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(Received 23 February 2013; published 29 April 2013)

In this work, we present the hitherto most efficient and accurate method for the numerical integration of

post-Newtonian equations of motion. We first transform the Poisson system as given by the post-

Newtonian approximation to canonically symplectic form. Then we apply Gauss Runge-Kutta schemes

to numerically integrate the resulting equations. This yields a convenient method for the structure

preserving long-time integration of post-Newtonian equations of motion. In extensive numerical experi-

ments, this approach turns out to be faster and more accurate (i) than previously proposed structure

preserving splitting schemes and (ii) than standard explicit Runge-Kutta methods. We also show our

approach to be appropriate for simulations on transitional precession.
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I. INTRODUCTION

When Einstein gave birth to general relativity with the
presentation of his field equations in 1915, new phenomena
such as black holes and gravitational waves were soon
predicted as consequences of this theory. In the last couple
of years, gravitational waves have attracted ever more
attention. With the aim to finally receive signals of such
waves, much experimental effort has been put upon
mounting land-based detectors. VIRGO in France and
Italy (e.g., Ref. [1]), GEO 600 in Germany and the UK
(e.g., Ref. [2]), KAGRA in Japan (e.g., Ref. [3]) and LIGO
in the USA (e.g., Ref. [4]) are only to name a few. Perhaps
they will one day be joined by the space-based eLISA [5].
In order to track any signal of gravitational waves, tem-
plates are required that give a hint on which needle to look
for in the haystack of data delivered by all the working
detectors. Such templates, in turn, can only be obtained by
singling out the most promising sources of gravitational
waves and calculating their motion in phase space. The
main sources of waves have been identified to be binary
systems consisting of inspiraling compact objects; see,
e.g., Ref. [6]. Their mass proportions can be anything
between equal masses and extreme ratios. Binaries with
very unequal masses are called extreme mass ratio inspirals
(EMRIs). One common example of an EMRI is a neutron
star that orbits a super massive black hole. EMRIs allow for
a simple description as a free particle (the lighter one)
moving in a curved spacetime given by the metric corre-
sponding to the mass of the heavier particle. Many possible
shapes of the background metric have been proposed in
this field (e.g., Refs. [7,8]).

Binaries with not so extreme a mass ratio are suitably
described by the post-Newtonian (PN) formalism. This
approach became possible after Arnowitt, Deser and
Misner discovered that Einstein’s theory can be formulated

as a Hamiltonian system [9]. The idea is then to expand the
elements of the metric tensor and the equations of motion

of the matter in powers of the small parameter v2

c2
; see, e.g.,

Ref. [10]. This gives the Hamiltonian as a power series
in the small parameter, the first term of the series being
the Hamiltonian for Newton’s law of gravitation. The
determination of the individual terms in this expansion
is subject to current research in theoretical physics, and
contributions up to 3PN order have already been
obtained some years ago via different approaches; see
Refs. [11–18]. Very recently, contributions up to fourth
order in the small parameter have been tackled; see
Ref. [19]. Besides this, the post-Newtonian approach has
been extended to a binary which is perturbed by a much
lighter third body (e.g., Ref. [20]) and proper three-body
PN Hamiltonians have been computed (e.g., Ref. [21]).
A property of relativistic test particles which is not

known from classical mechanics is their spin. After the
foundation for the treatment of this spin was laid down in
the 1950s (e.g., Ref. [22]), the post-Newtonian formalism
could be expanded to include the corresponding contribu-
tions. These comprise spin-orbit as well as spin-spin inter-
actions; see, e.g., Refs. [23–27]. With this extension, the
Hamiltonian system becomes a so-called Poisson system.
One important property of the post-Newtonian equations

is that they are generally nonintegrable. As a consequence,
the motion described by them can exhibit chaotic traits. If
the motion of a particular binary is chaotic, the gravita-
tional waves emitted during its inspiral will be unpredict-
able, thus leaving the researchers at the various wave
detectors without any useful template. Hence, the inves-
tigation for chaos of a given binary system is an important
task. Consequently, many works have been published con-
cerning this topic both in the geodesic and the post-
Newtonian field (e.g., Refs. [28–32]). The analysis of
chaos requires reliable indicators and, above all, numerical
simulations over very long time spans. Numerical long-
term analysis, in turn, relies on there being efficient and*seyrich@na.uni-tuebingen.de
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highly accurate integration schemes which behave well even
during long-time simulations. To this aim one can make use
of the post-Newtonian equations’ special structure.

Over the last few decades, the numerical analysis com-
munity came up with tools for the long-term integration of
equations of motion. In the course of this, structure pre-
serving algorithms such as symplectic schemes for
Hamiltonian systems (e.g., Refs. [33–35]) or symmetric
integrators for time-reversible systems (e.g., Refs. [36,37])
have been proposed. Regarding long-time behavior and
conservation properties, these schemes are superior to
ordinary numerical integrators such as explicit Runge-
Kutta schemes in many applications of classical mechanics
and astronomy. Whereas for standard integration schemes
the overall error is normally proportional to the square of
the length of the integration interval ti, it only increases
linearly with ti for structure preserving integrators. And
whereas there is a drift in constants of motions for standard
methods, these constants are conserved up to a small error
over extremely long times for symplectic algorithms.
These algorithms have been successfully applied even in
quantum mechanics. A comprehensive presentation of
such methods is given by Hairer et al. [38].

In the last years, attempts have been made to construct
structure preserving integrators for relativistic systems of
compact binaries. Most recently, such a scheme has been
proposed for the geodesic approximation; see Ref. [39].
In the realm of post-Newtonian equations, two different
approaches have been considered so far. First, a noncanoni-
cally symplectic integrator has been constructed which
preserves the system’s Poisson structure; see Ref. [40].
Then, a transformation to canonical form has been pro-
posed (see Ref. [41]), after which symplectic methods were
applied [42]. All the previous approaches have in common
that they are based on a splitting of the Hamiltonian into a
Newtonian part and other relativistic contributions. In this
work, we will first argue and then demonstrate via numer-
ous experiments that a more efficient and accurate method
for the solution of post-Newtonian equations consists of a
transformation to symplectic form followed by the appli-
cation of Gauss Runge-Kutta schemes. This will drastically
reduce the numerical effort when simulating post-
Newtonian systems. We will also be able to demonstrate
that this approach yields the best results when applied to a
test case showing transitional precession in the total angu-
lar momentum during the inspiral, a phenomenon which is
of great interest to the gravitational wave community
(e.g., Ref. [43]).

Our work is organized as follows: We first explain our
notation in Sec. II. Afterwards we discuss the post-
Newtonian equations of motion and their numerical prop-
erties in Sec. III. In Sec. IV we briefly summarize the main
aspects of the Poisson integrator of Ref. [40]. Section V
deals with the transformation to canonical form. Section VI
presents common splitting methods. Then, in Sec. VII we

present Gauss Runge-Kutta schemes and argue why they
are a good choice in post-Newtonian simulations. Finally,
we subject the individual methods to extensive tests,
including a test case exhibiting transitional precession,
and compare them to standard explicit schemes in
Sec. VIII before we summarize our main results in Sec. IX.

II. NOTATION

In this work we use units such that G ¼ c ¼ 1. To
facilitate the comparison with other works on the numeri-
cal treatment of post-Newtonian equations, we adapt our
notation to the one introduced there (e.g., Refs. [40,42]).
Thus, as the motion does not depend on the absolute value
of the masses but on their ratio, we can, without loss of
generality, assume the total mass m :¼ m1 þm2 to be
equal to 1 and introduce the reduced mass� :¼ m1m2

m , q :¼
kxk , � :¼ �

m , and the unit vector n :¼ x
q . Furthermore, we

employ canonically conjugate position and momentum
variables and restrict ourselves to the center-of-mass frame
so that we have the relevant variables (with a ¼ 1, 2
denoting the individual compact objects) x ¼ x2 � x1,
p ¼ p1 ¼ �p2, S1 and S2. For the sake of shorter notation
we will combine the relevant variables of the phase space
into one variable, y ¼ ðp;x;S1;S2ÞT . With this abbrevia-
tion we can write the equations of motion as

dy

dt
¼ fðyÞ; (1)

yð0Þ ¼ y0; (2)

with an appropriate function f. An exact solution of a
differential equation of the form (1) which starts at a given
point y0 and propagates the system over a time t will be
denoted by

yðtÞ ¼ ’tðy0Þ; (3)

whereas a numerical approximated flow over a time step h
is written as�hðy0Þ. Consequently, for a given point of the
phase space yn, the next point on the numerical trajectory is
calculated as

ynþ1 ¼ �hðynÞ: (4)

Finally, I is a unit matrix of appropriate dimension and J is
the symplecticity matrix

J ¼ 0 I

�I 0

 !
: (5)

III. POST-NEWTONIAN EQUATIONS OF MOTION

We consider orbital contributions up to order 3PN as
given in Ref. [15] and the leading term of the spin-orbit
(SO) and the spin-spin (SS) contributions of Damour [26],
respectively [44]. With all these terms, our Hamiltonian
reads
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Hðp;x;S1;S2Þ ¼ Horbðp;xÞ þHSOðp;x;S1;S2Þ
þHSSðp;x;S1;S2Þ: (6)

The relevant terms of the orbital Hamiltonian HOrb are

HNðp;xÞ ¼ p2

2�
��

q
; (7)

H1PN;orbðp;xÞ¼ 1

8�3
ð3��1Þðp2Þ2

� 1

2�2q
½ð3þ�Þp2þ�ðn�pÞ2�þ �

2q2
; (8)

H2PN;orbðp;xÞ ¼ 1

16�5
ð1� 5�5�2Þðp2Þ3

þ 1

8�3q
½ð5� 20�� 3�2Þðp2Þ2 � 2

� �2ðn � pÞ2p2 þ 3�2ðn � pÞ4�
þ 1

2�q2
½3�ðn � pÞ2 þ ð5þ 8�Þp2�

� ð1þ 3�Þ�
4q3

; (9)

H3PN;orbðp;xÞ ¼ 1

128�7
ð�5þ 35�� 70�2 þ 35�3Þðp2Þ4 þ 1

16�5q
½ð�7þ 42�� 53�2 � 5�3Þðp2Þ3

þ ð2� 3�Þ�2ðn � pÞ2ðp2Þ2 þ 3ð1� �Þ�2ðn � pÞ4p2 � 5�3ðn � pÞ6�
þ 1

16�3q2

�
ð�27þ 136�þ 109�2Þðp2Þ2 þ ð17þ 30�Þ�ðn � pÞ2p2 þ 3

4
ð5þ 43�Þ�ðn � pÞ4

�

þ 1

�q3

��
�25

8
þ
�
�2

64
� 335

48

�
�� 23

8
�2

�
p2 þ

�
�85

16
� 3�2

64
� 7�

4

�
�ðn � pÞ2

�
þ �

q4

�
1

8
þ
�
109

12
� 21�2

32

�
�

�
:

(10)

The leading order spin-orbit coupling can be expressed
by means of the orbital angular momentum L ¼ x� p
and the effective spin

Seff ¼
�
1þ 3m2

4m1

�
S1 þ

�
1þ 3m1

4m2

�
S2 (11)

as

HSOðp;x;S1;S2Þ ¼ 2
Seff �L

q3
: (12)

The spin-spin interaction is the sum of the three following
terms:

HS1S2ðp;x;S1;S2Þ ¼ 1

q3
½3ðS1 � nÞðS2 � nÞ � S1 � S2�; (13)

HS1S1ðp;x;S1Þ ¼ m2

2m1q
3
½3ðS1 � nÞ2 � S1 � S1�; (14)

HS2S2ðp;x;S2Þ ¼ m1

2m2q
3
½3ðS2 � nÞ2 � S2 � S2�: (15)

Given the Hamiltonian, the dynamics of the system is
described by the equations

dp

dt
¼ �rxH; (16)

dx

dt
¼ rpH; (17)

dSa

dt
¼ ðrSa

HÞ � Sa: (18)

These equations define a Poisson system for y ¼
ðp;x;S1;S2ÞT , i.e.,

dy

dt
¼ BðyÞrH; (19)

with

BðyÞ ¼

0 �I 0 0

I 0 0 0

0 0 B1ðyÞ 0

0 0 0 B2ðyÞ

0
BBBBB@

1
CCCCCA; (20)

B1ðyÞ ¼
0 �S1z S1y

S1z 0 �S1x

�S1y S1x 0

0
BB@

1
CCA; (21)

B2ðyÞ ¼
0 �S2z S2y

S2z 0 �S2x

�S2y S2x 0

0
BB@

1
CCA: (22)

A numerical scheme which preserves this special structure
can be expected to have a benevolent long-time behavior
similar to the symplectic case (e.g., Ref. [38]).
Furthermore, the post-Newtonian equations are in fact a

perturbed Kepler problem, the corrections to the classical
motion scaling with 1

c2
. In the units G ¼ c ¼ 1 this scaling
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is encoded in the higher orders of 1
q or p2 in the post-

Newtonian terms. As q > 1 and p2 < 1 in most circum-
stances, one has a Hamiltonian of the form

H ¼ HN þ � ~H; � ~H � 1; (23)

where the ‘‘larger’’ part can be solved analytically.
Keeping in mind the just-mentioned properties of the
post-Newtonian equations, we now present the already-
known integration methods.

IV. POISSON INTEGRATOR FOR THE
POST-NEWTONIAN EQUATIONS

The Poisson integrator suggested by Lubich et al. [40] is
designed to exactly preserve the structure (19). Starting
with the Hamiltonian (23), the relativistic contribution � ~H
is first split into an orbital part HPN;orb and a spin term

HSO;SS. The main idea is now to further decompose the

spin-orbit and spin-spin parts as

HSO ¼ Hx
SO þHy

SO þHz
SO; (24)

with

Hi
SO ¼ 2

q3
ðSeff � êiÞðL � êiÞ; (25)

and

HSS ¼ H1
SS þH2

SS þH3
SS þH4

SS; (26)

with

H1
SS ¼ �S1 � S2

q3
; (27)

H2
SS ¼ �S1 � S1

2q3
� S2 � S2

2q3
; (28)

H3
SS ¼

3ðS1 � nÞðS2 � nÞ
q3

; (29)

H4
SS ¼

3ðS1 � nÞðS1 � nÞ
2q3

þ 3ðS2 � nÞðS2 � nÞ
2q3

: (30)

The major achievement of Lubich et al. [40] was to find
analytical solutions ’i

SO, ’
i
SS for the flow of each spin

related part. This said, a structure preserving integrator
�SO;SS for the spin terms is obtained by setting

�SO;SS ¼’x
SO�’y

SO�’z
SO�’1

SS�’2
SS�’3

SS�’4
SS: (31)

Thus, if one solves the flow ’N of the Newtonian part
analytically and uses a symplectic scheme to calculate the
orbital relativistic contributions �PN;orb, one can finally

combine the three flows ’N, �PN;orb and �SO;SS to obtain

a structure preserving flow. In Sec. VI we will discuss how
to best arrange the individual flows.

V. TRANSFORMATION TO CANONICAL FORM

Instead of directly preserving the Poisson structure (19)
we can choose another way: The Darboux-Lie theorem
states that for every Poisson system (19) one can find a
transformation

z ¼ �ðyÞ; (32)

such that the system in the coordinates z is locally can-
onical. There are two properties of the post-Newtonian
equations which enable us to find such a transformation
in this case. First, the positions and momenta are already in
canonical form. Therefore, a transformation (32) only has
to focus on the spin coordinates. Second, by multiplying
the equations of motions of the spins (18) with the respec-
tive spin Sa, we see that

1

2

d k Sak
dt

¼ dSa

dt
� Sa ¼ 0; (33)

i.e., the length of the individual spins is a first integral.
These two observations make it surprisingly easy to
achieve the transformation to symplectic form.
From the constancy of the spin length we see that two

spin variables are redundant. The post-Newtonian system
can therefore be described by N ¼ 10 variables. Because
of this, Wu and Xie [41] proposed the use of cylindrical
coordinates for the spins. Accordingly, we set

Sa ¼ m2
a�a

�a cos ð�aÞ
�a sin ð�aÞ

�a

0
BB@

1
CCA; (34)

where �a relates the length of an object’s spin to the square
of its mass. The conservation of the spin length allows for
the elimination of one of the variables ð�a;�a; �aÞ. Thus,
we can express �a in terms of �a as

�a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

a

q
; (35)

whereby the spin and thus the Hamiltonian only depend on
�a and �a.
In order to deduce the equations of motion for the two

independent variables, we observe that the following
equalities hold true:

@H

@�a

¼ @H

@Sax

@Sax
@�a

þ @H

@Say

@Say
@�a

; (36)

@H

@�a

¼ @H

@Sax

@Sax
@�a

þ @H

@Say

@Say
@�a

þ @H

@Saz

@Saz
@�a

; (37)

@Sax
@�a

¼ ��a sin ð�aÞ ¼ �Say; (38)

@Say
@�a

¼ �a cos ð�aÞ ¼ Sax; (39)
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Saz ¼ �am
2
a�a: (40)

For the sake of shorter notation, we assume without loss of
generality that �am

2
a ¼ 1 until the end of this section.

Because of relation (40), we have

d�a

dt
¼ dSaz

dt
¼ @H

@Sax
Say � @H

@Say
Sax; (41)

where the second equality is simply the equation of motion
for the z component of the spin. Substituting Sax and Say
with the help of Eqs. (38) and (39), and then applying (36)
we get

d�a

dt
¼ � @H

@Sax

@Sax
@�a

� @H

@Say

@Say
@�a

¼ � @H

@�a

: (42)

We now consider the time derivatives of the x and y
components. Taking into account the equations of motion
for these components, the derivatives with regard to
time are

@H

@Say
Saz� @H

@Saz
Say ¼dSax

dt
¼@Sax

@�a

d�a

dt
þ@Sax

@�a

d�a

dt
; (43)

@H

@Saz
Sax� @H

@Sax
Saz¼

dSay
dt

¼@Say
@�a

d�a

dt
þ@Say

@�a

d�a

dt
: (44)

We can multiply the first equation by
@Say
@�a

and the second by
@Sax
@�a

and subtract the two equations. This leads to

�
@Sax
@�a

@Say
@�a

� @Say
@�a

@Sax
@�a

�
d�a

dt

¼ @H

@Say

@Say
@�a

Saz � @H

@Saz

@Say
@�a

Say � @H

@Say
Saz

@Sax
@�a

Sax

þ @H

@Sax

@Sax
@�a

Saz: (45)

Calculating the partial derivatives of the spin components
with regard to the new variables on the left-hand side and
some of the partial derivatives on the right-hand side,
Eq. (45) becomes

�a

d�a

dt
¼ @H

@Say

@Say
@�a

�a þ @H

@Saz
�a þ @H

@Sax

@Sax
@�a

�a: (46)

Keeping in mind that
@Saz
@�a

¼ 1 and then making use of

relation (37), we arrive at

d�a

dt
¼ @H

@�a

: (47)

All in all, the post-Newtonian equations for the ten inde-
pendent variables z ¼ ðp; �a;x; �aÞ read

dz

dt
¼ d

dt

p

�1

�2

x

�1

�2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
¼ 0 �I

I 0

 !
rp

@�1

@�2

rx

@�1

@�2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
H; (48)

which is to say that the system in the new variables is
symplectic. What is more, the transformation is defined
globally, as it is nothing other than expressing the spins
with constant length via cylindrical coordinates. As a con-
sequence, a structure preserving algorithm for the post-
Newtonian equations can be obtained by carrying out the
global transformation to canonical form and then applying
a symplectic integrator.

VI. SCHEMES BASED ON SPLITTING

A. Splitting methods

It is well known (e.g., Ref. [45]) that, given a
Hamiltonian of the form (23), an integrator which is split
in this natural way has a smaller local error than a compa-
rable scheme. More precisely, suppose wewere given some
second order method. We could apply it with a given step
size h to the whole system (23), thus constructing the flow
�H;h. But we could also apply the numerical scheme only

to the ‘‘small’’ part � ~H and combine this symmetrically
with the flow ’N of the first term in (23). This would yield
the second order integrators

�split;h ¼ ’N;h2
��� ~H;h � ’N;h2

; (49)

and

~�split;h ¼ �� ~H;h2
� ’N;h ��� ~H;h2

: (50)

Now, if we compared the local errors, we would get

k’H;h ��H;hk¼ Oðh3Þ (51)

for the numerical scheme applied to the whole system, but

k’H;h ��split;hk ¼ Oð�h3Þ; (52)

k’H;h � ~�split;hk ¼ Oð�h3Þ; (53)

for the splitting schemes. From this we observe that split-
ting can reduce a scheme’s local error.
To see which of the two splitting methods is the better

option, we first notice that, for post-Newtonian equations,
the relativistic parts are nonseparable; i.e., the Hamiltonian
cannot be split in the form

Hðp;xÞ ¼ TðpÞ þ VðxÞ: (54)

Unfortunately, when a system is nonseparable, symplectic
schemes have to be implicit; see, e.g., Ref. [38]. As a
consequence, a splitting integrator of the form (50) has to
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solve a system of implicit equations twice per time step,
whereas a scheme of the form (49) leads to only one
implicit system per step. Thus, the splitting �split;h can be

expected to be more efficient than ~�split;h. Numerical ex-

periments by Zhong et al. [42] have confirmed this, so we
will only consider splittings of the form (49) in the
following.

B. Composition methods

The drawback of a splitting scheme is that—no matter if
we choose (49) or (50)—it is of second order even if the
numerical scheme for the � ~H part is of (much) higher
order. This can be overcome by clever composition: If
we divide the step size h into smaller intervals h ¼ 	1hþ
	2hþ 	3hþ . . . and set for some second order method
�2nd;h

�comp;h ¼ �2nd;	1h ��2nd;	2h ��2nd;	3h � . . . ; (55)

the thus-obtained scheme �comp;h will be of higher order,

provided that the 	i satisfy specific conditions; see, e.g.,
Ref. [38], Chap. II. If the underlying second order scheme
�2nd;h is symplectic, �comp;h, as a composition of many

symplectic operations, will be so, too.
Let us briefly state another useful fact about the

implementation of composition schemes: If we choose
the second order basic method as�2nd;h ¼ �split;h, we have

�comp;h ¼ . . . ��2nd;	ih ��2nd;	iþ1h � . . .

¼ . . . ��split;	ih ��split;	iþ1h � . . .

¼ . . . � ’
N;

	ih

2

��� ~H;	ih
� ’

N;
	ih

2

� ’
N;

	iþ1h

2

��� ~H;	iþ1h
� ’

N;
	iþ1h

2

� . . .

¼ . . . � ’
N;

	ih

2

��� ~H;	ih
� ’

N;
ð	iþ	iþ1Þh

2

��� ~H;	iþ1h

� ’
N;

	iþ1h

2

� . . . (56)

In the last step we could ‘‘merge’’ terms thanks to the
group property

’h � ’s ¼ ’hþs; (57)

which is valid for every exact flow, thus reducing the
numerical effort. This would not be possible if we chose

�2nd;h ¼ ~�split;h instead and, consequently, we found

another advantage of splitting (49) over splitting (50).
One of the most popular composition methods is the

state-of-the-art Suzuki composition [46],

�4th;h ¼ �2nd;	h ��2nd;	h ��2nd;
h ��2nd;	h ��2nd;	h;

(58)

with

	 ¼ 1

4� 4
1
3

; (59)


 ¼ 4
1
3

4� 4
1
3

: (60)

This yields a fourth order method which is symmetric, i.e.,

��1
4th;h ¼ �4th;�h; (61)

whenever the underlying scheme is. After all the back-
ground information on splitting and composition methods,
we are now in the position to present structure preserving
integration schemes for the post-Newtonian equations
which have been considered so far.

C. Splitting schemes for post-Newtonian equations

We will present a Poisson integrator in accordance with
Ref. [40] as well as a symplectic splitting scheme. In both
cases we will use the implicit midpoint rule, already pro-
posed in Ref. [34], which for any differential equation (1)
has the form

ynþ1 ¼ yn þ hf

�
yn þ ynþ1

2

�
: (62)

It is of second order and preserves symmetry and symplec-
ticity; see, e.g., Ref. [38].
(i) With the work of the previous two subsections and

Sec. V, we construct a Poisson integrator as follows:
We use the midpoint rule to calculate the flow
�PN;orb corresponding to the orbital relativistic con-

tributions. Then, we use the flow corresponding to
the spin related parts as given in (31) and its adjoint

��
SO;SS¼�4

SS��3
SS��2

SS��1
SS��z

SO��y
SO��x

SO;

(63)

and symmetrically combine them with�PN;orb in the

form

�Poisson
� ~H;h

¼ ��
SO;SS;h2

��PN;orb;h ��SO;SS;h2
(64)

to obtain a numerical flow for all the relativistic parts
� ~H in (23). This numerical flow is symmetric and of
second order as is any flow constructed in this way;
see, e.g., Ref. [38], Chap. V. Therefore, we can
combine it with the exact flow of the Newtonian
part as in (49) to obtain the second order scheme

�Poisson
split;h ¼ ’N;h2

��Poisson
� ~H;h

� ’N;h2
: (65)

This said, we can apply Suzuki’s composition (58)
which yields the fourth order symmetric Poisson
integrator

�Poisson
4th;h ¼ �Poisson

� ~H;	h
��Poisson

� ~H;	h
��Poisson

� ~H;
h
��Poisson

� ~H;	h

��Poisson
� ~H;	h

: (66)

(ii) In order to construct a symplectic scheme, we first
apply the transformation to canonical form of
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Sec. V. The Hamiltonian in the new variables z is
still of the form (23). As a consequence, we can
proceed along the lines of the two subsections
above. Therefore, we apply the implicit midpoint
rule to the whole relativistic contribution � ~H. This
second order method can then be combined with the
analytical solution of the Kepler problem, leading to
the symplectic second order splitting scheme

�sympl
split;h ¼ ’N;h2

��midp

� ~H;h
� ’N;h2

: (67)

Again, we make use of Suzuki’s composition and
arrive at the integrator

�
sympl
4th;h ¼ �

sympl

� ~H;	h
��

sympl

� ~H;	h
��

sympl

� ~H;
h
��

sympl

� ~H;	h

��sympl

� ~H;	h
; (68)

which is symplectic and of order 4.
The nice ideas behind them and their mathematical

bounty notwithstanding, the just-presented structure pre-
serving algorithms based on splitting methods are not very
efficient: Even though we use the group property (57) to
‘‘merge’’ terms as illustrated in (56) whenever it is pos-

sible, the symplectic integrator�
sympl
4th;h is still a composition

of 11 flows, five of which can only be computed via the
solution of ten-dimensional implicit systems. Using the
Poisson integrator (66) instead, we also have to calculate
the midpoint rule five times. As it is only applied to the
orbital motion, the implicit systems are reduced to six
dimensions. But for this we have to pay heavily because,
taking everything together, we have to calculate 67 flows
during one time step, most of which are related to the spin
contributions and require the calculations of numerous
rotations; see Ref. [40]. All these facts, which will be
confirmed in the numerical experiments section below,
make us look for a more efficient alternative to solve the
post-Newtonian equations of motion. This is where Gauss
collocation methods come into play.

VII. GAUSS RUNGE-KUTTA METHODS

Gauss Runge-Kutta methods are in fact collocation
methods. Therefore, we give some background concerning
these schemes.

A. Collocation polynomials

Given an interval ½t0; t0 þ h�, stages 0 � c1 < � � �<
cs � 1, and an initial-value problem of the form (1), the
polynomial uðtÞ of degree s, satisfying

uðt0Þ ¼ y0; (69)

_uðt0þcihÞ¼ fðt0þcih;uðt0þcihÞÞ; i¼ 1; . . . ;s; (70)

is called a collocation polynomial. In order to solve an
initial-value problem by collocation, one has to find the

polynomial uðtÞ which satisfies the collocation conditions
(69) and (70). This gives an approximate solution of the
initial value problem after a time step h by setting

yðt0 þ hÞcol :¼ uðt0 þ hÞ: (71)

A detailed introduction to collocation methods can be
found in Ref. [47].
It can now readily be shown (e.g., Ref. [47]) that a

collocation method is equivalent to an implicit s-stage
Runge-Kutta scheme

y nþ1 ¼ yn þ h
Xs
i¼1

bifðYiÞ; (72)

Yi ¼ yn þ h
Xs
j¼1

aijfðYjÞ; (73)

with coefficients chosen as

aij ¼
Z ci

0
ljðtÞdt; (74)

bj ¼
Z 1

0
liðtÞdt: (75)

Here, liðtÞ denote the Lagrange polynomials of degree s,

liðtÞ ¼
Y
i�j

t� cj
ci � cj

: (76)

Depending on which set of stages 0 � c1 < � � �< cs � 1
is chosen, different collocation methods can be con-
structed. By setting

ci ¼ 1

2
ð1þ ~ciÞ; (77)

with ~ci being the roots of the Legendre polynomial of
degree s, one obtains a Gauss collocation method. The
order of this methods is Oðh2sÞ (cf. Ref. [47]), which is
optimal in the sense that there are no other s-stage one-step
methods that achieve a similar high order without further
numerical ruse. In addition, Gauss collocation methods are
symplectic and time reversible, as is proven in Ref. [38].
Because of all these properties, Gauss Runge-Kutta meth-
ods are quite natural candidates for the solution of non-
separable Hamiltonian systems.

B. Gauss collocation for post-Newtonian equations

In order to employ Gauss Runge-Kutta methods in post-
Newtonian simulations, we just have to conduct the
transformation (32) of Sec. V and then apply a Gauss
collocation scheme to the whole system in the new coor-
dinates z. Doing so, we will have to solve the system of
implicit equations (73) for the inner stage values Yi during
each time step. This system has s � 10 dimensions.
Contrary to the splitting schemes, we have to solve the
system only once when calculating the step zn ! znþ1.
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Besides, we can drastically reduce the effort for the
solution of the implicit system if we take account of the
following.

C. Starting approximations

An implicit system has to be solved iteratively. Of
course, the number of iterations necessary to obtain the
solution depends on the distance between the starting
guesses Y0

i and the final values Yi. It would be beneficial,
if there were a fast method to obtain guesses that are very
close to the final values. This is possible for the Gauss
collocations’ implicit systems: Given the inner stage values

of the last step zn�1 ! zn, Y
laststep
i , we set

Y0
i ¼ yn�1 þ h

Xs
j¼1


ijfðYlast step
j Þ: (78)

Note that this requires no additional function evaluation,

as fðYlast step
j Þ had to be calculated in the previous step

anyway. If the coefficients 
ij satisfy

Xs
j¼1


ijc
k�1
j ¼ ð1þ ciÞk

k
; k ¼ 1; . . . ; s; (79)

one has (e.g., Ref. [38], Chap. VIII)

kYi � Y0
i k¼ OðhsÞ; i ¼ 1; . . . ; s: (80)

The above splitting schemes, in contrast, miss any
similarly good starting approximations. Referring the
interested reader to Ref. [48] where we have listed the
coefficients ci, bi, aij and 
ij for s ¼ 2, 3, 4, 6, we now

move on to the numerical tests.

VIII. NUMERICAL EXPERIMENTS

All simulations for this work were run on a Core 2 Duo
E6600 machine with 2.4 GHz and 4 GB RAM. The codes
for the simulations have been written in cþþ.

In this section we test and compare the following
algorithms:

(i) Transformation to canonical form combined with
Gauss Runge-Kutta methods for s ¼ 2, 3, 4. The
corresponding schemes are denoted by Gauss2,
Gauss3, and Gauss4, respectively.

(ii) The symplectic splitting scheme (68) which will be
referred to as Symp.

(iii) The Poisson integrator (66), abbreviated by Poiss.
(iv) The classical fourth order explicit Runge-Kutta

scheme given by the tableau

Hereafter, this method will by denoted by RK4.
(v) The explicit Cash-Karp Runge-Kutta scheme

as proposed by Press et al. [49], which is of order 5
and will be abbreviated by CK5.

As the most reasonable measure for the efficiency, we
compare the CPU calculation times. The algorithms’
accuracy is tested with the help of the relative error in
the Hamiltonian,

�H ¼
��������HðynÞ �Hðy0Þ

Hðy0Þ
��������; (83)

and the relative error along the trajectory,

err ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

�
yinum � yiex

yiex

�
2

s
: (84)

Here, the superscript i denotes a vector’s ith component.
Unless stated otherwise, the ‘‘exact’’ solution yexðtÞ will be
given by an s ¼ 6-stage Gauss Runge-Kutta scheme with a
step size h ¼ 0:1 applied to the system in canonical
coordinates.
The simulations are aborted due to poor accuracy as

soon as the error in the energy exceeds the tolerance

�H > 10�6: (85)

At first glance, it seems arbitrary to subject the integrators
to such an upper limit on the energy error. But wewill show
now that such a bound is indeed necessary.

A. The importance of energy conservation

Let us assume there was no upper limit on the error in
the energy and we applied RK4 to the orbital test case.
For different step sizes h, this would yield the energy errors
as given in Fig. 1. Let us now further assume we wanted to
plot Poincaré sections for this two-dimensional problem in
order to investigate it for chaotic behavior. For different h,
we would obtain the sections plotted in Fig. 2. For large h,
these resemble chaotic rather than the correct quasiperi-
odic motion.
Applying Gauss3 with the large step size h ¼ 40 in-

stead, the energy is conserved, and consequently, the sec-
tions are calculated correctly (cf. Fig. 3). We have thus
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illustrated that a threshold for the relative error in the
energy is inevitable if we want to obtain reliable informa-
tion on the chaoticity. Let us now present the test cases with
the help of which we compare the individual methods.

B. The test cases

Wemodel three different kinds of motion, each of which
is often encountered in binary simulations. We always fix
the total mass as m ¼ 1. Consequently, the important
parameter concerning the two compact objects’ masses is
the mass ratio � ¼ m1

m2
. The individual masses and the

reduced mass are thus given as

m1 ¼ �

1þ �
; (86)

m2 ¼ 1

1þ �
; (87)

� ¼ �

ð1þ �Þ2 : (88)

The other relevant parameter is the factor �a, already
introduced in Sec. V, that links masses with spins via

kSak¼ �am
2
a: (89)

Hence, the nature of a binary’s orbit depends on the
parameters �, �1, �2 and the initial values

zð0Þ ¼ ðpxð0Þ; pyð0Þ; pzð0Þ; �1ð0Þ; �2ð0Þ; xð0Þ; yð0Þ;
zð0Þ; �1ð0Þ; �2ð0ÞÞT: (90)

This said, the three kinds of motion are represented by the
following respective examples:
(i) With the set of initial data

zð0Þ ¼
�
0;

3

80
; 0; 0; 0; 35; 0; 0; 0; 0

�
T
; � ¼ 1

3
;

�1 ¼ �2 ¼ 0; (91)

we model a system without spin effects. The
spin contributions being switched off, the post-
Newtonian system is integrable (e.g., Ref. [41]),
and the motion is restricted to the initial plane due
to the conservation of the angular momentum. We
present the orbit and the Poincaré sections for t 2
½0; 107� as obtained via ‘‘exact’’ integration in Fig. 4.
The motion is apparently quasiperiodic.

(ii) As a second test case, we choose the data set

zð0Þ ¼
�
0;

3

80
; 0; 0:25;�0:025; 35; 0; 0;

�

4
;
�

4

�
T
;

� ¼ 1

3
; �1 ¼ �2 ¼ 3

4
: (92)

In Fig. 5, we plot a part of the orbital trajectory for
t 2 ½0; 107�. Alongside this, we plot the frequency
spectrum of the x component for I1 ¼ ½0; 106� and
I2 ¼ ½107 � 106; 107�. We see that, although the
spin contributions have been switched on, the
motion is still regular.

(iii) We also consider a chaotic orbit. More precisely,
we set
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FIG. 2 (color online). Poincaré sections at y ¼ 0, py > 0 for
the purely orbital test case obtained with RK4 and four different
step sizes h.
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FIG. 3 (color online). The left panel shows Poincaré sections
at y ¼ 0, py > 0 for the purely orbital test case obtained with

Gauss3 and h ¼ 40. In the right panel, the corresponding error in
the energy �H is plotted against integration time t.
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FIG. 1 (color online). For the classical RK4 scheme applied
with different step sizes h to the purely orbital test case, the error
in the energy �H is plotted against integration time t.
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zð0Þ ¼
�
0;

3

40
; 0; 0:25;�0:025; 6; 0; 0;

�

4
;
�

4

�
T
;

� ¼ 1; �1 ¼ �2 ¼ 1: (93)

We illustrate the chaotic behavior by showing a
part of the orbital trajectory and the fast lyapunov
indicator (FLI) in Fig. 6. The FLI shows character-
istically chaotic traits (cf. Ref. [50]).

Having thus established the test cases, we are able to start
with our experiments.

C. Comparing the splitting schemes

We first compare the two splitting schemes. As they are
exactly the same in the nonspinning case, we turn towards
the regular spinning example (92) and plot the respective
error in the Hamiltonian for various h in Fig. 7. We see no
difference in the accuracy. But when comparing the corre-
sponding calculation times in Table I, we see that the
Poisson scheme is much slower.

Testing the splitting schemes for the chaotic test
case, we see that Symp falls victim to criterion 85
for step sizes as small as h ¼ 5, but it can cope with it for
h < 1. This is not so for Poiss which even fails for
h ¼ 0:01. Consequently, the symplectic splitting (68) is
superior to the Poisson integrator (66). But as we will

corroborate now, it is by no means the best option for
post-Newtonian systems.

D. Comparing integration schemes

Here, we compare the symplectic splitting to the
(explicit and structure preserving) Runge-Kutta schemes.
First, we list the calculation times for simulations with the
orbital test case in Table II. As would have been expected,
the explicit schemes are faster than the other methods for
equal step sizes. But they have to be applied with small step
sizes in order not to hurt the constraint on the energy error.
We also see that Symp is by far the slowest algorithm.
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FIG. 4 (color online). For the test case without spin contribu-
tions and t 2 ½0; 107�, the left panel shows an extract of the
trajectory. The Poincaré sections for y ¼ 0 and py > 0 are given

in the right panel.

-80-60-40-20  0  20  40  60  80
-60

-40
-20

 0
 20

 40
 60

 80

-80
-60
-40
-20

 0
 20
 40
 60
 80

x
y

z

 0

 5

 10

 15

 20

 25

 0  0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

|f
( ω

)|

ω

I1
I2
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FIG. 6 (color online). For the chaotic test case, the left panel
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FIG. 7. For initial data (92), t 2 ½0; 107� and different step
sizes h, the relative error in the Hamiltonian �H is plotted
against time t for the splitting integrators of Sec. VI C. No
difference can be spotted between them.

TABLE I. The CPU calculation times in ½s� for the two split-
ting integrators applied to the regular, spinning test case (92)
with different step sizes h. The integration interval was t 2
½0; 107� in all simulations.

Integrator h ¼ 40 h ¼ 20 h ¼ 5 h ¼ 1

Symp 9.90 18.72 67.75 304.95

Poiss 17.37 34.23 133.34 655.11
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Doing the same observations for the regular spinning case,
we get equal results, cf. Table III.

As the errors of the individual integrators behave similarly
for both regular orbits, we only show the case with spins
included. We plot the error along the trajectory 84 in Fig. 8
and the relative error in the Hamiltonian 83 in Fig. 9. We see
that, although Symp is more accurate than CK5 and Gauss2
with equal step sizes, it has a larger error than the much faster
Gauss3 and Gauss4 with equal or evenmuch larger step sizes.

We now turn our attention towards the chaotic motion
arising from the initial conditions (93). Again, we start with
listing the calculation times of simulations with various step
sizes in Table IV, right after which we plot the error along
the trajectory in Fig. 10 and the relative error in the energy
for various simulations in Fig. 11. The first point to mention
here is that the explicit methods require prohibitively small
step sizes in order not to exceed the error bar (85). As of the
structure preserving candidates, the result is qualitatively
the same as in the regular simulations: Symp seems to be
better than Gauss2, which struggles with the chaotic case.
But it obviously cannot match the performance of the fast
and accurate Gauss3 and Gauss4.

One interesting point which stands out for all three initial
data is that the difference in CPU times between explicit and
Gauss Runge-Kutta schemes decreases for smaller step
sizes. This is thanks to the starting approximations intro-
duced in Sec. VIIC. The smaller the step size, the closer the
initial guess of the iterations gets to the correct values due
to relation (80). Consequently, the average number of

iterations per step decreases alongside h. To illustrate this,
we list the iterations per step of Gauss4 in Table V.
We have seen that the structure preserving algorithms

have excellent conservation properties when applied to
symplectic systems. What will happen if we add a radiation
term to the binary system?

TABLE II. The CPU calculation times in ½s� for several
schemes applied to the orbital test case (92) with different step
sizes h. The integration interval was t 2 ½0; 107� in all simula-
tions. ‘‘a’’ signifies ‘‘aborted due to condition (85).’’

Integrator h ¼ 40 h ¼ 20 h ¼ 5 h ¼ 1 h ¼ 0:5 h ¼ 0:1

RK4 a a a 13.80 27.58 137.91

CK5 a a 4.70 23.01 46.07 230.01

Gauss2 a 3.89 11.44 43.81 81.73 344.41

Gauss3 3.27 5.32 15.44 58.48 105.73 422.69

Gauss4 3.96 6.47 18.74 67.26 120.59 443.49

Symp 4.36 8.35 30.95 142.86

TABLE III. The CPU calculation times in ½s� for several
schemes applied to the regular, spinning test case (92) with
different step sizes h. The integration interval was t 2 ½0; 107�
in all simulations. ‘‘a’’ signifies ‘‘aborted due to condition (85).’’

Integrator h ¼ 40 h ¼ 20 h ¼ 5 h ¼ 1 h ¼ 0:5 h ¼ 0:1

RK4 a a a 43.99 87.93 439.44

CK5 a a 14.31 71.56 143.02 716.16

Gauss2 a 10.03 29.37 111.23 205.68 852.88

Gauss3 8.10 13.19 38.09 141.19 255.60 997.65

Gauss4 10.00 16.44 46.63 160.95 283.26 1068.56

Symp 9.90 18.72 67.75 304.95
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FIG. 8 (color online). For initial data (92) and t 2 ½0; 107�, the
relative error along the trajectory [cf. (84)] is plotted against time
t for various integration schemes.
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FIG. 9 (color online). For initial data (92) and t 2 ½0; 107�, the
relative error in the Hamiltonian �H is plotted against time t for
various integration schemes.

TABLE IV. The CPU calculation times in ½s� for several
schemes applied to the chaotic test case (92) with different
step sizes h. The integration interval was t 2 ½0; 107� in all
simulations. ‘‘a’’ signifies ‘‘aborted due to condition (85).’’

Integrator h ¼ 5 h ¼ 1 h ¼ 0:5 h ¼ 0:1 h ¼ 0:05 h ¼ 0:01

RK4 a a a a a 2997.76

CK5 a a a a a 4840.96

Gauss2 a a a 1190.14

Gauss3 a a 449.47 1548.56

Gauss4 a 347.22 566.67 1893.45

Symp a 463.78 833.85 3445.49
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E. Systems with radiation

Adding a dissipative term, the system loses the structure
which gave rise to the advantageous integrators in the first
place. But it is known from classical mechanics that, at
least in this field, structure preserving algorithms outper-
form explicit schemes also when a nonconservative term is
added to the Hamiltonian. In order to examine the corre-
sponding behavior for relativistic binaries, we restrict our-
selves to the initial data (92) and modify the equation of

motion of the momenta (16) to account for radiation. We
choose a model for the radiation force Frad derived by
Buonanno et al. [51] which is commonly used in general
relativity and set

dp

dt
¼ �rxH þ Frad: (94)

To illustrate its effects on the trajectory, we plot the evo-
lution of the radial distance q for our regular, spinning test
case (92) as given by the exact solution in Fig. 12. Here, we
calculate the ‘‘exact’’ solution with CK5 and the very small
step size h ¼ 0:01. As time increases, the distance between
the two particles is decreasing faster and faster. For t >
500 000, the post-Newtonian approximation will soon lose
its validity. Thus, we restrict our simulations to an interval
t 2 ½0; 500 000�.
In the subsections above, CK5 and Gauss3/Gauss4

showed the best results for explicit and structure preserving
schemes, respectively. We thus focus on these integrators
and compare their performance with the radiation turned
on. We first list the calculation times for the three schemes
applied with different step sizes each, cf. Table VI. With
increasing time steps, the difference in CPU time becomes
ever smaller as the collocation methods’ average number
of iterations per step decreases analogously to the conser-
vative case.
As a measure for the accuracy we plot the relative error

along the trajectory 84 in Fig. 13. Taking into account the
calculation times, the collocation methods yield the better
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TABLE V. Number of iterations per step for Gauss4, applied
with different step sizes to the three test cases. ‘‘a’’ signifies
‘‘aborted due to condition (85).’’

Test case h¼40 h¼20 h¼5 h¼1 h¼0:5 h¼0:1

Initial values (91) 9.19 7.44 5.16 3.46 2.99 2.13

Initial values (92) 9.31 7.59 5.30 3.54 3.07 2.24

Initial values (93) a 9.21 7.44 4.85
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FIG. 12 (color online). The radial distance q as a function of
integration time t for the regular spinning orbit with radiation
effects included.

TABLE VI. The CPU calculation times in ½s� for explicit and
implicit Runge-Kutta schemes applied with different step sizes h
to the test case (92) with radiation effects included. The inte-
gration interval was t 2 ½0; 500 000� for all simulations.

Integrator h ¼ 40 h ¼ 20 h ¼ 5 h ¼ 1 h ¼ 0:5 h ¼ 0:1

CK5 0.14 0.28 1.21 5.75 11.50 57.51

Gauss3 0.92 1.47 4.04 16.45 25.69 99.77

Gauss4 1.08 1.72 4.72 17.28 32.00 133.36
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results for less computational costs—just as in the conser-
vative case.

F. Systems which exhibit transitional precession

As a last point, we show that the new integration method
is appropriate for investigations on transitional precession
of binary systems. This form of precession is exhibited
by binaries whose orbital and spin angular momenta are
anti-aligned and of approximately equal magnitude; see
Ref. [43] for detailed information on the topic. As appro-
priate initial conditions, we choose (cf. Ref. [43], Fig. 17)

zð0Þ ¼
�
0;

1ffiffiffiffiffiffi
75

p ; 0;�0:99939; 0; 75; 0; 0;
�

4
;
�

4

�
T
;

� ¼ 1

0:13
; �1 ¼ 1; �2 ¼ 0;

(95)

which we subject to the same equations of motion as in
Sec. VIII E. We compare the same three integration
schemes as in the previous subsection. Their respective
accuracy is now measured by means of the relative error of
the total angular momentum

J ¼ Lþ S1 þ S2; (96)

which is the quantity of interest in works such as Ref. [43].
Thus, in Fig. 14 we plot the relative error

errJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

�
Jiex � Jinum

Jiex

�
2

s
(97)

against the integration time t for the three methods. The
‘‘exact’’ solution is again obtained by a simulation with
CK5 and h ¼ 0:01. Again, the implicit Gauss Runge-Kutta
schemes show a smaller error even for much larger time
steps. A comparison of the integration times yields the
same results as in the previous subsection and, hence,

Gauss Runge-Kutta schemes are the best choice for simu-
lations concerning transitional precession.

IX. SUMMARY

We have seen that structure preserving algorithms are
necessary for the long-time integration of post-Newtonian
equations of motion, as they guarantee the conservation of
the energy which is inevitable in investigations for chaos.
Thus, in this work we analyzed several algorithms—a
Poisson integrator based on the Poisson structure, a sym-
plectic splitting scheme and Gauss Runge-Kutta methods.
We observed large discrepancies in the performance of the
individual structure preserving methods. Some even fared
worse than explicit methods. More specifically, the Poisson
integrator turned out to be extremely slow when applied to
our test cases. The symplectic scheme based on state-of-
the-art splitting and composition techniques could compete
with a Gauss Runge-Kutta scheme with two inner stages
but was completely inferior to Gauss collocation schemes
with three or more inner stages. These Gauss methods
turned out to be by far the most efficient and most accurate
option. Even for dissipative systems, including systems
exhibiting transitional precession in the total angular mo-
mentum, they delivered more accurate results for equal
computational cost than high order explicit Runge-Kutta
schemes. Therefore, we strongly recommend using a trans-
formation of the system to symplectic form combined with
a Gauss Runge-Kutta scheme for the numerical long-time
analysis of post-Newtonian systems.
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