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We develop a general formalism for a nonperturbative treatment of harmonic-oscillator particle

detectors in relativistic quantum field theory using continuous-variable techniques. By means of this

we forgo perturbation theory altogether and reduce the complete dynamics to a readily solvable set of first-

order, linear differential equations. The formalism applies unchanged to a wide variety of physical setups,

including arbitrary detector trajectories, any number of detectors, arbitrary time-dependent quadratic

couplings, arbitrary Gaussian initial states, and a variety of background spacetimes. As a first set of

concrete results, we prove nonperturbatively—and without invoking Bogoliubov transformations—that

an accelerated detector in a cavity evolves to a state that is very nearly thermal with a temperature

proportional to its acceleration, allowing us to discuss the universality of the Unruh effect. Additionally

we quantitatively analyze the problems of considering single-mode approximations in cavity field theory

and show the emergence of causal behavior when we include a sufficiently large number of field modes in

the analysis. Finally, we analyze how the harmonic particle detector can harvest entanglement from the

vacuum. We also study the effect of noise in time-dependent problems introduced by suddenly switching

on the interaction versus ramping it up slowly (adiabatic activation).
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I. INTRODUCTION

For many years, the well-known Unruh-Dewitt model
[1] has been used to explore aspects of quantum field
theory in curved spacetimes. The great success of this
model, which couples a qubit to a quantum field using a
simple monopole interaction, has been its use in analyzing
the observer dependence of relativistic quantum phe-
nomena. For example, it has provided satisfactory results
in the study of phenomena like the Unruh effect [2], mean-
ing that the response of an accelerated qubit detector is
thermal with the characteristic Unruh temperature. This
result does not require the use of Bogoliubov transforma-
tions between inequivalent field expansions and the sub-
sequent tracing over degrees of freedom beyond a horizon.
It is instead a consequence of a direct calculation of
the response of the detector when traversing a timelike
hyperbolic trajectory in spacetime [3]. Additionally, the
Unruh-Dewitt model is actually a very good basic descrip-
tion of the light-matter interaction and reproduces quite
well the interaction between atoms and light when no
exchange of angular momentum is involved [4].

The main shortcoming of this model is that it is limited
to perturbation theory. One is therefore barred from using it
to study problems in which a perturbative expansion is not
a good approximation. These include strong coupling, long
times, and high-average-energy exchange processes.

We propose here to model a detector as a quantum
harmonic oscillator rather than a qubit, an idea that has
been proposed before in other contexts [5–10]. In other

words, we simply replace two energy levels with infinitely
many evenly spaced levels. Nevertheless, qubits are, in
many cases, just approximations to systems with many
more levels, so in some ways our description for a particle
detector is more natural. Given that most symmetric
potentials in nature can be approximated by a harmonic
potential for low energies, a harmonic-oscillator detector
can model a wide range of detectors, from atomic electro-
magnetic levels to the molecular vibrational spectrum. In
particular, we will consider such detectors in the context of
cavity fields (i.e., the fields they interact with will present
an IR cutoff), meaning that the field modes are discrete.
Using an oscillator detector has significant advantages

over the standard Unruh-DeWitt (qubit-based) detector.
First, the quantum evolution can be solved nonperturba-
tively. This results from using the symplectic formalism for
Gaussian states and operations [11]. Many of the scenarios
of interest in relativistic quantum theory involve quadratic
Hamiltonians, making this formalism widely applicable.
Second, the evolution can be evaluated by simply solv-

ing (in general numerically) a set of coupled, ordinary,
first-order, linear differential equations. Furthermore, the
form of this ordinary differential equation is universal,
meaning that one can solve a large range of problems
with a very minimal effort. In particular, this approach
can be used to solve (a) arbitrary time-dependent trajecto-
ries, (b) arbitrary quadratic, time-dependent interaction
Hamiltonians and boundary conditions, (c) arbitrary
Gaussian initial states of the field modes and detectors,
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(d) any number of cavity modes, and (e) any number of
detectors. As we will see, a wide range of different scenar-
ios can therefore be solved nonperturbatively by the same
simple differential equation, which implies considerable
explanatory power and computational gain. For example,
as we will see, there is no need to repeat the numeric
calculation whenever we want to change a given initial state
if the time-dependent Hamiltonian mediating the interaction
is the same. This is rather unlike the perturbative Unruh-
DeWitt model in which considerably more effort is required.
This universality, plus the ability to sidestep perturbation
theory, is the true power of this approach to detector models.
We will demonstrate this in Sec. IV.

One obvious limitation of this approach is that to solve
the equations in practice, one is forced to apply an infrared
cutoff to the field. However, an infrared cutoff naturally
appears when studying quantum field theories in finite
volumes (e.g., optical cavities, periodic waveguides, etc.),
and so this formalism enables us to nonperturbatively solve
problems of quantum field theories in curved spacetimes
inside cavities, a matter of great interest that has not been
thoroughly explored to date. If a tabletop experiment in
which relativistic quantumphenomena is to appear, discrete
systems [12] or superconducting microwave guides [13]
have an edge on experimental feasibility.

Although in practice one is also forced to use a UV
cutoff (namely, computing with only a finite number of
modes), in the results presented in this paper we have been
careful to find a convergent solution with respect to the
number of field modes. Specifically, we run the simulation
with more and more modes until the results do not change
anymore. As such, this is not a practical limitation. These
aspects are especially important in Sec. IVB, where we
study explicitly the effects of a UV cutoff on the causal
structure of our setting.

The idea of using harmonic oscillators in relativistic
quantum field theory as particle detectors to obtain
nonperturbative results was explored by Bei-Lok Hu and
collaborators, who reported interesting analytical results in
Ref. [8]. Along with its considerable technical accomplish-
ments, this approach emphasized that the Unruh effect
is not reliant on gravitational or geometrical arguments
but can be understood as a dynamical effect insofar as it
indicates how the quantum vacuum affects the response of
a detector contingent on its motion. In general, a detector
detects field quanta with a nonthermal spectrum, where the
degree of nonthermality is governed by the parameter that
measures the deviation from uniform acceleration [14].
However, the practical scope of this approach remains to
be seen—thus far it has been limited to very concrete
problems in relativistic quantum theory [15–17] due to
their complexity and the number of assumptions and
approximations required to obtain quantitative results.

In performing our analysis we shall employ a more
powerful Gaussian formalism, which provides a more

efficient way to address problems of time evolution when
considering quadratic Hamiltonian and Gaussian states.
In this sense our approach is similar to that of Dragan
and Fuentes [10], who made use of the Gaussian formal-
ism to study a multimode time-independent quadratic
Hamiltonian of two coupled harmonic oscillators.
This approach had some advantages insofar as it did not
require any perturbative approximations. However, their
analysis was limited to (1) a single field mode and (2)
a time-independent Hamiltonian. Under that proviso,
only stationary scenarios and very simple trajectories of
detectors can be considered. To study a particular non-
inertial scenario (namely, eternal uniform acceleration)
they relied on the existence of Bogoliubov transformations
between inertial modes and Rindler modes, rendering
thermality an a priori assumption instead of a conse-
quence. Furthermore, by applying free Bogoliubov trans-
formations to a single field mode, they were unable to see
border effects when analyzing the Unruh effect in cavities.
Indeed, the applicability or validity of continuum Bogolibov
transformations for eternally accelerating observers in cav-
ity settings in any regime is a rather obscure topic that has
not been thoroughly understood to date.
In what follows, we present a way to work with an

arbitrary time-dependent quadratic Hamiltonian and an
arbitrary number of modes, being able to analyze scenarios
in cavities for arbitrary trajectories of an arbitrary number
of detectors coupled to the field in the cavity without
the need to assume any Bogoliubov transformations.
Furthermore, we can overcome causality violation prob-
lems [18] of single-mode detectors undergoing general
trajectories. We will see that our results are devoid of
faster-than-light signaling, unlike previous results limited
to single-mode approaches.
Far from being a mere presentation of some mathemati-

cal tools, we here obtain nonperturbative answers in very
interesting and yet unstudied cavity scenarios:
(1) Effects of sudden switching.—It is known that the

response of a detector that is very carefully switched
on is very different compared to the interaction being
suddenly turned on [19]. We present a brief non-
perturbative analysis of this problem showing in a
very direct way that it is possible to smoothly switch
on the interaction without exciting the detector.

(2) Causal signaling inside cavities.—It is well known
that imposing a cutoff in the number of field modes
allows for acausal signaling [18]. This is not surpris-
ing since a propagating perturbation in a cavity
cannot be expanded in terms of a finite number of
stationary waves. By starting one of the detectors in
an excited state and seeing how long it takes the
other one to notice its presence, we will demonstrate
how causality is recovered in our setting as we
increase the number of modes of the cavity. We
find the minimum number of cavity modes that
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must be modeled in order to ensure causality for a
given setup. Note that to completely analyze this
kind of process perturbatively would require an
analysis up to fourth order.

(3) The Unruh effect in a cavity.—The question as to
what the response of an accelerated particle detector
would be inside a cavity has not been properly ex-
plored yet. We will show that the response of an
accelerated detector inside a cavity is still thermal,
with some corrections coming from boundary
effects. Our work provides evidence indicating that
the Unruh effect occurs not only for the standard
Unruh-DeWitt model but also for a discretized
harmonic-oscillator model. Note that we will not
rely on any Bogoliubov transformations or quanti-
zation process in any accelerated frame. We just
answer the question of what the response of an
accelerated detector is inside a cavity. We thereby
obtain the Unruh effect inside cavities with a deri-
vation similar to the well-known Unruh-DeWitt
result for the continuum of modes [3] that addition-
ally fully sees the appearance of border effects.
Furthermore, we see that the Unruh effect is also
present in a completely nonperturbative calculation.
The fact that we can easily modify trajectories and
interaction types means that we can easily test the
model dependence or independence of phenomena
like the Unruh effect and entanglement harvesting.
Such knowledge is very important for understanding
the true physicality of such effects in further
research.

(4) Vacuum entanglement harvesting.—We use the
harmonic-oscillator detector model to analyze a
scenario previously studied in the standard Unruh-
Dewitt setup: the extraction of vacuum entanglement
by two inertial detectors [20,21]. We will also
comment on the differences from the harmonic-
oscillator model and the qubit model in order to see
spacelike entanglement.

II. THE MODEL

A. Physical setup

One might suspect that replacing a qubit (two energy
levels) with an oscillator (infinite energy levels) in our
detector model would complicate the problem, but instead
it simplifies it, a fact that has been pointed out previously
[10]. The essential feature that makes this possible is that
all states in the problem are Gaussian with no displace-
ment, and all evolutions are homogeneous Gaussian uni-
taries. This means that all states have Wigner functions
that are Gaussian with zero mean, and all evolutions are
generated by Hamiltonians that are quadratic in ladder
operators with no linear terms. Such Hamiltonians preserve
the Gaussian nature of the states [11]. This means that we
do not have to keep track of the entire Wigner function;

all we need to evolve is the covariance matrix, whose size
scales quadratically with the number of modes (rather than
exponentially, as is the case for general states). Similarly,
all evolutions can be represented by symplectic matrices,
which have the same scaling [22].
For calculational purposes, we assume that an IR cutoff

of some length L has been imposed on the field.1 As such,
our physical model is that of a detector moving around in a
large cavity. There is an important distinction to be made
here with other models that consider the cavity itself
as being in motion [23]. In our work, by contrast, the
cavity is large and fixed, and the detector moves within it
(if it moves at all). See Fig. 1.
The Hamiltonian that we propose below is very similar

to one already discussed in the literature in which a
(not fully general) Hamiltonian that describes the interac-
tion of a harmonic-oscillator detector with a finite number
of field modes was presented [10]. Although the focus was
on an approximation of time-independent coupling to just a
single field mode (a special case of our approach), the
advantages of the Gaussian formalism and the generality
of this approach was made evident. The time-independent
single-mode approximation [10] has the advantage of
simplifying the obtention of analytic solutions but at a
price of relying on Bogoliubov transformations for uni-
formly accelerated detectors and limiting to regimes where
a single-mode approximation can be valid, whereas our
results are generally numeric but arise from an approach
that has much greater applicability.

B. Hamiltonians generating evolution with respect
to different time parameters

In relativistic scenarios it is important to keep in mind
that Hamiltonians generate evolution with respect to a

((

FIG. 1 (color online). Harmonic-oscillator detector (red dot)
moving through a fixed cavity. This is to illustrate the difference
between our setup and those in which the cavity itself is in
motion [23]. Note that any number of detectors may be present.
This particular case of an accelerated detector is treated in
Sec. IVC.

1This is necessary because we want to use matrix algebra to
numerically solve the resulting differential equations, although a
formal generalization of our method to the continuum limit may
be possible in the form of integro-differential equations resem-
bling those in Sec. III. A complete formulation of this is left to
future work.
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given time parameter that does not necessarily coincide
with the proper time of some (or any) of the proper times of
the physical subsystems that are in interaction. When we
consider the global Hamiltonian of multipartite systems we
would need to express it in terms of a common time
parametrization. Because of this, we also wish to provide
a discussion of how to generate evolution with respect to an
arbitrary time parameter. In particular, it can be in general
useful to evolve in a global time coordinate t, particularly
in the case where there are multiple detectors in which
each detector j has a different proper time coordinate �j
associated with it. The calculation is most straightforward
in the Heisenberg picture, although it applies equally as
well in the Schrödinger or interaction pictures. In this way
we provide a ‘‘dictionary’’ by which we can transform to
any other time coordinate. In Sec. II C we continue by
introducing the general form of Hamiltonians that can
be used with our approach.

Let us proceed, then, by considering a general time-

dependent Hamiltonian ĤðtÞ, which generates translations
of the entire system in the global time coordinate t.
This Hamiltonian includes the free Hamiltonian for each
system, as well as interactions. With respect to t, the
Heisenberg equation of motion for a general operator

ÂðtÞ, possibly having explicit dependence on t, is

d

dt
ÂðtÞ ¼ i

ℏ
½ĤðtÞ; ÂðtÞ� þ @ÂðtÞ

@t
: (1)

A different choice of time coordinate can be taken into
account by applying the chain rule. For the moment, let us
choose the new time variable to be the local proper time �j
that parametrizes the worldline ðxð�jÞ; tð�jÞÞ traversed by

detector j. Applying the chain rule gives

d

d�j
Â½tð�jÞ� ¼ dt

d�j

d

dt
ÂðtÞjt¼tð�jÞ

¼ dt

d�j

i

ℏ
½ĤðtÞ; ÂðtÞ� þ dt

d�j

@ÂðtÞ
@t

��������t¼tð�jÞ

¼ i

ℏ

��
dt

d�j
Ĥ½tð�jÞ�

�
; Â½tð�jÞ�

�
þ @Â½tð�jÞ�

@�j
:

(2)

Thus, we can start with the Hamiltonian ĤðtÞ, which
generates translations in the global time coordinate t, and
then define

Ĥjð�jÞ :¼ dt

d�j
Ĥ½tð�jÞ� (3)

as the Hamiltonian (for the entire system) as seen
by detector j, which generates evolution for the entire
system with respect to the proper time coordinate �j. The

derivative dt=d�j is the redshift factor for an observer in

the detector’s reference frame, which provides an overall
scaling of all energies in the combined system (because

this is what such an observer would experience). Notice
that although the notion of proper time is local, we need to
be able to evolve the entire system with respect to this
coordinate because we are working in the Heisenberg
picture. This is not a problem as long as tð�jÞ is an

invertible function over the range of times of interest.
The equivalence of the two pictures is made explicit by
defining Heisenberg operators that are more natural to the
detector’s frame:

Âjð�jÞ :¼ Â½tð�jÞ�: (4)

We can now use Eqs. (3) and (4) to rewrite Eq. (2) as

d

d�j
Âjð�jÞ ¼ i

ℏ
½Ĥjð�jÞ; Âjð�jÞ� þ

@Âjð�jÞ
@�j

: (5)

For example, if ÂðtÞ were to represent the position of the
second hand on a wristwatch worn by an observer traveling
with detector j, then it would make more sense to consider

Âjð�jÞ because this operator would have a simpler evolu-

tion with respect to �j than ÂðtÞ would with respect to t

(since the wristwatch evolves more simply with respect to
�j than with respect to t). Similarly, it will be easier to start

with the simple version of the wristwatch’s Hamiltonian

Ĥjð�jÞ and then invert Eq. (3) to obtain

ĤðtÞ ¼ d�j
dt

Ĥj½�jðtÞ� (6)

(which will be more complicated) for use in the global
Hamiltonian.
The upshot of all of this is that we can define a single

Hamiltonian ĤðtÞ for the whole system with respect to
some global time coordinate t and then use Eq. (3) to
transform it to any other time coordinate we wish to use
for the evolution. Furthermore, when building up this
Hamiltonian, it will sometimes be easier to start by defin-
ing a piece of it with respect to local proper time and then
use Eq. (6) to figure out what this piece looks like in the
global time coordinate.

C. The Unruh-DeWitt Hamiltonian in general scenarios

We have to be careful when we want to deal with
Hamiltonians generating translations with respect to differ-
ent time parameters, above all when we want to describe
the interaction of systems that have different proper times.
Indeed, in general scenarios it is not trivial to define

either the interaction or the free Hamiltonian in different
pictures. To guide the reader through this section let us

introduce the following notation: We will call ĤS, ĤD, ĤH,
respectively, the complete Hamiltonian in the Schrödinger,
interaction (Dirac), and Heisenberg pictures. We will de-
note with the subscript 0 the free part of the Hamiltonian
and 1 the interaction part. Also, we will include a super-
index t or � denoting with respect to which time the
Hamiltonian is a generator of translations.
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We will consider the interaction of a number of particle
detectors with a quantum field. To model this interaction
we will consider an X-X coupling of the form of the
Unruh-DeWitt Hamiltonian [1]. Note, however, that the
formalism we present is much more general than this, and
we can in fact use any quadratic Hamiltonian that we like.
For our immediate purposes we choose to use the X-X
coupling in order to compare with previous works.

For every detector coupled to the field, the Unruh-
DeWitt interaction will be described by the following
Hamiltonian:

H1 ¼ �ð�Þ�̂ �̂½xð�Þ�; (7)

where �ð�Þ is the switching function, �̂ is the mono-

pole moment of the detector, and �̂½xð�Þ� is the field
operator evaluated along the worldline of the detector
parametrized in terms of the time � with respect to which
the Hamiltonian generates translations.

For the sake of clarity, let us start our reasoning with
a very simple scenario: let us consider a single detector
undergoing general motion in flat spacetime with an asso-
ciated proper time � and a scalar quantum field that we will
choose to expand in terms of plane-wave solutions in terms
of a global Minkowskian time t, as is commonplace in
quantum field theory.

To derive the correct form of the Hamiltonian in the
interaction and Heisenberg pictures, let us first write the
field and monopole operators in the Schrödinger picture:

�̂S½xð�Þ� ¼X
n

ðânvn½xð�Þ� þ âynvn½xð�Þ�Þ; (8)

�̂S ¼ ðâd þ âyd Þ; (9)

where vnðxÞ are the spatial part of the solutions to the
field equations, i.e., the mode functions. For instance, in
the case of reflecting boundary conditions these would be
vnðxÞ ¼ sin ðknxÞ, whereas in the case of periodic ones
vnðxÞ ¼ eiknx. Here kn is the wavevector for field mode
n; we will specify its form below.

Let us start from a very well-known result from first
principles: we can write the free Hamiltonian for the field,
and the free Hamiltonian of the detector in their respective
times in the Schrödinger picture:

ĤS;t
0;field ¼

X
n

!nâ
y
n ân; (10)

ĤS;�
0;det ¼ �âyd âd: (11)

Now, to write the complete free Hamiltonian we cannot
just naively sum these two terms together because they
generate translations with respect to different time para-
meters. We would need first to transform them to a com-
mon time parametrization. We will see that in order to
recover the correct form of the well-known Unruh-Dewitt

Hamiltonian in the interaction picture, we must transform
the field Hamiltonian to generate translations in the proper
time of the detectors. In this way, using (6) we have that

ĤS;�
0;field ¼

d

d�
tð�ÞX

n

!nâ
y
n ân; (12)

so that we can write the complete Hamiltonian in the
Schrödinger picture generating translations in � as

ĤS;� ¼ ĤS;�
0 þHS;�

1 ;

where

ĤS;�
0 ¼ d

d�
tð�ÞX

n

!nâ
y
n ân þ�âyd âd; (13)

ĤS;�
1 ¼ �ð�Þðâd þ âyd Þ

X
n

ðânvn½xð�Þ� þ âynvn½xð�Þ�Þ:

(14)

Note that the free Hamiltonian is not time independent as it
was in the case where the detector is inertial.
In most textbooks [3], calculations involving noninertial

detectors coupled to the field are dealt with in the interac-
tion picture. We will see that we recover the well-known
form of the interaction Unruh-DeWitt Hamiltonian by
changing from the Schrödinger to the interaction picture.
Recall the transformation between the Schrödinger and

the interaction pictures:

ĤD;� ¼ Ûy
0 ð�ÞĤS;�Û0ð�Þ; (15)

where Û0ð�Þ is the solution to the Schrödinger equation in

� using just the free Hamiltonian ĤS;�
0 :

i
d

d�
Û0ð�Þ ¼ ĤS;�

0 Û0ð�Þ: (16)

Notice that in this case the transformation is nontrivial due
to the nontrivial dependence on � of the global time
parameter tð�Þ. This yields an explicit time dependence

of the field’s free Hamiltonian. Since ĤS;�
0 commutes with

itself at different times, we can solve Eq. (16) explicitly
without needing to worry about time ordering:

Û0ð�Þ ¼ exp

�
�i

Z �

0
d�ĤS

0

�

¼ exp

�
�i

Z �

0
d�

�
d½tð�Þ�
d�

X
n

!nâ
y
n ân þ�âyd âd

��

¼ exp

�
�i

�X
n

!nâ
y
n ân

�
tð�Þ � i�âyd âd�

�
: (17)

This operator leaves invariant the free parts of the
Hamiltonian, and its action on the ân and âd operators is

Ûy
0 ð�ÞânÛ0ð�Þ ¼ e�i!ntð�Þân; (18)
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Ûy
0 ð�ÞâdÛ0ð�Þ ¼ e�i��âd; (19)

allowing us to write the Unruh-Dewitt Hamiltonian in the
interaction picture with respect to the parameter � as

ĤD;� ¼ dtð�Þ
d�

X
n

!nâ
y
n ân þ�âyd âd

þ ðâde�i�� þ âyde
i��Þ�ð�ÞX

n

ðânun½xð�Þ; tð�Þ�

þ âynu�n½xð�Þ; tð�Þ�Þ; (20)

where

un½xð�Þ; tð�Þ� ¼ e�i!ntð�Þvn½xð�Þ�: (21)

Thus we recover the standard form of the Unruh-Dewitt
Hamiltonian [3] in the interaction picture that generates
translations with respect to time � starting from the well-
known free Hamiltonians (in the Schrödinger pictures,
with respect to their respective natural time parameters)
after transforming to a common time � and changing to the
interaction picture.

Notice that the (real-valued) coupling parameters �ð�Þ
can be time dependent. This allows for, among other
things, switching the detector on and off with a particular
temporal profile known as the switching function or time
window function. The last pair of terms indicates that the
detector interacts with the field with a strength (and phase)
governed by the mode functions unðx; tÞ. In order to deter-
mine these mode functions, we need to establish boundary
conditions for the cavity. These can include, for example,
Dirichlet boundary conditions, in which the field strength
vanishes at the boundary (as in a physically realistic optical
cavity) or periodic conditions (as in a physically realistic
periodic waveguide). The mode functions for these cases
take the forms

unðx; tÞ�Dirichlet exp ð�i!ntÞ sin ðknxÞ (22)

and

unðx; tÞ�
periodic

exp ð�i!ntÞ exp ðiknxÞ; (23)

where, as we are going to work with massless fields,
!n ¼ jknj, and kn ¼ n�=L or kn ¼ 2n�=L, respectively,
for the Dirichlet or periodic boundary conditions.

We will find it convenient for use in the next section
to work in the Heisenberg picture. We will use the fact that
the form of the complete Hamiltonian in the Heisenberg
picture coincides with the form of the Hamiltonian in
the Schrödinger picture. To see this, note that the
transformation between the two pictures is by the full

time evolution operator Ûð�Þ, which satisfies the full
Schrödinger equation

i
d

d�
Ûð�Þ ¼ ĤS;�Ûð�Þ: (24)

The Hamiltonian in the Heisenberg picture is obtained
from its Schrödinger-picture counterpart by the usual
transformation between the two pictures for any operator:

ĤH;� ¼ Ûð�ÞyĤS;�Ûð�Þ: (25)

This means that we do not have to do any work to modify
the Schrödinger-picture Hamiltonian in order to use it in
the Heisenberg picture. All we have to do is reinterpret all
operators within it as being Heisenberg-picture operators
instead of Schrödinger-picture ones.
After all these simple steps, it is straightforward to write

the most general X-X type Hamiltonian for an arbitrary
number of detectors undergoing general trajectories
with different proper times �j and with time-dependent

couplings. However, if multiple detectors have different
proper times then we again need to be careful. One must
always make a choice of time, and in this more general
case it makes sense to use the global Minkowski time t.
Transforming the Hamiltonian to time t and reinterpreting
all operators in the Heisenberg picture yields

ĤH;t ¼ XN
n¼1

!nâ
y
n ân þ

XM
j¼1

d�jðtÞ
dt

�
�jâ

y
dj
âdj þ

XN
n¼1

�njðtÞ

�
�
âdj þ âydj

��
ânvn½xjðtÞ� þ âynvn½xjðtÞ�

��
; (26)

where xjðtÞ is the trajectory of the jth detector parame-

trized in terms of the global Minkowskian time t, and all
operators are now understood to be in their Heisenberg
representation.Wewill see in the next section howworking
in this representation allows us to derive a simple, number-
valued equation of motion that describes the full evolution
of the detectorsþfield state.
To recapitulate, the Hamiltonian above represents a set

ofN þM time-dependent coupled harmonic oscillators.M
of them are oscillator-based Unruh-DeWitt detector modes
(labeled with the index dj), and the other N are modes of

the quantum field inside a cavity (labeled with an integer
index n). Notice that there is no direct detector-detector
coupling, and the field is a free field, meaning there is no
coupling directly between field modes either.
We emphasize that Eq. (26) is not the most general form

of the Hamiltonian that could be imagined in this scenario.
It is simply the same as the original Unruh-DeWitt detector
model. The connection is made by choosing no relative

phase between âdj and âydj in the interaction term, which

makes their sum proportional to the position (monopole
moment) of the oscillator. In general, our formalism, to be
presented now, is capable of solving far more general
interaction models, provided they are quadratic.
Our problem is now this: given detector worldlines

½tð�jÞ; xð�jÞ� and an initial (Gaussian) state for the detec-

tors and field, evolve the detectors and the field using the
Hamiltonian in Eq. (26), and consider the reduced state of
the detectors after the evolution. In order to make use of the
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simplification afforded by the use of Gaussian states and
quadratic Hamiltonians, in the next section wewill derive a
differential equation using the symplectic formalism for
the Heisenberg picture and another differential equation
using the Hilbert space evolution in the interaction picture.
Working with either of these pictures will let us compute
the covariance matrix for the field and detectors throughout
the evolution, and since the state remains Gaussian the
whole time, this is equivalent to tracking the evolution of
the full state itself.

III. SOLVING THE EVOLUTION

In the case of an oscillator detector the great advantage
is that one is able to utilize the Gaussian formalism
[11,22,24,25]. In this solution method we will find it
convenient to use the Heisenberg picture. As discussed in
Sec. II C, there are subtleties involved because of the
different time coordinates available (proper time for each
detector, plus the global time coordinate of the field).

In Sec. III A we will use the Heisenberg-picture
Hamiltonian, which generates translations in the global
coordinate time t, to derive a simple linear differential
equation using the symplectic formalism for Gaussian
evolutions. This is the simplest, most straightforward,
and computationally most efficient approach.

In Sec. III B, we describe another method for direct
calculation using the interaction Hamiltonian in the
interaction picture. This method is more complicated
than the symplectic method and yields a nonlinear system
of ordinary differential equations, but because it is inde-
pendently derived, and because the resulting differential
equations are completely different (second order instead of
first order), this provides an independent check of our
numerical results.

The purpose of presenting in parallel both approaches
is dual: on the one hand we can tackle problems with
two different approaches (which provides a way to
optimize our computational strategy in order to solve a
given problem). On the other hand we see that the same
results can be obtained via independent methods. This
serves as a connection between the two formalisms and a
consistency check.

A. Phase-space evolution

We will use the Hamiltonian (26) in the Heisenberg
picture to evolve Heisenberg quadrature operators
ðq̂djðtÞ; p̂djðtÞÞ for each detector and ðq̂nðtÞ; p̂nðtÞÞ for

each field mode. To streamline calculations, we stack these
operators on top of each other to form the following vector
of operators, while omitting the explicit t dependence for
clarity:

x̂ :¼ ðq̂d1 ; . . . ; q̂dM ; q̂1; . . . ; q̂N; p̂d1 ; . . . ; p̂dM ; p̂1; . . . ; p̂NÞT;
(27)

where

q̂i ¼ 1ffiffiffi
2

p ðâi þ âyi Þ; p̂i ¼ iffiffiffi
2

p ðâyi � âiÞ (28)

are, respectively, the canonical position and momentum
of every single oscillator in the Heisenberg picture. Note
that the transpose operation, superscript T, merely trans-
poses the shape of an operator-valued vector; it does
nothing to the operators themselves.
A Gaussian state is one that can be expressed purely in

terms of its first and second quadrature moments. If we
neglect phase-space displacements, this means that such a
state is fully characterized by a covariance matrix �, the
entries of which are

�ij � hx̂ix̂j þ x̂jx̂ii � 2hx̂iihx̂ji: (29)

Specifically, the Wigner function for the zero-mean
Gaussian state associated with � is

WðxÞ ¼ ��ðNþMÞðdet�Þ�1=2 exp ð�xT��1xÞ; (30)

where x is the vector of c-number-valued coordinates
corresponding to x̂:

x :¼ ðqd1 ; . . . ; qdM ; q1; . . . ; qN; pd1 ; . . . ; pdM ; p1; . . . ; pNÞT:
(31)

Although in general, displacements will be required for a
full description of Gaussian states and evolution, if we start
with a zero-mean initial field state (such as the Minkowski
vacuum) and a zero-mean initial detector state as well, then
the lack of linear terms in our Hamiltonian means that the
state remains at zero mean at all times.
To compute the evolution, we utilize the fact that

quadratic Hamiltonians preserve Gaussianity [11]. This
means that quadrature operators get mapped to linear
combinations of quadrature operators:

x̂0 ¼ Ûyx̂ Û ¼ Sx̂; (32)

where Û is a Gaussian unitary (i.e., a unitary trans-
formation generated by a quadratic Hamiltonian). In this
equation, S is a symplectic matrix of c numbers that acts

via matrix multiplication on x̂ as a vector, while Û is a
unitary operator that acts on the individual operators within
x̂. Specifically,

x̂0j ¼ Ûyx̂jÛ ¼ X2ðNþMÞ

k¼1

Sjkx̂k: (33)

Notice that in general there would be a phase-space
displacement term, which would give x̂0 ¼ Sx̂þ y, but
we are neglecting this as justified above. The symplectic
nature of S is guaranteed because the commutation rela-
tions must be preserved, giving rise to a symplectic form�
to be preserved by the Heisenberg matrix action. The
explicit form of � may be deduced by writing out the
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commutation relations for x̂ and requiring them to be
unchanged under the Gaussian unitary operation. Using
the notation of Ref. [25], the canonical commutation rela-
tions ½q̂j; p̂k� ¼ i�jk (with ℏ ¼ 1) can be written suc-

cinctly as

½x̂; x̂T� ¼ i
0 I

�I 0

 !
¼: i�; (34)

where the commutator of two operator-valued vectors is
defined as

½r̂; ŝT� :¼ r̂ŝT � ðŝr̂TÞT: (35)

Therefore, � has elements �ij ¼ �i½x̂i; x̂j�. That S is

symplectic means that S�ST ¼ �, which follows from
requiring that the new commutation relations must equal
the old ones: ½Sx̂; ðSx̂ÞT� ¼ i�. (See Ref. [25] for more
details.)

A general quadratic Hamiltonian generates a Gaussian

unitary ÛðtÞ ¼ e�i
R

ĤH;tdt that is associated, by Eq. (32),
with a symplectic matrix SðtÞ, which satisfies

x̂ðtÞ ¼ ÛðtÞyx̂0ÛðtÞ ¼ SðtÞx̂0; (36)

where all time dependence (or lack thereof) is indicated
explicitly, and x̂0 is the initial vector of quadratures at
t ¼ 0. Correspondingly, the Schrödinger evolution of the
state, as given by the evolution of the covariance matrix,
takes the form

�ðtÞ ¼ SðtÞ�0SðtÞT; (37)

where �0 is the initial state. Our goal in this section is thus
to find a differential equation for SðtÞ that represents the
evolution generated by a quadratic Hamiltonian.

A general time-dependent, quadratic, Heisenberg-
picture Hamiltonian H with generated time coordinate t
can be written as

Ĥ ¼ x̂TFðtÞx̂; (38)

where FðtÞ is a Hermitian matrix of c numbers containing
any explicit time dependence of the Hamiltonian. We can
now write the Heisenberg equation for the time evolution
of the quadratures:

d

dt
x̂ ¼ i½Ĥ; x̂�: (39)

Writing this out in components and using Eqs. (34) and (38)
gives

d

dt
x̂j ¼ i½Ĥ; x̂j� ¼ i

X
mn

FmnðtÞ½x̂mx̂n; x̂j�

¼ X
mn

FmnðtÞðx̂m�jn þ�jmx̂nÞ; (40)

which can be collected back into vector form as

d

dt
x̂ ¼ �FsymðtÞx̂; (41)

where Fsym ¼ ðFþ FÞT. We now plug in Eq. (36), giving

d

dt
½SðtÞ�x̂0 ¼ �FsymðtÞSðtÞx̂0; (42)

where we used the fact that x̂0 is time independent. Now we
use Eqs. (34) and (35) to eliminate the operators by taking
commutators with x̂T

0 on both sides:��
d

dt
SðtÞ

�
x̂0; x̂

T
0

�
¼ ½�FsymðtÞSðtÞx̂0; x̂

T
0 �

d

dt
SðtÞ½x̂0; x̂

T
0 � ¼ �FsymðtÞSðtÞ½x̂0; x̂

T
0 �;

(43)

where we have factored out the c-number matrices
multiplying x̂0 [25]. Since ½x̂0; x̂

T
0 � ¼ i�, which is an

invertible matrix of c-numbers, we can cancel it, yielding
the following first-order, linear, ordinary differential equa-
tion for the symplectic matrix:

d

dt
SðtÞ ¼ �FsymðtÞSðtÞ: (44)

Solving this equation with the initial condition Sð0Þ ¼ I
such that x̂0 ¼ Sð0Þx̂0 is completely equivalent to solving
the standard Hilbert space evolution with the Hamiltonian-
unitary formalism after taking advantage of the quadratic
nature of the Hamiltonian, as we will see in the next section.
It will be convenient to know the form of the

Hamiltonian in terms of the annihilation and creation
operators of the system, since this is how the monopole-
monopole coupling is typically given. To this end, let us
stack ladder operators on top of each other to form the
following column vectors:

â :¼ ðâd1 ; . . . ; âdM ; â1; . . . âNÞT;
ây :¼ ðâyd1 ; . . . ; âydM ; ây1 ; . . . âyNÞT:

(45)

The Hamiltonian from Eq. (38) can be put into the form

Ĥ ¼ ðâyÞTwðtÞâþ ðâyÞTgðtÞây þ âTgðtÞHâ; (46)

where wðtÞ and gðtÞ are coefficient matrices, and
MH ¼ M�T ¼ MT� denotes the conjugate transpose of
any matrix M.
By equating (46) to (38) and comparing coefficients, it is

easy to obtain the form of the matrix FðtÞ, which takes the
following block form:

FðtÞ ¼ AðtÞ XðtÞ
XðtÞH BðtÞ

 !
; (47)

where

AðtÞ ¼ 1

2
ðwðtÞ þ gðtÞ þ gðtÞHÞ; (48)
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BðtÞ ¼ 1

2
ðwðtÞ � gðtÞ � gðtÞHÞ; (49)

XðtÞ ¼ i

2
ðwðtÞ � gðtÞ þ gðtÞHÞ: (50)

Note that in the simple particular cases where the
Hamiltonian at different times commute the solution
of (44) can be obtained analytically, and it is simply
SðtÞ ¼ exp ð�FsymtÞ.

As a final note, we would like to point out that we
derived these results using global Minkowski time t be-
cause it is the least biased time coordinate when there are
multiple detectors involved. But any time coordinate can
be used instead—such as some particular detector’s proper
time—as long as the appropriate transformation is made
to the Hamiltonian via Eq. (3). Doing so would define a
new differential equation of the same form as Eq. (44) but
evolving in the new time coordinate instead of in t. In fact,
this is the most direct way to calculate detector responses,
and it is the method that we use in Sec. IV.

B. Hilbert-space evolution

Although the formalism presented in the section above
is elegant and fully general for quadratic Hamiltonians,
it is useful to compare our results with an independent
method. This section outlines the supplementary method
that we used for this purpose. Without invoking the full
machinery of symplectic transformations, we can still take
advantage of the quadratic nature of the interaction to
derive the same results by numerically calculating the
unitary time evolution operator, an approach that is more
standard within quantum field theory. Here we give only
an outline of the method; details can be found in the
Appendix.

For a quadratic Hamiltonian, time evolution can be ex-
pressed in terms of displacements, squeezing, and rotation
unitary operations [26]. In particular, the unitary evolution
we are looking to solve for can then be put into the form

Ûð�Þ ¼ ei�ðtÞŜðzðtÞÞD̂ð�ðtÞÞR̂ð�ðtÞÞ; (51)

where � is number valued, and the squeezing, rotation, and
displacement operators are, respectively, defined as

ŜðzÞ ¼ e
1
2½ðâyÞTzây�âTzHâ�; (52)

R̂ð�Þ ¼ eiðâyÞT�â; (53)

D̂ð�Þ ¼ e�
Tây��Hâ; (54)

where z and � are matrices, and � is a column vector. The
notation zH is used to represent the conjugate transpose
of z, the elements of which are number valued. Note that
without loss of generality we can consider z to be
symmetric because it is only the symmetric part that

contributes to ŜðzÞ. Also note that � must be a Hermitian

matrix ð� ¼ �HÞ to ensure unitarity of R̂ð�Þ.
The exact form of these transformations can be obtained

nonperturbatively by employing a technique introduced by
Heffner and Louisell [27]. For the cases of interest
[i.e., for the family of Hamiltonians (20)], and as thor-
oughly detailed in the Appendix, due to the algebraic
nature of the interaction, the evolution can be reduced to

Û ¼ ei�ŜðzÞR̂ð�Þ; (55)

and the problem of solving the dynamics can then be
reduced to solving the following system of coupled differ-
ential equations:

i _CðtÞ ¼ 4CsðtÞgHðtÞCsðtÞ þ 2wðtÞCsðtÞ þ gðtÞ; (56)

i _DðtÞ ¼ ð4CsðtÞgHðtÞ þ wðtÞÞðDðtÞ þ IÞ; (57)

where wðtÞ and gðtÞ are the Hamiltonian coefficient
matrices as defined in Eq. (46), evaluated in any picture
one chooses (for example this can be done directly with the
interaction Hamiltonian in the interaction picture). We
have defined Cs � ðCþCTÞ=2, where the matrices Cs

and D are identified with the squeezing and rotation by

Cs ¼ 1

2
tanh ðrÞei�; (58)

Dþ I ¼ sechðrÞei�; (59)

where z ¼ rei� ¼ ei�
T
rT. Therefore, numerically solving

the equations (56) and (57) with the initial conditions
Cð0Þ ¼ Dð0Þ ¼ 0, we can nonperturbatively solve the
time evolution.
The covariance matrix � of the detectorþfield state is

defined as in the previous section. Once we have solved for
the squeezing and rotation operators, in the sense that we
have solved for zðtÞ and �ðtÞ, it is then straightforward to
compute the evolved covariance matrix [27]. If we split the
covariance matrix into the block form

� ¼ �qq �qp

�T
qp �pp

 !
; (60)

then straightforward algebraic operations [see Eqs. (A6)
and (A9)] allow one to determine the form of these blocks.
For example if our detectorþfield state starts in the vac-
uum state, then the evolved state is simply given by a

multimode squeezed state ŜðzÞj0i, since the vacuum is
invariant under rotations. In this case, the blocks of the
evolved covariance matrix take the form

�qq ¼ 1

2
ðcosh ð2rÞ þ sinh ð2rÞei� þ cosh ð2rTÞ

þ sinh ð2rTÞe�i�TÞ; (61)
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�pp ¼ 1

2
ðcosh ð2rÞ � sinh ð2rÞei� þ cosh ð2rTÞ

� sinh ð2rTÞe�i�TÞ; (62)

�qp ¼ i

2
ðcosh ð2rÞ � sinh ð2rÞei� � cosh ð2rTÞ

þ sinh ð2rTÞe�i�TÞ: (63)

Once this is obtained, then computing the covariance
matrix for the detector(s) alone is trivial: one must simply
isolate the rows and columns of � corresponding to the
detector modes. Both methods give the same time evolu-
tion and the same covariance matrix applied to the same
scenarios, and we used them both independently to check
our calculations.

IV. RESULTS

As discussed in the Introduction, we will see below how
these tools can be used to observe relativistic quantum
phenomena. After examining effects due to sharp switch-
ing [19,28,29] we will go on to study the emergence of
causal signaling with an increased number of field modes
[18], the Unruh effect [2,3], and vacuum entanglement
harvesting [20,21]. We will be considering these effects
in the context of optical cavities. Cavities are in fact
excellent systems to study since experimental physicists
have developed tools for the precise production and control
of optical states inside cavities, superconducting SQUIDs,
or microwave guides, and therefore such systems are likely
to be key in the experimental verification of relativistic
phenomena [13].

In all of the scenarios we consider here, we will simplify
the calculations by using the detector’s proper time � as
our preferred time coordinate, as is done in the majority of
the literature concerning Unruh-DeWitt detectors. Doing
this is acceptable here because all of the cases we consider
either involve only a single detector or two detectors that
share the same proper time. In particular, we will take
for our interaction Hamiltonian the usual Unruh-DeWitt
interaction, namely, monopole-monopole coupling, but
of course with the usual qubit operators replaced by their
corresponding oscillator operators.

Using the notation of Sec. II C, in the interaction picture
the interaction Hamiltonian is therefore

ĤD;�
1 ð�Þ¼�ð�ÞX

j

�
e�i�j�âdj þei�j�âydj

�

�X
n

�
un½xð�Þ; tð�Þ�ânþu�n½xð�Þ; tð�Þ�âyn

�
; (64)

where un is given by either Eq. (22) or (23), depending on
the boundary conditions we impose. Since it is numerically
simpler to change to the Heisenberg picture and use the
equation of motion as presented in Sec. III A, we use this
method for all calculations and use a second numerical

method based on the formalism presented in Sec. III B as
an independent check of our results.
Note that some of the following scenarios are actually

solved exactly analytically (not numerically). We can do
this in the cases where we have stationary detectors with
constant (sharp) switching functions since in these cases
the Hamiltonians at different times commute. Equivalently,
in these cases the solution to Eq. (44) is simply Sð�Þ ¼
exp ð�Fsym�Þ.

A. Stimulation of noise due to sudden switching

Before examining more involved settings such as the
effect of noninertial motion on our detector or vacuum
entanglement harvesting, let us discuss first what happens
for a single inertial detector in a vacuum background. As is
known, the use of sufficiently sharp switching functions
�ð�Þ can stimulate excitation of the detector even when it
is inertial [29]. These stimulated vacuum fluctuations can
be reduced by increasing the interaction time and using
smooth switching functions, for example, Gaussian time
profiles. Indeed, we see non-negligible inertial excitation
when the time of integration is small enough, but we will
confirm that this vanishes for long-duration Gaussian
switching functions, as it corresponds to the detection of
quantum noise in the vacuum state of a quantum field.
There have been some studies on the effect of the

smoothness of the switching function on the probability
of excitation of the Unruh-DeWitt detector and the stimu-
lation of quantum noise [19,28]. These studies showed that
the quantum noise that a detector will observe for short
interaction times is strongly influenced by the way in
which the detector is switched on. These studies were
done within perturbation theory and only for the case of
fields in free space. It would be interesting to show these
effects in cavity settings and in a nonperturbative calculation.
To this end, we consider a single detector sitting iner-

tially in the center of a cavity of length L, such that tð�Þ¼�
and xð�Þ ¼ L=2. Seeing as we are considering an optical
cavity, we will use reflecting boundary conditions for the
field. We then solve for the evolution generated by the
Hamiltonian (46) with some switching function �ð�Þ. After
the evolution, our detectorþfield acquires a multimode
squeezed, pure-state covariance matrix �. The 2� 2
covariance matrix �d corresponding to the oscillator de-
tector is then obtained by taking the detector-detector
elements of �:

�d ¼
�ðdÞ

qq �ðdÞ
qp

�ðdÞ
qp �ðdÞ

pp

0
@

1
A: (65)

A useful quantity, the symplectic eigenvalue 	 of this state,
can easily be computed as the absolute value of either
of the eigenvalues of the matrix i��d (they come in
a � pair), where � is the single-mode symplectic form
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� ¼ 0 1

�1 0

 !
: (66)

The value of 	 gives the mixedness of the state, with 	 ¼ 1
corresponding to a pure state. To be precise, the purity is
given by Tr
̂2

d ¼ 	�1. In general it is somewhat nontrivial

to compute the excitation probabilities pn ¼ hnjd
̂djnid of
a given Gaussian state [30], but for our purposes we will
find it sufficient to only consider the probability of no
excitation, p0. In the case of a zero-mean state (i.e., the
Gaussian Wigner function is centered at the origin of phase
space), which includes the states we consider (as shown in
the Appendix), this probability is given by [30]

p0 ¼ 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det�d þ Tr �d þ 1

p
: (67)

To examine the stimulated excitation of the detector due
to the activation of the interaction, we will consider two
different switching functions. The first will represent sharp
switching on and off, in which we set the switching func-
tion to a constant �ð�Þ ¼ � for � > 0 and zero otherwise,
and track the evolution through time. In the second case we
will use a Gaussian switching function of the form �ð�Þ ¼
� exp ð��2=2�2Þ and will integrate from time �i ¼ �4� to
�f ¼ 4�. � is in this case a measure of the smoothness of

the time profile. Note that for sharp switching, consider-
ably more field modes must be included before we observe
solution convergence than in the case of Gaussian switch-
ing. This is expected since a sharp �ð�Þ can excite field
modes significantly higher than those near resonance. This
is because the off-resonant rotating wave terms become
important (as well as the counter-rotating wave terms) if
the interaction suddenly changes in characteristic times
faster than �1=�; see Ref. [19]. We then use Eq. (67) to
compute the probability of excitation, 1� p0, for both the
sharp switching as a function of � and Gaussian switching
as a function of �. The results are plotted in Fig. 2.

In both cases we see that the excitation probability tends
to zero as the interaction time goes to zero, as it must since
this is the limit of no evolution. Note that these results can
also be easily computed perturbatively, giving the same
answer (up to higher than second-order corrections) as that
shown in Fig. 2. For the Gaussian switching function, we
see that the excitation becomes negligible for larger �; this
results from the switching function becoming smoother
with increasing � and is exactly what should be expected.
For sharp switching, however, we see that the excitation
probability does not decay with increasing time because in
this case it is the initial discontinuity in �ð�Þ at � ¼ 0 that
causes the excitation.

B. Emergence of causal signaling

It has been pointed out that a single-mode approxima-
tion in the Unruh-Dewitt model (namely, a system of
detectors interacting only with a single mode of the quan-
tum field) leads to superluminal signaling [18]. This is not
surprising: a complete set of solutions to the field equations
inside a cavity are the stationary waves inside it. A prop-
agating signal cannot be expressed in terms of a finite
number of stationary waves. Strictly speaking, to com-
pletely recover causality one should consider the infinite
number of modes inside the cavity.
However, it is also known from quantum optics [31] that

the Jaynes-Cummings model (basically a single-mode-
approximated Unruh-DeWitt model) produces accurate
results if the evolution times are long. This is so because
for long times (much longer than the light crossing time of
the cavity) a stationary regime is reached, and for infinite
times there are, of course, no signal propagation issues.
Hence, if we are to study quantum information-related
topics with this model, we need to take seriously the issue
of causality. This is one reason why, for certain scenarios,
the use of only a single mode is highly unphysical.
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FIG. 2 (color online). Excitation probability of an inertial detector. In (a) we consider a sharp switching function that jumps suddenly
from 0 to a constant value � and remains at that value thereafter. We consider the resulting final excitation probability of the detector if
it were to be examined at proper time � after being switched on (at � ¼ 0). Even when � becomes much larger than the values shown in
the plot, the probability remains nonzero. In (b) we consider Gaussian switching functions of standard deviation �, and we plot the
excitation probability after the detector has finished evolving (i.e., when the Gaussian tail has become negligible); hence, � in that plot
is a measure of smoothness. For sharp switching, we observe excitation as expected, and for Gaussian switching, we observe excitation
only when the Gaussian is sharp enough, which is also as expected. The parameters used are � ¼ 1=100, L ¼ 2�,� ¼ 9=2 (resonant
with the ninth mode), and the detector is placed at position x ¼ L=2 ¼ �.
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Here we point out the fact that, using our work, we can
very easily observe the emergence of causal signaling by
considering our detector to be coupled to different numbers
of field modes. Although, rigorously speaking, we would
need to add up the infinite number of modes to completely
guarantee causality, we will discuss that, for a given arbi-
trarily high time precision, it is possible to find an effective
model with a finite number of modes such that acausal
signaling does not happen within the required time preci-
sion. To do so, we will consider two inertial detectors in
the same cavity, and our goal is to examine how long it
takes one detector to observe the effects of the other via
propagating excitation in the field. We will choose sharp
switching functions for both of the detectors. We will
furthermore take the initial state of one of the detectors,
say detector 2, to be highly excited, specifically a single-
mode squeezed state with a covariance matrix of the form

�2 ¼
e2r 0

0 e�2r

 !
; (68)

where r is the squeezing parameter. Aside from this, we
take the other detector and the field to be in their vacuum
states. The entire initial detectorsþfield covariance matrix
is therefore equal to the identity except for the two diago-
nal entries corresponding to detector 2. We then switch on
both detectors at time � ¼ 0 and compute the excitation
probability of detector 1 via Eq. (67).

We place the two detectors at positions x1 ¼ L=4 and
x2 ¼ 3L=4, such that they are a distance L=2 apart. Since
we are taking the speed of light c ¼ 1. This means that the
time from the initial switching required for the detectors to
come into causal contact is �c ¼ L=2. In Fig. 3 we display
the excitation probability of detector 1 as a function of �=�c,

where we show the results including 10, 13, and 16 field
modes.
The vertical line in Fig. 3 represents the moment in time

� ¼ �c at which the two detectors come into causal con-
tact. In each of the plots, the solid blue curve is the
excitation probability for detector 1 for the case when
detector 2 is initially in its ground state ðr ¼ 0Þ, whereas
for the dashed (red) curve we initialize detector 2 in a
squeezed state with squeezing parameter r ¼ 5. As ex-
pected, we observe increased excitations in detector 1
that are caused by the propagating field quanta emitted
from the squeezed detector 2. We see, however, that if one
does not include enough field modes, then the additional
excitation occurs before the two detectors should be in
causal contact, therefore implying superluminal signal-
ing. It is only when we include enough field modes that
we find the two curves diverging only at �¼�c, implying
that this is when they have mutual influence. Note that, of
course, even with 16 modes the signaling can be seen to
be slightly acausal. Increasing the number of modes fur-
ther improves the causality, although it quickly becomes
the case that one must include many more modes to see a
slight improvement. It is only in the limit of infinite
modes that we have causality in the strict sense.
As a final word on this, we point out that examining

this emergence is easy using our method. First, the sym-
plectic evolution Sð�Þ can be solved analytically since we
use stationary detectors with sharp switching functions.
Second, in each individual plot from Fig. 3, the two dif-
ferent curves, solid and dashed, are computed using the
same transformation Sð�Þ. The only difference is the initial
state �ð0Þ that we evolve via �ð�Þ ¼ Sð�Þ�ð0ÞSð�ÞT . Here
we have only briefly examined the emergence of causal
signaling—our formalism is very well suited for a more
complete and encompassing study of the effect.
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FIG. 3 (color online). Excitation probability as a function of time of an inertial detector (detector 1) in the presence of another in a
highly excited state (detector 2) considering (a) 10, (b) 13, and (c) 16 field modes. Both detectors are sharply switched on at the same
time, and the distance between them is such that the light-crossing time from one to the other is �C. The vertical lines represent the time
at which this mutual influence between detectors should become possible. In each plot we consider what happens when we include a
different number of field modes in the calculation. Detector 1 begins its evolution in its ground state. The solid (blue) lines represent
the excitation probability of detector 1 when detector 2 is also started in its ground state, whereas the dashed (red) lines are when
detector 2 is started in an excited state (squeezed with r ¼ 5). As expected, the initial squeezing of detector 2 contributes to the
subsequent excitation of detector 1. However, this influence should not be able to reach detector 1 until �=�C ¼ 1. By considering
different numbers of field modes, we explicitly observe the emergence of causal signaling as the number of field modes is increased.
The parameter values are L ¼ 2�, � ¼ 1=100, and � ¼ 9=2 (resonant with the ninth mode).
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C. Nonperturbative detection of the Unruh effect
and thermalization

In this section, we will use the formalism developed
above to study, beyond perturbation theory, the Unruh
effect inside a cavity. For a detector with uniform accel-
eration a, the worldline ðtð�Þ; xð�ÞÞ to be used in our
Hamiltonian (64) is given by

tð�Þ ¼ a�1 sinh ða�Þ; xð�Þ ¼ a�1ðcosh ða�Þ � 1Þ;
(69)

such that the detector is at position x ¼ 0 at proper time
� ¼ 0 [32].

The excitation stimulated by insufficiently smooth
switching functions can be somewhat of a problem in
attempting to observe the Unruh effect in cavities. This is
because for a given acceleration the crossing time of the
detector from one side of the cavity to the other may be
small enough to induce significant noise and wash out the
Unruh noise. Increasing the acceleration (and therefore
the Unruh noise) does not fix the problem because then
the integration time is even less, and that means an
increased amount of stimulated fluctuations. One way of
overcoming this difficulty would be to simply increase the
length L of the cavity; however, doing so also increases the
number of significant modes that must be included
in the integration and so greatly increases the computa-
tional effort required.

For this reason we have opted for a simpler solution.
Namely, rather than using reflecting (Dirichlet) boundary
conditions as would be the case in a linear cavity we will
instead use periodic boundary conditions, as would be the
case in a periodic waveguide [13]. In this setting it is
physically acceptable for us to arbitrarily increase the
interaction time to values large enough that the stimulated
noise becomes negligible and thus allows a clear observa-
tion of the Unruh effect. Although in taking this approach
we are forced to include more modes (because we must
now include the zero- and negative-frequency modes of the
field), this is still more efficient than increasing the length
of the cavity. Whatever method we utilize, considering
long interaction times provides the desired results. Note
that the problem can still be relatively challenging from the
computational point of view since for extremely large
accelerations the coupling matrices wð�Þ and gð�Þ from
Eq. (46) become highly oscillatory very quickly.

As an aside, there is further reason to use periodic
boundary conditions instead of reflecting ones when study-
ing accelerated detectors: in a reflecting cavity, an accel-
erated detector will observe the field modes becoming
increasingly blueshifted as it travels faster. Eventually
even the fundamental mode will be shifted beyond the
detector’s resonance frequency, meaning that it no longer
resonates with any of the modes, at which point the detec-
tor effectively decouples from the field. If we instead use

periodic boundary conditions then this effective decou-
pling does not occur. To see why this is so, consider a
detector accelerating to the right. According to this detec-
tor the left-moving modes of the field undergo an increas-
ing blueshift as in the reflecting cavity. The right-moving
modes, however, experience a redshift, meaning that the
detector resonates with higher right-moving modes over
time rather than lower. Thus, as long as we include enough
field modes in our calculation, the detector will continue
experiencing resonance throughout its evolution. Using
periodic boundary conditions we therefore avoid the
blueshift-induced decoupling. This is better for studying
the Unruh effect inside cavities since it is more similar to
the physics of free space.
In order to test the Unruh effect with our model, we must

ask two questions. First, after the interaction is complete, is
our accelerated oscillator in a thermal state? Second, if so,
does the temperature depend linearly on the acceleration?
To answer the first question let us recall the definition
of a thermal state in the Gaussian formalism [24]. In the
case of a single-mode thermal state, the covariance matrix
is diagonal: � therm

d ¼ diagð	; 	Þ, where 	 is the state’s

symplectic eigenvalue. The excitation probabilities in this
case follow a Boltzmann distribution:

ptherm
n ¼ 2

	þ 1

�
	� 1

	þ 1

�
n
; (70)

with corresponding temperature

T ¼ �

�
ln

�
1þ 2

	� 1

���1
: (71)

As explained in the Appendix, the time evolution gen-
erated by Eq. (64) is given by a multimode squeezing

unitary Ŝ. The means that the detectorþfield state after

evolution is a multimode squeezed state of the form Ŝj0i. It
is known that the reduced state corresponding to a subsys-
tem of a multimode squeezed state is not in general given
by a thermal state. Rather, it is given by a squeezed thermal

state [11]. This is because the squeezing operation Ŝ gen-
erally includes both intermode squeezing (which produces
thermal subsystems) as well as single-mode squeezing.
The following question then arises: in our specific sce-

nario, does the detector evolve into purely a thermal state,
or has it also been squeezed? To answer this we compute
the symplectic eigenvalue 	 of our detector state �d, as
given by the absolute value of either of the eigenvalues of
the matrix i��d and compare the probability spectrum of
this state with that of a thermal state that is given by the
same symplectic eigenvalue [24]. From the cases that we
have examined, it appears the answer is that while the
detector does not become exactly thermal, it is very nearly
so. That is, the multimode squeezing between the detector
and the field modes is much greater than the single-mode
squeeze undergone by the detector. To conclude this, we
computed the probability of no excitation from Eq. (67), as
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well as ptherm
0 and ptherm

1 from Eq. (70), i.e., what the

probabilities of zero and first excitation would be were
our state a thermal state with the same symplectic
eigenvalue. For small temperatures and therefore small
excitation probability, which is what we will consider
here, a good test for thermality is whether or not we have
p0 � ptherm

0 � ptherm
1 . If this is satisfied, then the detector

is very nearly thermal. For the cases we have examined, we
have found that p0 � ptherm

0 is approximately 7 orders of

magnitude less than ptherm
1 , and we therefore conclude that

our model does indeed produce the detector thermality
expected. With this first question answered, we are free
to examine the temperature dependence on acceleration,
where the temperature is given by Eq. (71).

In the following example, we start with a negative initial
value for the proper time, �i < 0, and evolve to the positive
time �f ¼ ��i. This lets us use a long interaction time

while minimizing the computational effort. That is, we
imagine that the detector is injected at high velocity into
our waveguide such that the acceleration is in the opposite
direction to its motion. The detector then slows down,
comes to a stop at � ¼ 0, and then begins looping around
in the other direction before exiting at the same speed
it entered with. Again, we are using periodic boundary
conditions for the field so that this setup makes physical
sense. We use a Gaussian switching function �ð�Þ ¼
� exp ð��2=2�2Þ with � large enough that the switching
stimulation is negligible. It is after this evolution is finished
that we compute the temperature of the detector.

For a given set of parameters (see caption), we plot in
Fig. 4 the temperature of the detector as a function of its
acceleration. We see that the detector temperature indeed
depends linearly on its acceleration, in concurrence with
the prediction of the Unruh effect. This is excellent since
the question of the response of an accelerated detector
inside a cavity has previously been unexplored and indeed

has generated some debate in discussion. Our result
represents, to the knowledge of the authors, the first con-
firmation of the Unruh effect occurring inside of a cavity
and, moreover, in a nonperturbative fashion.
One may worry that by extrapolating our data backwards

it seems that the temperature does not vanish at a ¼ 0. This
is due to a couple of factors. First, since we are in a cavity
we should not expect the Unruh effect to hold for very low
accelerations. For very low accelerations, the characteristic
length c2=a of the acceleration will be much greater than
the length of the cavity, at which point we expect to see
significant border effects, so the response of the detector
will not necessarily be thermal. Second, as one goes to very
low temperature, the corresponding probability of excita-
tion is exponentially suppressed. This means that for very
small temperatures the Unruh effect will be washed out by
the switching noise even if the switching function is very
smooth.

D. Vacuum entanglement harvesting

In addition to the Unruh effect, another relativistic quan-
tum phenomenon that is of great interest is the extraction of
entanglement from the vacuum field. That is, two detectors
can become entangled by each interacting locally with a
quantum field, even if they remain spacelike separated
[20,21]. Of course, it is well known that no local operations
can increase entanglement between two quantum systems
[33]. In the case at hand, however, there is already entan-
glement present in the vacuum state of the field between
spatially separated degrees of freedom, and so by interact-
ing with the field locally, multiple detectors can extract this
entanglement to become entangled themselves. This is true
even if the detectors remain spacelike separated throughout
their evolution, meaning that they can become entangled
without any direct causal mutual influence.
In our detector model, we can consider multiple

detectors very easily by simply adding their respective
field interactions into the coupling matrices w and g
used in Eq. (46). Once the evolution has been solved and
the detectorsþfield covariance matrix � obtained, the
multidetector covariance matrix �d is obtained by deleting
the rows and columns corresponding to the field. In the
case of two detectors, we obtain a 4� 4 covariance matrix
that can be arranged in the form

�d ¼
�1 �12

�T
12 �2

 !
; (72)

where �1 and �2 are the 2� 2 covariance matrices of the
detector-1 anddetector-2 subsystems andareof the same form
as Eq. (65). �12 is a 2� 2 matrix that provides the correla-
tions between the two detectors. For a two-mode Gaussian
state such as this, the entanglement between the detectors, as
measured by the logarithmic negativity, is given by [24]

EN ¼ max ð0;� log	��Þ; (73)
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FIG. 4 (color online). Temperature (after evolution) of an
accelerated detector as a function of its acceleration. We observe
a linear dependence as expected from the Unruh effect. The
parameters used were L ¼ 4�, �ð�Þ ¼ � exp ð��2=2�2Þ with
� ¼ 1=100 and � ¼ 8=7, and the detector gap was � ¼ 4
(resonant with the eighth field modes).
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where 	�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 4 det�d

p Þ=2
q

are the symplectic

eigenvalues of the partially transposed covariancematrix, and
� ¼ det�1 þ det�2 � 2 det�12.

Using this, we plot in Fig. 5 an example of the logarith-
mic negativity between two detectors as a function of
�=�C, where �C is the time it takes for the detectors to
come into causal contact. We used sharp switching func-
tions for both detectors, as we observed that the stimulation
incurred by switching aided in generating entanglement.
Note that due to this sharp switching, we needed to include
many modes, up to 100, in order to find convergence of
our solution. The positions of the detectors in this case
were chosen to be x1 ¼ L=4 and x2 ¼ 3L=4, implying that
�C ¼ L=2. We indeed observe that, given enough time to
locally interact with the field, the two detectors become
entangled. Furthermore, we see in this example that en-
tanglement is produced before the detectors come into
causal contact, although just barely.

As a final note, if we compare a harmonic-oscillator
particle detector with the standard qubit detector, one can
easily show that to second order in perturbation theory
(leading order in this phenomenon) the only difference
between the evolution of a single qubit and that of a single
oscillator is that the oscillator develops off-diagonal coher-
ence terms in its density matrix. In view of this fact, one
might hypothesize that oscillators are less efficient at extract-
ing spacelike entanglement than are qubits, which would
make two-level systemsmore appropriate for analysis of field
entanglement harvesting. This remains an open question.

V. CONCLUSIONS

By applying the Gaussian formalism, we have addressed
the problem of time evolution of a particle detector under-
going relativistic movement inside of a cavity. With this,
we are able to tackle arbitrary multimode time-dependent
problems and solve them nonperturbatively. This is mark-
edly different from the standard Unruh-DeWitt model that

can generally only be solved perturbatively. Remarkably,
the only fundamental change between the standard ap-
proach and our work is that we use a harmonic oscillator
to describe a detector, rather than a qubit.
In addition to being nonperturbative, the methods we

have presented lead to a computationally efficient way of
solving a great range of problems involving an arbitrary
number particle detectors coupled to quantum fields inside
a cavity. The flexibility of the model extends to the follow-
ing: (1) the detectors can undergo arbitrary relativistic
motion; (2) they can have arbitrary quadratic interaction
with the field; (3) the field and detectors can begin in
any Gaussian initial state; and (4) our description of the
field can include any number of modes with arbitrary
time-dependent boundary conditions. The vast range of
scenarios that this can encompass are all solved by the
same number-valued, linear, first-order ordinary differen-
tial equation. We have the additional advantage that for a
given evolution, we do not need to solve the equation again
if we decide to change the initial state. To demonstrate this
wide applicability, we have analyzed a range of different
problems of interest in general relativistic quantum field
theory, obtaining several results.
One of our most important findings is that an accelerated

harmonic-oscillator detector in a cavity exhibits a
thermal response with temperature proportional to its
acceleration. Namely, we have demonstrated that the
Unruh effect occurs inside cavities, a scenario that we
believe has not been previously explored. We emphasize
that we obtain the thermal response from the movement of
the detector, as opposed to assuming a different quantiza-
tion scheme for accelerated observers and going through
Bogoliubov transformations. We thereby show evidence
pointing towards the universality of the Unruh effect: a
thermal response proportional to the detector’s accelera-
tion appears even (1) considering a different model instead
of a standard Unruh-DeWitt detector, (2) inside a cavity,
and (3) nonperturbatively. Also, we are able to analyze the
border effects appearing due to the finite size of the cavity.
We have been able to quantify the effects of sudden

switching for inertial detectors, determining the excitation
probability in different scenarios. The results obtained are
as expected: the sharper the switching function, the greater
the stimulation generated.
Remarkably,we also quantitatively address the problemof

recovering causality in the context of fully relativistic cavity
field theory inwhich there is aUVcutoff.Wehave shown that
whereas a single-mode model strongly violates causality,
causal signaling emerges as more modes in the field are
included. Although rigorously speaking, an infinite number
of discrete modes are required to recover causality, we can
determine how many modes are necessary to include in the
problem to have causal signaling for a given time precision.
We also analyzed the problem of vacuum entanglement

harvesting. We have shown that, indeed, harmonic-oscillator
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FIG. 5 (color online). Extraction of vacuum entanglement with
two detectors. Notice that the entanglement harvesting starts close
to the time �=�c ¼ 1, where the detectors come into causal contact
but still before they reach this time. The parameters used are
L ¼ 2�, � ¼ 1=100, and� ¼ 9 (resonant with the 18th mode).
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detectors inside a cavity can extract entanglement from the
vacuumfield and can achieve this entanglementwhile they are
spacelike separated.

We close emphasizing again the immense applicability
of our model. There are many problems of interest that
can now be easily addressed, and we hope that our work
will be used in the future to explore the problems of
relativistic quantum physics. For example, these methods
are well suited to studying the Unruh effect in a variety of
models since it is straightforward to modify the detector-
field interaction and to consider arbitrary detector trajec-
tories in flat spacetime. Applications to cavity settings in
curved spacetimes can be also considered. For instance, it
could be easily shown how to translate some of the results
to cavities close to the event horizon of a stationary black
hole [34], and it would be undoubtedly interesting to
analyze what would be the behavior of these quantum
systems when they experience a dynamical gravitational
collapse [35,36].
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APPENDIX: DETAILED DERIVATION
OF THE CALCULATION OF THE HILBERT

SPACE EVOLUTION

We will provide here the full details of the derivation of
the results presented in Sec. III B.

As said in the main text, for a quadratic Hamiltonian,
time evolution can be expressed in terms of displacements,
squeezing, and rotation unitary operations. In particular,

the unitary evolution we are looking to solve can then be
put into the form

Ûð�Þ ¼ ei�ð�ÞŜðzð�ÞÞD̂ð�ð�ÞÞR̂ð�ð�ÞÞ; (A1)

where � is number valued, and the squeezing, rotation, and
displacement operators are, respectively, defined as [26]

ŜðzÞ ¼ e
1
2½ðâyÞTzây�âTzHâ�; (A2)

R̂ð�Þ ¼ eiðâyÞT�â; (A3)

D̂ð�Þ ¼ e�
Tây��Hâ; (A4)

where z and � are matrices, and � is a column vector. The
notation zH is used to represent the conjugate transpose of
z, the elements of which are number valued. Note that we,
without loss of generality, can consider z to be symmetric
because it is only the symmetric part that contributes

to ŜðzÞ. Also note that � must be a Hermitian matrix

ð� ¼ �HÞ to ensure unitarity of R̂ð�Þ.
The exact form of these transformations can be obtained

nonperturbatively by employing a technique introduced by
Heffner and Louisell [27]. We will utilize the polar decom-
position of z into a product of a Hermitian and a unitary
matrix, which can always be achieved. This takes the form

z ¼ rei� ¼ ei�
T
rT; (A5)

where r and � are Hermitian matrices, and the second
equality results from the assumed symmetry of z. From
here, we wish to evaluate how such operators evolve the
ladder operators of our system so that we can determine
their corresponding symplectic transformations on the
phase space and therefore the covariance matrix ascribed
to, for example, a multimode squeezed state. Using the

Baker-Campbell-Hausdorff (BCH) formula, eÂB̂e�Â ¼
B̂þ ½Â; B̂� þ ½Â; ½Â; B̂��=2!þ 	 	 	 , it is straightforward to
obtain

ŜyðzÞâ ŜðzÞ ¼ cosh ðrÞâþ sinh ðrÞei�ây; (A6)

R̂yð�Þâ R̂ð�Þ ¼ ei�â; (A7)

D̂yð�Þâ D̂ð�Þ ¼ âþ �; (A8)

and similarly

ŜyðzÞâyŜðzÞ ¼ cosh ðrTÞây þ sinh ðrTÞe�i�T â; (A9)

R̂yð�ÞâyR̂ð�Þ ¼ e�i�T
ây; (A10)

D̂yð�ÞâyD̂ð�Þ ¼ ây þ ��: (A11)

For our purposes, throughout the rest of this appendix
we will ignore the contribution from the displacement
operator. This is because we typically are interested here
in Hamiltonians that are quadratic and without linear
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terms. Since linear terms are what drive displacements,
we need not consider them here. Generalizing to include
displacements is, however, quite straightforward.

We will consider an interaction Hamiltonian in the
interaction picture that takes the form

ĤD
1 ¼ ðâyÞTwð�Þâþ ðâyÞTgð�Þây þ âTgð�ÞHâ; (A12)

and we wish to solve for the unitary evolution Ûðây; â; �Þ
that it generates.

Consider now this unitary operator in its normal-ordered

form ÛðnÞðây; â; �Þ ¼ Ûðây; â; �Þ, where, for example,

ðâdâyd ÞðnÞ ¼ âyd âd þ 1. As explained in Ref. [27], we can

equally well represent this using a number-valued func-

tion corresponding to ÛðnÞ of the form ÛðnÞðây; â; �Þ !
�UðnÞð��;�; �Þ, where � and �� are taken to be column
vectors consisting of real, independent variables. That is, we

put Û into normal form and replace â and ây by vectors of
number-valued entries � and ��. In this representation,

Schrödinger’s equation i@�Ûð�Þ¼HIðây;â;�ÞÛð�Þ becomes

i
@

@�
�UðnÞð��;�; �Þ ¼ �HðnÞ

I

�
��;�þ @

@�� ; �
�
�UðnÞð��;�; �Þ;

(A13)

where �HðnÞ
I ð��;�þ @=@��; �Þ is obtained by putting ĤI

into a normal ordered form (which in our case it already is)
and replacing â and ây by�þ @=@�� and��, respectively.
What we now have is a set of coupled, ordinary differential
equations. An ansatz for the solution that we will use is
�UðnÞ ¼ eGð��;�;�Þ, turning the equation into one for G. Once
the solution has been found, we can then obtain the normal-
ordered unitary by replacing back� and�� by â and ây and
applying the normal ordering operator ÛðnÞ ¼ :eGðây;â;�Þ:
where, for example, :âdâ

y
d : ¼ âyd âd.

Following the prescription of Ref. [27], we now want to
find the evolution equation of the number-valued function
�UðnÞ. From Eq. (A13), we have

i
@ �UðnÞ

@�
¼
�
ð��ÞTw

�
�þ @

@��

�
þ ð��ÞTg��

þ
�
�T þ @

@ð��ÞT
�
gH

�
�þ @

@��

��
�UðnÞ; (A14)

and making the ansatz �UðnÞ ¼ eG, we have the equation
for G:

i
@G

@�
¼ ð��ÞTw�þ ð��ÞTw @G

@ð��ÞT þ ð��ÞTg��

þ �TgH�þ �TgH @G

@�� þ
@G

@ð��ÞT g
H�

þ @G

@ð��ÞT g
H @G

@�� þ
@

@ð��ÞT g
H @G

@�� : (A15)

Additionally, we can make the educated ansatz

G ¼ ð��ÞTDð�Þ�þ ð��ÞTCð�Þ�� þ �TFð�Þ�þ Að�Þ;
(A16)

where D, C, and F are matrices. In general, we should also
include terms linear in � and ��, corresponding to phase-
space displacements, but in our case they will be absent
due to the lack of linear terms in the relevant Hamiltonians,
and so we will not consider them. From here it is easy to
show that

@G

@�� ¼ D�þ 2Cs�
�; (A17)

where Cs ¼ ðCþCTÞ=2 is the symmetric part of C. The
transposed version of this relation follows trivially. Lastly,
it is easily shown that

@

@ð��ÞT g
H @G

@�� ¼ 2TrðgHCsÞ: (A18)

Given these relations it is now a simple matter of
comparing coefficients between the right and left sides of
Eq. (A15). Doing so, we find the coupled set of differential
equations

i _A ¼ 2TrðgHCsÞ; (A19)

i _C ¼ 4Csg
HCs þ 2wCs þ g; (A20)

i _D ¼ ð4Csg
H þ wÞðDþ IÞ; (A21)

i _F ¼ ðDT þ IÞgHðDþ IÞ; (A22)

where I is the identity matrix, and we have initial con-
ditions Að0Þ ¼ 0 and Cð0Þ ¼ Dð0Þ ¼ Fð0Þ ¼ 0.
These equations can be numerically solved, although we

will find that for our purposes the only one that actually
needs to be solved is the equation for C. This is because C
fully determines the squeezing matrix z ¼ rei�, which,
since our system is initially in the vacuum state, is all
that we need (since the vacuum is invariant under rota-
tions). That is why we can thus ignore the rotation and
effectively set � ¼ 0. For a more general initial state, one
would need to additionally solve for D in order to
compute �. Note also that one will never have to solve
Eq. (A22) for F; it can be expressed purely in terms
of C and D and is therefore a redundant variable.
Note that the form of these equations are entirely inde-

pendent of the specific coupling matrices w and g that we
choose. We are therefore free to choose an entirely differ-
ent interaction Hamiltonian, and the evolution will still be
represented by these equations. Once solutions have been
found, we can return the (normal ordered) unitary to its

operator form via ÛðnÞ ¼ :eGðây;âÞ:, which from Eq. (A16)
gives us

ÛðnÞð�Þ ¼ eAð�ÞeðâyÞTCð�Þây :eðâyÞTDð�Þâ:eâTFð�Þâ: (A23)
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Our problem is thus essentially solved; the last task
required is to overcome the normal ordering and to put
this unitary into a form that we are familiar with. The
procedure for doing this is given in Ref. [26], but we will

reiterate it here in somewhat more detail. We know that Û
should be a product of rotation and squeezing operators,
along with possible phases:

Û ¼ ei�ŜðzÞR̂ð�Þ; (A24)

where Ŝ and R̂ are given by Eqs. (A2) and (A3). Note that

in our case Û contains no displacement operator because

ĤD
I contains no linear terms. We know that the solutions

Eqs. (A23) and (A24) must be equivalent, and the task is
now to find the relation between �, z, and� and the results
obtained for A, C, D, and F. Trivially, we see that
i� ¼ A; from Eq. (A19), however, this merely contributes
an overall phase to the evolution, and we will therefore
ignore this contribution henceforth since it does not con-
tribute to the physics.

In order to find z ¼ rei� ¼ ei�
T
rT and �, we recall the

action that Eq. (A24) will have on the ladder operator:

Ûyâ Û ¼ cosh ðrÞei�âþ sinh ðrÞei�e�i�T
ây; (A25)

ÛyâyÛ¼ coshðrTÞe�i�T
âyþsinhðrTÞe�i�Tei�â: (A26)

We now need to compute Ûyâ Û and ÛyâyÛ from the
unitary in Eq. (A23) in order to compare. To this end,

we use the identities ½â; Û� ¼ @Û=@ây and ½ây; Û� ¼
�@Û=@â, or equivalently,

Ûyâ Û ¼ Ûy @Û

@ây
þ â; ÛyâyÛ ¼ �Ûy @Û

@â
þ ây:

(A27)

To evaluate the right-hand sides, we use the identities

@

@â
:eðâyÞTDâ: ¼ DTây:eðâyÞTDâ:; (A28)

@

@ây
:eðâyÞTDâ: ¼ :eðâyÞTDâ:Dâ; (A29)

ðIþDTÞây:eðâyÞTDâ: ¼ :eðâyÞTDâ:ây; (A30)

âyeâTFâ ¼ eâ
TFâðây � 2FâÞ; (A31)

along with the fact that F is symmetric, as can be seen from
Eq. (A22). With these, Eq. (A27) gives us

ÛyâÛ¼½ðDþIÞ�4CsðDTþIÞ�1F�â
þ2CsðDTþIÞ�1ây; (A32)

ÛyâyÛ ¼ ðDT þ IÞ�1ð�2Fâþ âyÞ: (A33)

Since these equations are just the adjoints of each other, we
are able to compare the two and determine the additional
relations

F ¼ �ðD� þ IÞ�1C�
sðDþ IÞ; (A34)

I� 4CsC
�
s ¼ ðDþ IÞðDy þ IÞ: (A35)

Given all of this, we find indeed that Ûyâ Û and ÛyâyÛ
are of the form given in Eqs. (A25) and (A26), where we
identify

Cs ¼ 1

2
tanh ðrÞei�; (A36)

D þ I ¼ sechðrÞei�: (A37)

Thus, once we have integrated Eqs. (A20) and (A21) for C
and D we can use this result to solve for the corresponding
squeezing and rotation matrices r, �, and � and, via
Eq. (61), obtain the covariance matrix in which all prop-
erties of the final state are encoded.
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