2G;aG;b�GG;abÞ�2ðG;p0G p0
;

�2GG p0
;p0 ÞRab�R0RabG2; (7b)

36 �K¼2G;p0qG
p0q
; þ4ðG p0

;p0 G q
;q þGG p q0

;p q0 Þ
�4ðG;pG

pq0
;q0 þG p0

; G q
;q p0 ÞþRG;p0G p0

;

þR0G;pG;p�2ðRG p0
;p0 þR0G p

;p ÞGþ1

2
RR0G2

(7c)

are given in terms of the Wightman function. Primes on
indices represent the point x0, while the entities at x are the
unprimed ones. Rab is the Ricci tensor and R is the
Riemann curvature.

D. Wightman function in ultrastatic spacetime

Next, we give a short review of the method used in
Ref. [19] for an ultrastatic metric. The metric in a static
spacetime takes the form

ds2 ¼ g��ð ~xÞd�2 þ gijð ~xÞdxidxj: (8)

This can be transformed into an ultrastatic form, called the
optical metric, by a conformal transformation. This optical
metric takes the following form:

ds2 ¼ dt2 þ gijð ~xÞdxidxj; (9)

where the metric functions gij are independent of time t.

The Synge function (half of the square of the proper
distance of the shortest geodesic between two points) can
thus, in ultrastatic spacetime, take the form


ðx; x0Þ ¼ 1

2
ððt� t0Þ2 � rÞ2;

where r2 is twice the spatial part of the Synge function, and
it depends only on spatial coordinates as in Ref. [19].

The Wightman function in an optical background
metric for a thermal (Kubo-Martin-Schwinger) state can
be calculated under the Gaussian approximation [19]. This
approximation was first carried out by Page using the
Schwinger-De Witt expansion in the context of calculating
quantum stress tensors. In this scheme

G ð	t; ~x; ~x0Þ ¼ � sinh�r

8�2r½cosh ð�rÞ � cosh ð�	tÞ�Uð	t; ~x; ~x0Þ;
(10)

where

T ¼ �

2�

is the temperature of the thermal state considered1 and

	t ¼ t� t0

while

Uðx; x0Þ � �1=2ðx; x0Þ; (11)

�ðx; x0Þ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi�gðxÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðx0Þp det ð
;ab0 Þ; (12)

where �ðx; x0Þ is known as the Van Vleck-Morette
determinant.

III. CONFORMALLY OPTICAL FORM OF
SELF-SIMILAR TOLMAN-BONDI METRIC

In order to evaluate the noise kernel for Schwarzschild
spacetime, Eftekharzadeh et al. [19] have used an approach
of conformally rescaling the metric to the form of an
ultrastatic (optical) metric. First, the noise kernel is eval-
uated in this ultrastatic spacetime. Then, the noise kernel of
Schwarzschild spacetime is obtained by just rescaling back
the result in the optical case. We will be applying a similar
technique to the self-similar Tolman-Bondi (TB) metric,
which is given by the line element

ds2 ¼ dt2 � R0dr2 � R2d2 � R2sin 2d�2; (13)

where Rðt; rÞ is the area radius, and

R3=2ðt; rÞ ¼ r3=2
�
1� 3

2

t

r

ffiffiffiffi
�

p �
(14)

is characterized by a dimensionless parameter �. The
collapse rate can also be given in terms of this parameter,

_R ¼ �r

ffiffiffiffi
�

R

s
: (15)

The initial data for this metric are regular, and a curvature
singularity eventually forms at r ¼ 0. The singularity is

naked if �3=2

12 � 26
3 � 5

ffiffiffi
3

p
and is covered otherwise.

For conformal transformation it is useful to work in a
new coordinate system ðt; z; ; �Þ where z ¼ t=r. Then

1In Schwarzschild spacetime, the � has been chosen to be the
surface gravity on the event horizon null surface. However, one
can work with a general thermal state without ascribing this
significance to it.
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R3=2ðzÞ ¼ r3=2
�
1� 3

2
z

ffiffiffiffi
�

p �
; (16)

R0ðzÞ ¼ 1� z
2

ffiffiffiffi
�

p

ð1� 3z
ffiffiffi
�

p
2 Þ1=3

: (17)

The self-similar TB metric can now be put in the confor-
mally ultrastatic form as

ds2 ¼ �2½dT2 � f1ðzÞ2dz2 � z2f2ðzÞ2d�2�; (18)

where

�2 ¼
�
1� R02

z2

�
t2; (19)

f1ðzÞ2 ¼
�

R0

z2 � R02

�
2
; (20)

f2ðzÞ2 ¼
ð1� 3

2 z
ffiffiffiffi
�

p Þ4=3
z2ðz2 � R02Þ ; (21)

and

dT ¼ dt

t
þ R02

zðz2 � R02Þdz:

Since the metric (18) is conformally related to an ultra-
static metric, the Synge function can readily be obtained
in the following form as is done in Ref. [19] for the
Schwarzschild metric in optical form. We apply the same
procedure for the TB metric in the optical form. The Synge
function expansion used here becomes


 ¼ X
ijk

sijkðzÞ	T2i�j	zk;

where

	T ¼ ðT � T0Þ; 	z ¼ ðz� z0Þ;
�þ 1 ¼ cos ðÞ cos ð0Þ þ sin ðÞ sin ð0Þ cos ð���0Þ:

The expression for the Synge function is obtained as


ðx; x0Þ ¼ 1

2
½	T2 � 	z2f1ðzÞ2 þ 2�z2f2ðzÞ2

� 2	z�ðzf2ðzÞ2 þ z2f2ðzÞf02ðzÞÞ
þ 	z3f1ðzÞf01ðzÞ� þO½ðx� xÞ4�: (22)

The function Uðx; x0Þ present in the Wightman function
(10) can be expanded in powers of ðx� x0Þ using the Synge
function (11) and (12) as follows:

Uðx;x0Þ ¼ 1þ	z2
�

f01ðzÞ
6zf1ðzÞ�

f02ðzÞ
3zf2ðzÞþ

f01ðzÞf02ðzÞ
6f1ðzÞf2ðzÞ

�

�	z2
�
f002 ðzÞ
6f2ðzÞ

�
��

�
1

6
� f2ðzÞ2
6f1ðzÞ2

þ zf2ðzÞ2f01ðzÞ
6f1ðzÞ3

� 2zf2ðzÞf02ðzÞ
3f1ðzÞ2

�
��

�
z2f2ðzÞf01ðzÞf02ðzÞ

6f1ðzÞ3

� z2f02ðzÞ2
6f1ðzÞ2

� z2f2ðzÞf002 ðzÞ
6f1ðzÞ2

�
þO½ðx� x0Þ3�:

(23)

With U and the Synge function obtained for the optical
self-similar TB spacetime, we can now evaluate the
Wightman function which will be used to obtain the noise
kernel.

IV. NOISE KERNEL EXPRESSION FOR
(SELF-SIMILAR) TOLMAN-BONDI SPACETIME

The Wightman function for a thermal state with tem-
perature � in the Gaussian approximation on ultrastatic
spacetime is given by [19]

Gðx; x0Þ ¼ 1

8�

�
1



þ�2

6
� �4

180
ð2	T2 þ
Þ þO½ðx� x0Þ4�

�
�Uðx; x0Þ: (24)

At this point we note that the U above is analytic in its
domain and the prefactor contains the singularity structure.
The same singularity structure would be present in the
symmetrized two point function. We have a Hadamard
singularity structure above, in fact, without any log
 term.
The noise kernel, when points are separated, can now be

computed using the above Green’s function, in the usual
way as given in Ref. [19]. Here we will present one
component of the noise kernel for demonstrating some
important results for our metric. The expression calculated
is for the noise kernel component given by NTTT0T0 for
points separated in T, where 	z ¼ � ¼ 0 and 	T � 0.
The noise kernel NTTT0T0 can be expanded in terms of
various powers of �. These coefficients in such an expan-
sion are presented in Table I.
The above expansion for the noise kernel has been

obtained after conformal transformation of the optical
form back to the original form (18). We have displayed
the expression of NTTT0T0 for points separated in the T
coordinate only. This turns out to be interesting, as it yields
a divergence at the Cauchy horizon with leading orders in
separation. This takes place despite the Cauchy horizon
itself being regular in that there is no curvature singularity
along it.
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A. Structure for naked singularity and comparison
with covered case

In the case of a naked singularity solution, the Cauchy
horizon is given by the smaller root z� of ðz2 � R0ðzÞ2Þ for
the self-similar TB metric [5]. This leads to divergence of
the factors f1ðzÞ and f2ðzÞ if evaluated on the Cauchy
horizon. We could choose T for the point on the Cauchy
horizon and T0 for the one elsewhere. The behavior
thus obtained would be clearly of the point separated
kernel.

The terms for various orders of� displayed above diverge
on account of the appearance of f1ðzÞ in the factor [the
appearance of f1ðzÞ � 1

z�z�
and f2ðzÞ � 1ffiffiffiffiffiffiffiffiffi

z�z�
p occurring in

terms in the brackets essentially does not contribute any
singular structure] leading to our main result, the diver-
gence of the noise kernel on the Cauchy horizon. It should
be noted that the above divergence has been obtained using
metric (18). We have been constrained by our approach to
use such a metric in coordinates ill behaved at the Cauchy
horizon.2 Suitable coordinate transformations can be used
to remedy this. From the metric one can observe that the
coordinate transformation factors acting on NTTT0T0 above
would need to diverge at the Cauchy horizon as 1

z�z�
,

similar to Ref. [5]. The divergence of the expression of
the noise kernel above is rather enhanced if we demand
that the metric is regular at the Cauchy horizon.

In the case of a covered singularity ðz2 � R0ðzÞ2Þ has no
real roots. So the factors of f1ðzÞ and f2ðzÞ do not yield
divergences. Nor do the rest of the factors. The metric used
is also regular everywhere.

B. Singularity structure

The issue of regularity also occurs in the noise
expressions of Ref. [19], as the Schwarzschild metric
used is expressed in the usual coordinates rather than,
say, Kruskal coordinates at the event horizon. For inter-
preting the expressions on the event horizon, further
coordinate transformations would be necessary on the
noise kernel.
The above analysis is restricted to the noise kernel with

only 	T � 0. We obtain a similar divergence on the
Cauchy horizon (in the naked singularity case) for 	z �
0 separation as well. The corresponding noise expressions,
however, are not short enough for an explicit display in this
communication.
Our results above for the noise kernel would be appli-

cable to a particular quasi-free thermal Hadamard state of a
conformally invariant field on self-similar LTB spacetime.
It would be of interest to examine if this could be appli-
cable to any quasi-free thermal Hadamard state.
The state-specific information is not contained in the

singularity structure. So changing to a different quasi-free
Hadamard state would amount to adding an analytic func-
tion to the symmetrized two point function. If the above
expressions of the noise kernel are examined, we find that
they would not change at the �0 level. The divergence on
the Cauchy horizon (in the naked singularity case), being at
all orders in �, is expected to persist for any quasi-free
Hadamard state.

TABLE I. Noise kernel component NTTT0T0 displayed as coefficients of powers of � the inverse temperature.

Coefficient of �0
z4f2

1

R02t2ðt�	tÞ2
�

13
12	T8�4 þ ½�4f41 þ 3z2f22f

02
1 þ 2zf1f2f�2zf01f

0
2 þ f2ð�2f01 þ zf001 Þg

þ 4f21f2f22 þ 2z2f022 þ zf2ð6f02 þ zf002 Þg�=½72	T6�4z2f41f
2
2� þ ½27f71 þ 50zf41f2f

0
1ðf2 þ zf02Þ

þ 360z3f32f
03
1 ðf2 þ zf02Þ � 10f51½3f22 þ 3z2f022 þ zf2ð16f02 þ 5zf002 Þ� � 5z2f1f

2
2f

0
1ðz2f01f022 þ f22f

0
1 þ 48zf001 Þ

þ 2zf2½24zf02f001 þ f01ð73f02 þ 36zf002 Þ�� þ 2zf21f2f�49z3f01f032 þ z2f2f
0
2½12zf02f001 � f01ð209f02 þ 31zf002 Þ�

þ f32½�49f01 þ 12zðf001 þ zfð3Þ1 Þ� þ zf22½12zf4zf001f002 þ f02ð10f001 þ zfð3Þ1 Þg
þ f01½�209f02 þ zð185f002 þ 72zfð3Þ2 Þ��g þ f31f3f42 þ 3z4f042 þ 2z3f2f

02
2 ð104f02 þ 49zf002 Þ

þ z2f22½678f022 þ 67z2f0022 � 8zf02ð�49f002 þ 3zfð3Þ2 Þ�
þ 2zf32½104f02 þ zð13f002 � 12zð5fð3Þ2 þ zfð4Þ2 Þ�g=½25920	T4�4z4f71f

4
2�
�

Coefficient of �2
z4f2

1

R02t2ðt�	tÞ2
�

5
72	T6�4 þ ½2f41 þ 9z2f22f

02
1 þ 2zf1f2f8zf01f02 þ f2ð8f01 þ 3zf001 Þg

þ 2f21f5f22 þ 5z2f022 � 2zf2ð3f02 þ 4zf002 Þg�=½2592	T4�4z2f41f
2
2�
�

Coefficient of �4
z4f2

1

R0t2ðt�	tÞ2
�
� 53

1080	T4�4

�
þO½ðx� x0Þ3�

2The metric in the earlier ðt; r; ;�Þ coordinate system is
perfectly regular on the Cauchy horizon, and we have confor-
mally rescaled back our results. Our results would thus hold for
any other metric related to it by regular coordinate system
transformations.
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V. RESULTS AND DISCUSSION

We have thus obtained the noise kernel for a confor-
mally coupled scalar field in the self-similar Tolman-Bondi
metric in an approximate form for a quasi-free thermal
Hadamard state. We seek to interpret this result below.

We know that the noise kernel affects the induced fluc-
tuations of the metric. In Eq. (5), however, theGret function
required would need a background metric for calculating it.
Unfortunately, the largely fluctuating stochastic source
as implied by the noise kernel for the naked singularity
metric does not allow us to treat the backreaction as
negligible. So, our results cannot easily be extended for
studying the induced fluctuations on the Cauchy horizon.

At the same time, we note that noise kernel is not very
large before it gets near the Cauchy horizon (in the naked
singularity case), and so the background appears to be a
good approximation despite backreaction.

Even with the above difficulty regarding the metric
fluctuations, the source fluctuations can still be directly
used for the purpose of interpretation. The semiclassical
interpretation of the stress tensor divergence on the
Cauchy horizon [5] suggested that an energy burst on
the Cauchy horizon is plausible. Such an interpretation
would need to be reconsidered in view of our analysis.
The highly fluctuating source near the Cauchy horizon
would render it difficult to interpret any of its stochastic
realizations as physically significant, in particular, the
semiclassical one of an energy burst on the Cauchy
horizon.

The covered singularity case is in contrast with the
above results. This is similar to the difference seen in the

semiclassical behavior of the metric. In the latter analysis,
the quantum stress tensor diverges on the Cauchy horizon
in the naked singularity case, as opposed to regular behav-
ior in the covered case. The contrast is borne out by
analysis of fluctuations as well.
The divergence of the quantum stress tensor in the

semiclassical analysis has been attributed to the fact that
high curvature regions are exposed in the naked singularity
case, leading to high energy effects. It would seem that
high curvatures lead to diverging noise as well. Thus, the
contrast in the behavior of local quantum fields seems to be
tied to the exposure of high curvature regions, or the lack of
it. We suggest that this plausible connection could be
investigated further.
Finally, the stochastic source fluctuating highly near the

Cauchy horizon could be interpreted for its effect as an
environment (quantum fields) on the system (background
metric) [7]. The spacetime could be highly sensitive to
such environmental decoherence effects very near the
Cauchy horizon. In particular, as we have a quasi-free
state, one could interpret this, for example, as spacetime
reaction effects of particle creation. We suggest that this
issue could be pursued separately.
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