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Understanding thermodynamics and statistical mechanics in the fully general relativistic context is an

open problem. I give tentative definitions of equilibrium state, mean values, mean geometry, entropy and

temperature, which reduce to the conventional ones in the nonrelativistic limit but remain valid for a

general covariant theory. The formalism extends to quantum theory. The construction builds on the idea of

thermal time, on a notion of locality for this time, and on the distinction between global and local

temperature. The last is the temperature measured by a local thermometer and is given by kT ¼ ℏd�=ds,
with k the Boltzmann constant, ℏ the Planck constant, ds proper time and d� the equilibrium thermal time.
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I. INTRODUCTION

Thermodynamics and statistical mechanics are powerful
and vastly general tools. But their usual formulation
works only in the nongeneral-relativistic limit. Can they
be extended to fully general relativistic systems?

The problem can be posed in physical terms: we do not
know the position of each molecule of a gas, or the value of
the electromagnetic field at each point in a hot cavity, as
these fluctuate thermally, but we can give a statistical
description of their properties. For the same reason, we
do not know the exact value of the gravitational field,
which is to say the exact form of the spacetime geometry
around us, since nothing forbids it from fluctuating like any
other field to which it is coupled. Is there a theoretical tool
for describing these fluctuations?

The problem should not be confused with thermody-
namics and statistical mechanics on curved spacetime.
The difference is the same as the distinction between the
dynamics of matter on a given curved geometry versus the
dynamics of geometry itself, or the dynamics of charged
particles versus dynamics of the electromagnetic field.
Thermodynamics on curved spacetime is well understood
(see the classic [1]) and statistical mechanics on curved
spacetimes is an interesting domain (for a recent intriguing
perspective see Ref. [2]). The problem is also distinct from
‘‘stochastic gravity’’ [3,4], where metric fluctuations are
generated by a Einstein-Langevin equation and related to
semiclassical effects of quantum theory. Here, instead, the
problem is the just the thermal behavior of conventional
gravity.1

A number of puzzling relations between gravity and ther-
modynamics (or gravity, thermodynamics and quantum

theory) have been extensively discussed in the literature
[5–14]. Among the most intriguing are probably Jacobson’s
celebrated derivation of the Einstein equations from the
entropy-area relation [15,16] and Penrose’s Weyl curvature
hypothesis [17,18]. These are very suggestive, but perhaps
their significance cannot be evaluated until we better under-
stand standard general covariant thermodynamics.
One avenue for addressing the problem is perturbation

theory. Another is restricting to asymptotic flatness and
observables at infinity [19–21]. Although useful in specific
contexts, these roads are incomplete, because they miss
the core issue: understanding if temperature has a meaning
in the bulk of spacetime in a strong field regime. What do
we mean when we say that near a cosmological singularity
temperature is high? For the moment we do not have a
definition of temperature that makes sense where the
metric might fluctuate widely.
A step towards general covariant statistical mechanics

was taken in Refs. [22,23] and extended to quantum field
theory in Ref. [24]. The notion introduced in these papers
is thermal time. This is meant to address the basic difficulty
of general relativistic statistical mechanics: in a generally
covariant theory, dynamics is given relationally rather
than in terms of evolution in physical time;2 consequently,
the canonical Hamiltonian vanishes, and without a
Hamiltonian H, it is difficult to even start doing statistical
physics. The idea of thermal time is to reinterpret the
relation between Gibbs states (� / e��H) and time flow
(generated by H): instead of viewing the Gibbs states as
determined by the time flow, observe that any generic state
generates its own time flow. The time with respect to which
a covariant state is in equilibrium can therefore be read
out from the state itself. The root of the temporal structure
is thus coded in the non commutativity of the Poisson or
quantum algebra [24,26].
Since any state is stationary with respect to its own flow,

the problem left open is characterizing the states that are in

1One may ask whether equilibrium can ever be reached, given
the gravitational instabilities and long thermalization times. The
question is legitimate, but doesn’t authorize us evading the issue
of what equilibrium means. First, because we need to know what
we mean by equilibrium if we want to ask if equilibrium can be
reached or not; second, in any case we are always concerned
only with approximate equilibrium in nature, gravity or not.

2For a discussion of this crucial point see the Appendix and
Chap. 3 of Ref. [25], in particular Sec. 3.2.4.
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physical equilibrium. Here we consider a solution: equi-
librium states are those whose thermal time is a flow in
spacetime.3 These, we suggest, are the proper generaliza-
tion of Gibbs states to the general covariant context.

This step allows temperature to be defined, following
the intuition in Refs. [27,30]: the temperature measured by
a local clock is the ratio between thermal time and proper
time. This yields immediately the Tolman-Ehrenfest law
[31,32], which correctly governs equilibrium temperature
in gravity; in the present context, the Tolman-Ehrenfest
law appears therefore as an aspect of a fully general-
covariant statistical framework including thermal gravity.
Entropy and free energy can be defined, and we obtain
the full basis of generally covariant thermodynamics.
The construction extends to the quantum theory.

The result is a tentative set of equations that generalize
conventional thermodynamics and statistical mechanics to
classical and quantum general-covariant systems.

We use units where the Boltzmann constant k and the
Planck constant ℏ are set to unity. We have tried to keep the
main text brief, confining background material to a detailed
Appendixes A and B. The reader is urged to start from the
Appendix unless the language and the background ideas of
the text are already familiar. Equations in the paper are to
be understood locally in phase space, namely on a chart
where suitable regularity conditions are satisfied to avoid
singular or degenerate behavior. A finer analysis will make
sense after the basic conceptual structure is clear.

II. GENERAL COVARIANT GIBBS STATES

A. Thermal time

Let E be a symplectic space, whose physical interpreta-
tion is the extended phase space of a general covariant
theory. (See the Appendixes A and B for notation and
details.) Let C be a submanifold of E, representing the
surface where the constraints of the theory (which code
the full dynamics) are satisfied. The symplectic form � of
E induces a presymplectic structure on C, whose null
directions can be integrated to define the gauge orbits o.
The space � of these gauge orbits, which is the physical
phase space of the theory, is again a symplectic space, with
symplectic form !. It is in 1-to-1 correspondence with the
space of the solutions of the field equations, modulo
gauges. A statistical state � is a positive function on �
normalized with respect to the Liouville measure,Z

�
� ¼ 1: (1)

The Hamiltonian vector field X defined by

�!ðXÞ ¼ d� (2)

generates a flow �� in � called the thermal flow; its
generator

h ¼ � ln� (3)

is called the thermal Hamiltonian and the flow parameter �
is called thermal time [22].4

B. Local thermal time

Consider a general covariant theory that includes
general relativity5 and assume physical three-dimensional
space � to be compact with the S3 topology. The space E
can be coordinatized by the three-dimensional Riemann
metric tensor q of �, the matter fields ’, and their respec-
tive conjugate momenta ðp;�Þ; these quantities are fields
on �, namely functions from � to a target space
ðq; ’; p; �Þ: �! V. An orbit o determines a solution of
the field equations and therefore in particular a pseudo-
Riemannian manifold ðM;gÞo. A point in o determines a
spacelike Cauchy surface �: S3 ! ðM;gÞo, having the
given induced metric q and extrinsic curvature p. In par-
ticular, a foliation ��: S3 ! ðM;gÞo, � 2 R of ðM;gÞo
corresponds to a line on the orbit.
Consider now a real function ~T on V. This determines a

local function (which we indicate with the same letter) on E,
namely a map ~T: E ��! R given by ~Tððq; p; ’;�Þ;xÞ ¼
~TðqðxÞ; pðxÞ; ’ðxÞ; �ðxÞÞ, x 2 �. The coordinate ~TðxÞ on
E plays a role of ‘‘multifingered time’’ in what follows. If the
equation

~TðxÞ ¼ �; � 2 R (4)

defines a foliation of ðM;gÞo (on a given region of phase-
space), we say that ~TðxÞ is a ‘‘local time.’’ The parameter of
the foliation defines then a time coordinate �: ðM;gÞo ! R
on spacetime. The simplest example is if the matter fields
include a scalar field ~T that grows monotonically in space-
time (for the given region of phase space); then the value of
the field defines a time coordinate.
If there are canonical coordinates ~T and Qi on E, with

respective momenta P ~T and Pi, such that

P ~TðxÞ ¼ �hðQiðxÞ; PiðxÞÞ (5)

on C, then ~TðxÞ defines a deparametrization of the theory in
the following sense: the Hamiltonian

h ¼
Z

d3xhðQiðxÞ; PiðxÞÞ (6)

evolves geometry and matter fields along the foliation ��.
Notice that h is constant along the orbits it generates.

3This problem is considered also in Refs. [27–29].

4So defined, � has the dimensions of an action, as it is
conjugate to a dimensionless quantity. It can be made dimen-
sionless by multiplying the rhs of (2) and (3) by ℏ. This is a bit
artificial in the classical theory but will be natural in the quantum
theory.

5We systematically disregard at this stage the difficulty of
defining the Liouville measure that defines the integral (1) in the
case of field theory. This is because the issue should properly be
addressed in the quantum context, where I will be a bit more
precise.
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We can therefore associate its value to each o and obtain in
this manner a function h on �. (Weaker cases are also of
interest; in particular, the case relevant in cosmology,
where

P ~TðxÞ ¼ �fð ~TðxÞÞhðQiðxÞ; PiðxÞÞ; (7)

which describes a system with temperature varying in time,
see Ref. [23].)

Let us now come to the first main notion that we
introduce in this paper. We say that a statistical state �
on � is a ‘‘Gibbs state’’ if there is a local time ~TðxÞ with a
local Hamiltonian h of the form (6) [or (7)] satisfying (3)
up to an additive constant.6

If this is the case, the thermal time � generated by �
is precisely the foliation time �, and therefore thermal
time has a geometrical interpretation as a flow in
spacetime.

C. Nonrelativistic limit

The definition above is a generalization of the conven-
tional definition of Gibbs states. To see this, recall that for
a Hamiltonian system with phase space �0, canonical
coordinates ðq; pÞ and Hamiltonian H ¼ Hðq; pÞ, a Gibbs
state is a state of the form �� ¼ Z�1ð�Þe��H with Zð�Þ �R
�0
e��H. The general covariant formulation of this system

is defined on the extended phase space E with canonical
coordinates ðt; pt; q; pÞ and the constraint C ¼ pt þ
Hðq; pÞ. The constraint surface is coordinatized by
ðt; q; pÞ and the orbits are given by ðt; qðtÞ; pðtÞÞ where
qðtÞ and pðtÞ are the solutions of the Hamilton equations.
The space � of these orbits is isomorphic to �0 (but not
canonically so, until a t ¼ t0 is chosen) via ðq; pÞ ¼ qðt0Þ,
pðt0Þ.

A time function on E is provided by � ¼ t=�, whose
conjugate momentum is p� ¼ �pt, which satisfies the
requirement that the constraint can be expressed in
the form (5), namely p� ¼ �hðq; pÞ, where h ¼ �H.
The Hamiltonian, being constant on each orbit, is well
defined on �, therefore �� is a function on �, namely it

is a statistical state in the covariant sense. It is immediate to
see that it satisfies (3). In other words, the Gibbs state picks
out the coordinate t from E, where this was confounded
with the other variables.

Observe now that the temperature T � 1
� is equal to the

ratio

T ¼ �

t
(8)

between the thermal time �, namely the parameter of the
evolution generated by the logarithm of the Gibbs state,
and the physical time t. This characterization of tempera-
ture can be extended to general covariant systems.

D. Mean values, mean geometry and local temperature

Consider a familyA of functions A on �. Let the mean
value of A on the state � be

�A ¼
Z
�
A�: (9)

The thermal time flow �� acts on these functions by
Að�ÞðsÞ ¼ ��ðAÞðsÞ ¼ Að���ðsÞÞ, s 2 �, which satisfies
dA=d� ¼ fA; hg. Since � is clearly invariant under the
flow, so are the mean values, but

fABð�Þ ¼
Z
�
Að�ÞB� (10)

is in general a nontrivial function and describes temporal
correlations in the state. Define the mean geometry �g
(if it exists) of a state � for an observable family A as a
spacetime ðM; �gÞ with a foliation �� such that

�Að�Þ ¼ Að��1� ð �gÞÞ: (11)

Since �Að�Þ is � independent, it follows that ðM; �gÞ is
stationary under the flow defined by ��. Therefore
� ¼ @

@� is a timelike Killing field on ðM; �gÞ. The norm of

� is ds=d� namely the ratio between the local flow of
proper time and thermal time. The equivalence principle
therefore compels us to define the local temperature by the
local version of (8), namely

TðxÞ ¼ j�ðxÞj�1; x 2 M (12)

from which the Tolman-Ehrenfest law [31,32],

TðxÞj�ðxÞj ¼ constant; (13)

which governs the spacetime variation of temperature at
equilibrium in gravity, follows immediately.7 In stationary
coordinates ð�;xÞ, the temperature is the inverse of the
Lapse function, since ds2 ¼ N2d�2.

E. Partition function and global temperature

If � is a Gibbs state, we can obtain another Gibbs state
by exponentiating it with a constant � and multiplying it
by a � dependent factor that preserves the normalization:
�� ¼ Z�1ð�Þ��. The effect of this exponentiation is to

scale the thermal time globally, and therefore to scale the
temperature globally. Therefore the global temperature is
defined with respect to a reference Gibbs state. Having a
one-parameter family of Gibbs states allows us to define
the partition function

Zð�Þ ¼
Z
�
��: (14)

The entropy of the state can be obtained as usual from

6The constant has no effect on the dynamics, and we set it to
zero by redefining P ~T .

7A suggestion in this direction was in Ref. [27]. The intriguing
relation between (8) and the Tolman law was pointed out in
Ref. [30].
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Sð�Þ ¼ �
Z
�
�� ln�� (15)

and from this we can derive in a few steps the standard
thermodynamical relation,

S ¼ �
Z
�
��ð� ln�� lnZÞ ¼ �Eþ lnZ; (16)

where E is the mean value of the energy h ¼ � ln�. The
global temperature � of the state should not be confused
with the local temperature TðxÞ, which is space-dependent.
Also, the local temperature is defined directly by a single
statistical state (if a mean geometry exists), while the
global temperature is only defined relative to another
Gibbs state taken as reference.

In the following section, we extend this structure to the
quantum theory.

F. Quantum theory

Let K be the unconstrained Hilbert space of a general
covariant theory and H its physical Hilbert space (the
‘‘space of solutions of the Wheeler-deWitt equation’’).
General covariant quantum mechanics is well defined by
these structures. (See the Appendix and, for more detail,
Sec. 5.2 of Ref. [25].)

A quantum statistical state is a trace-class operator � on
H such that tr� ¼ 1. Its entropy is S ¼ �tr½� ln��. Let
A be an observable algebra formed by self-adjoint opera-
tors A on H . Then � defines a state on this algebra by

�ðAÞ ¼ tr½A�� (17)

and8 the Tomita theorem (see below) provides a flow
��: A!A on the observable algebra. This is the
thermal-time flow in the quantum theory, which depends
on the state [24]. If there is a local Hamiltonian h and a
(dimensionless) conjugate ‘‘time’’ observable � that in the
classical theory reduces to the quantities defined in the
previous section and generates an evolution,

��ðAÞ ¼ e
i
ℏh�Ae� i

ℏh�; (18)

then we say that � is a Gibbs state.9 The Tomita flow of �
satisfies the KMS condition (see, for instance, Ref. [33]),

fABð�Þ ¼ fBAð��þ 2�iÞ; (19)

for any two observables A and B, where

fABð�Þ ¼ �ð��ðAÞBÞ: (20)

A thermal state �� ¼ Z�1ð�Þ��=2� satisfies the KMS

condition,

fABð�Þ ¼ fBAð�tþ i�Þ; (21)

with respect to the flow generated by �.
The notion of mean geometry can be extended to the

quantum theory10 by defining ðM; �g;��Þ (if it exists) as the
mean geometry of the state � with respect to a given
observable algebra A if

�Að�Þ � �ð��ðAÞÞÞ ¼ Að��1� ð �gÞÞ: (22)

The local temperature TðxÞ is defined by the norm of the
killing field of the mean geometry and is therefore a
semiclassical concept. Restoring physical units, local
temperature is given on the mean geometry by

TðxÞ ¼ ℏ
k

d�

ds
; (23)

where ℏ is the Planck constant and k is the Boltzmann
constant.
Notice that (23) gives the Unruh temperature [40] of a

quantum field theory on Minkowski space, if ds is the
proper time along the accelerated observer trajectory
and � is the dimensionless parameter of the Bisognano-

Wichman flow Uð�Þ ¼ ei�K=2�, where K is the boost
generator, which is the Tomita flow of the vacuum state
on the Rindler-wedge observables [33,41].
This suggests that the Unruh effect should affect the

local temperature of an observer accelerated on a mean
geometry, also in the context of the fully generally-
covariant statistical mechanics of the gravitational field.
If a mean geometry has a Killing horizon, where the norm
of � becomes singular, then the local temperature (23)
diverges on the horizon. The divergence of the temperature
is a high-energy, namely a short-distance, phenomenon;
therefore, we can consider it in a region of spacetime small
with respect to the local curvature of the mean geometry,
namely as a locally flat-space phenomenon. As such, it
must be determined by the Unruh temperature. An explicit
example of a statistical state where this happens has been
discussed in Refs. [42,43]. An Unruh temperature in the
vicinity of the horizon of a black hole is redshifted by the
Tolman relation (13) precisely to Hawking’s black hole
temperature at infinity.

III. CONCLUSION

We have extended the machinery of statistical thermo-
dynamics to the general covariant context. The new con-
cepts with respect to conventional statistical mechanics are
(1) The statistical state is defined on the space of the

solution of the field equation.
(2) Each statistical state defines a preferred time flow,

called thermal time.

8TakingA to be a von Neumann algebra, namely an *-algebra
of bounded operators closed in the weak operator topology and
including the identity.

9Since space is compact, the usual difficulty of Hamiltonian
quantum field theory with thermal states which historically gave
rise to algebraic quantum field theory, is not there, since energy
does not diverge on thermal states.

10The idea of mean geometry is implicit in contexts where
covariant quantum states of gravity are associated to a classical
geometry [34–39].

CARLO ROVELLI PHYSICAL REVIEW D 87, 084055 (2013)

084055-4



(3) A statistical state whose thermal time flow has a
geometrical interpretation, in the sense that it can be
reinterpreted as evolution with respect to a local
internal time, defines a generalized Gibbs state,
with properties similar to the conventional equilib-
rium states.

(4) For such states, it is possible to define the relative
global temperature between two states.

(5) A mean geometry is a stationary classical geometry
with a timelike Killing field and a time foliation,
such that the value of a suitable family of observ-
ables reproduces the statistical expectation values of
these observables in the statistical ensemble.

(6) If a mean geometry exists, a local temperature is
defined. Local temperature is the ratio between
proper time and thermal time on the mean geometry,

TðxÞ ¼ ℏ
k

d�

ds
: (24)

It yields immediately the Tolman law.
This construction reduces to conventional thermodynamics
for conventional Hamiltonian systems rewritten in a
parametrized language.

Examples—extension of the formalism to the boundary
formalism [44–46], which is the natural language for
quantum field theory in the generally covariant context—
and applications to horizon thermodynamics—and in
particular to the local framework defined in Ref. [47] and
the derivation of black hole entropy in loop quantum
gravity in Ref. [42]—will be considered elsewhere.
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APPENDIX A: CLASSICAL THEORY

1. Mechanics

A conventional Hamiltonian system is defined by a
2N-dimensional phase space �0 and a Hamiltonian H.
The phase space is a symplectic space, namely a manifold
equipped by a nonsingular closed symplectic two-form !.
Locally, we can always choose coordinates ðqi; piÞ on �
such that

! ¼ dqi ^ dpi (A1)

(summation understood). Having a symplectic two-form is
the same as having Poisson brackets.H is a scalar function
on �. Every function f on a symplectic space defines a
vector field Xf on the space, defined by

!ðXfÞ ¼ �df; (A2)

where the lhs is the action of a differential two-form on a
vector, which gives a one-form, and the rhs is the differ-
ential of f. In turn, a vector field defines a flow �t: �0 !
�0, t 2 R namely a continuous one-parameter group of
automorphisms of �0 into itself, related to X by

d�t

dt

��������t¼0
¼ Xf: (A3)

The Poisson bracket between two functions A and B on �0

is defined by

fA; Bg ¼ XBðAÞ ¼ �XAðBÞ: (A4)

The flow of the Hamiltonian is the time flow, namely the
evolution in time of each point of �0. Explicitly, the
Hamiltonian vector field of H is easily seen to be

X ¼ @H

@pi

@

@qi
� @H

@qi
@

@pi

; (A5)

so that the time flow is determined by the Hamilton
equations,

dqiðtÞ
dt

¼ @H

@pi

;
dpiðtÞ
dt

¼ � @H

@qi
; (A6)

which show that this geometric construction is equivalent
to Hamiltonian mechanics. An observable A is a real
function on �0. The time evolution of an observable is
defined by AðtÞ ¼ A � �t and satisfies

dAðtÞ
dt
¼ fA;Hg: (A7)

Let � be the space of the solutions of the equation of
motion ðqiðtÞ; piðtÞÞ. This is a finite dimensional space
which is isomorphic to �0, but not canonically isomorphic.
A specific isomorphism is obtained by choosing a value t0
for the time parameter t. Then the isomorphism between
� and �0 is given by ðqi; piÞ ¼ ðqiðt0Þ; piðt0ÞÞ. Thanks to
this isomorphism, � has a symplectic structure as well
(independent from t0).
For instance, the solutions of the dynamics of a

harmonic oscillator have the form ðqðtÞ ¼ A sin ð!tþ
�Þ; pðtÞ ¼ m!A cos ð!tþ�ÞÞ. Therefore � is coordinat-
ized by A and �. A map between � and �0 is obtaining
choosing for instance t ¼ 0, which gives (q ¼ A sin�,
p ¼ m!A cos�) and therefore the symplectic form on � is

� ¼ �m!AdA ^ d�: (A8)

An equivalent formulation of the dynamics, called the
presymplectic formulation, can be given on the 2N þ 1
space C ¼ �0 � R, with local coordinates ðqi; pi; tÞ
equipped with the two-form,

!0 ¼ dqi ^ dpi � dHðqi; piÞ ^ dt: (A9)

This two-form is degenerate, namely has a null direction
(since the space is odd dimensional). That is, there exists a
vector field X0, determined up to scaling, such that
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!0ðX0Þ ¼ 0: (A10)

It is immediate to see that this vector field is proportional to

X0 ¼ @

@t
þ X (A11)

and its integral lines (called the orbits of !0) are precisely
(the graphs of the) physical motions ðt; qiðtÞ; piðtÞÞ. Let �
be the space of these orbits and � the projection that sends
each point of C to the orbit to which it belongs. � carries a
symplectic two-form �, uniquely characterized by the fact
that its pull back to C by� is!0. (A pull back is degenerate
in the directions of the orbits.) The symplectic space ð�; �Þ
is clearly the same as the one constructed above.

The equivalence between the conventional Hamiltonian
and the presymplectic formulation, is almost complete.
The reason for the ‘‘almost’’ is subtle, interesting, and at
the core of the problem discussed in this paper. Given a
Hamiltonian system ð�0; !;HÞ, we can immediately con-
struct its corresponding presymplectic formulation ðC; !0Þ.
But the opposite is not true, since we need to know which
one of the variables on C is the time variable, in order to do
so. In other words, the presymplectic formulation leads to
the same relations between the variables ðt; qi; piÞ as the
Hamiltonian one, but without specifying which of these
variables is to be recognized as the time variable. The
difference is the same as the difference between giving a
function yðxÞ or its parametrized form ðyðsÞ; xðsÞÞ: in the
first case x is singled out as the independent variable; in the
second case it is not.

2. General covariant mechanics

Systems like general relativity, or a single free
relativistic particle, are defined in the covariant language
by a Lagrangian that leads to a vanishing canonical
Hamiltonian. Equivalently, they are defined by equations
of motion that are gauge invariant under a reparametriza-
tion of the evolution coordinate. The Legendre transform
of the Lagrangian of these systems defines a phase space
with constraints, and the dynamics is coded in the con-
straints. Let E denote this phase space (to distinguish it
from the phase space of a conventional system, since it has
a different physical interpretation) and let C denote the
subspace of E where the constraints vanish. E is a sym-
plectic space with symplectic form !. Its restriction to C is
a presymplectic two-form !0 (the pull back of ! under the
embedding i of C in E), which is degenerate in the direc-
tions of the Hamiltonian vector fields of the constraints
themselves. The space of the orbits � is again a symplectic
space carrying a symplectic two-form �, uniquely charac-
terized by

i�! ¼ !0 ¼ ���; (A12)

where

E  i C!� �: (A13)

The presymplectic constraint surface ðC; !0Þ defines the
dynamics precisely as in the presymplectic formulation
of the Hamiltonian dynamics described above. Notice
that it defines all the physical correlations among dynami-
cal variables, without specifying one of these as the
independent time variable. The distinctive feature of the
general covariant systems is therefore to define dynamics
as a ‘‘democratic’’ correlation between variables instead
of as evolution with respect to a singled out independent
variable.
A simple example is provided by the dynamics of a

free relativistic particle. The extended phase space E
is eight dimensional with coordinates ðx	; p	Þ and

! ¼ ðdx	 ^ dp	Þ. The constraint surface C is given by

p2 ¼ m2. The orbits are given by

x	ð�Þ ¼ p	

m
�þ x

	
o : (A14)

And there is a six-dimensional space of these. Each
orbit determines a correlation between observables. For
instance, it determines the relation between different coor-
dinates on Minkowski space. Notice that all this is Lorentz
invariant. Notice also that this canonical formulation never
specifies one particular Lorentz time as the preferred one.
To obtain a conventional Hamiltonian formulation we have
instead to select a Lorentz frame and choose one variable,
say x0 (as opposed to ~x0 ¼ �0

	x
	 where � is Lorentz

matrix) as the time variable. Then this determines a

Hamiltonian H ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
, which generates the same

motions, but in a nonmanifestly Lorentz invariant
language.
Notice that any Gibbs state,

�� e��H ¼ e��
ffiffiffiffiffiffiffiffiffiffiffi
~p2þm2
p

; (A15)

breaks Lorentz invariance and selects a preferred Lorentz
time. Physically, this is the specific Lorentz-time flow with
respect to which a given gas of relativistic particles is in
equilibrium.
Notice that it is somewhat misleading to state that the

full dynamics of a generally covariant system is entirely
captured by the physical phase space � and all functions on
�, because this would be like saying that the dynamics of a
harmonic oscillator is captured by writing down the phase
space coordinated by A and �, and all functions of A and
�. If we do so, we lose track of the fact that the harmonic
oscillator is characterized by the oscillating variable qðtÞ!
The dynamics of a generally covariant system is not just
described by � and the family of all functions on �. We
also need to give explicitly the embedding of each orbit in
C or, equivalently, in E. In the case of the relativistic
particle, for instance, the dynamics is not just the specifi-
cation that the physical space is six dimensional; it is also
the information that each point of this space determines a
timelike line in Minkowski space, namely a correlation
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between quantities on C. In this context, such quantities are
called ‘‘partial observables’’ [48].

3. Statistical mechanics

The symplectic form defines a volume-form on �0,
obtained by taking N times the wedge product of ! with
itself. This defines an integral on �0, which we indicate
simply without measure notation. A statistical state is a real
non-negative function � on �0 normalized as

Z
� ¼ 1: (A16)

Its entropy is defined by the Shannon expression

S ¼ �
Z

� ln�: (A17)

The mean value of an observable A in the state � is
defined by

�A ¼
Z

A�: (A18)

The mean value of AðtÞ can be equally obtained as the
mean value of A on the state �ðtÞ which satisfies

d�ðtÞ
dt
¼ f�;Hg: (A19)

An equilibrium Gibbs state is a particular statistical state of
the form

� / e��H; (A20)

where � ¼ 1=kT is a positive real number and T is the
temperature. It is immediately clear that a Gibbs state is
time independent and the mean value of all observables in a
Gibbs state are time independent. Nontrivial time correla-
tions can nevertheless be defined from quantities like

fABðtÞ ¼
Z

AðtÞBð0Þ�: (A21)

The proportionality factor in (A20) is determined by the
normalization condition,

� ¼ 1

Zð�Þ e
��H; (A22)

where

Zð�Þ ¼
Z

e��H ¼ e��F (A23)

is called the partition function, and F is called the free
energy. It follows immediately from the definitions and a
short calculation that the mean value E of the energy is
given by

E ¼ � 1

�

d lnZ

d�
(A24)

and

S ¼ �E� �F: (A25)

These are the basic thermodynamical relations for the
Gibbs states.

4. General covariant statistical mechanics

Here are summed up the main results of this paper.
A statistical state is a normalized positive function on the
physical state space. It determines a thermal flow with
generator X defined by

�!ðXÞ ¼ d�: (A26)

The generator of this flow is the (state-dependent) thermal
Hamiltonian h ¼ � ln�, and the thermal time � is the
parameter of this flow. For a conventional Gibbs state in
a nongenerally-covariant system, temperature is the ratio
between thermal time and geometrical time.
In a gravitational field theory, if h is local, then it defines

a flow in spacetime and a preferred foliation of the mean
geometry. The local temperature, which satisfies the
Tolmann relation, is the local ratio between the spacetime
flow and proper time.

APPENDIX B: QUANTUM THEORY

1. Quantum mechanics

A conventional quantum system is defined by a Hilbert
space H and a family A of observables A, self-adjoint
operators on H , which in particular includes a
Hamiltonian H. The Hamiltonian generates a unitary
flow on H by the one-parameter group of unitary trans-
formations UðtÞ ¼ e�iHt in the Schrödinger picture and a
flow on the observables by AðtÞ ¼ Uð�tÞAUðtÞ in the
Heisenberg picture. In the Schrödinger picture, the
Hilbert space H corresponds to the phase space �0 at a
given time; while in the Heisenberg picture the Hilbert
spaceH corresponds to the phase space � of the solutions
of the equations of motion. The expectation value of an
observable in the state c 2H is given by �A ¼ hcAc i, or
equivalently by

�A ¼ tr½A��; (B1)

where

� ¼ jc ihc j: (B2)

The eigenvalues of A determine the quantization, namely
the possible outcomes of a measurement, of A and tran-
sition probabilities between such measurement outcomes
are determined by the matrix elements of UðtÞ in the
observable’s eigenbasis.

2. Quantum statistical mechanics

A statistical state � is a trace-class operator on H
normalized by
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tr½�� ¼ 1: (B3)

The mean value of an observable in such a state is still
given by (B1). The states of the form (B2) satisfy �2 ¼ �
and are called ‘‘pure.’’ Their conventional physical inter-
pretation is that the probabilistic nature of the uncertainty
in the predictions derived from them is not due to our
ignorance, but to irreducible intrinsic quantum uncertainty.
The von Neumann entropy of the state �,

S ¼ �tr½� ln��; (B4)

vanishes on pure states. A Gibbs state is a state of the form
� / e��H. The partition function is the inverse of its
normalization, namely

Zð�Þ ¼ tr½�e�H�: (B5)

Again, the basic thermodynamical relation (A25) follows
in a few steps from these definitions.

3. General covariant quantum mechanics

A generally covariant quantum system is defined by an
extended Hilbert space K, a (possibly generalized11) sub-
space H , the ‘‘space of solutions of the Wheeler-deWitt
equation,’’ and a family of observables A, B on K called
‘‘partial observables.’’

The eigenvalues of the partial observables determine the
quantization, namely the possible outcomes of a measure-
ment [49–51], and transition probabilities between such
measurements’ outcomes are determined by the matrix
elements

hqjPjq0i (B6)

of the (generalized) projection

P: K!H (B7)

in the observables’ eigenbases jqi in K (see Ref. [25],
Chap. 5 and [52]). A specific example of a definition of
these transition amplitudes, finite to all orders, is provided
by covariant loop quantum gravity [53]. The quantum
mechanics of generally covariant systems can therefore

be well defined without the need of specifying a time
variable.

4. General covariant statistical quantum mechanics

The thermal-time flow of a generally covariant statistical
quantum state � is defined by its Tomita flow. This can be
constructed as follows. The expectation value of a statisti-
cal state � on the algebra A of the gauge-invariant ob-
servables a defines a state on this algebra. AssumingA to
be a C�-algebra, the GNS construction defines a Hilbert
space H , where observables are represented by operators
and c is a vector (even if c is a statistical state). Let then S
be the operator defined by Sac ¼ a�c . It is always

possible to write S in the form S ¼ Jeh=2, where J is

antiunitary and eh=2 is self-adjoint. The Tomita flow on
the algebra is then defined by

�ta ¼ e�ithaeith; (B8)

and the Tomita theorem states that this is a one-parameter
group of automorphisms of the algebra, which depends on
the state �.
To understand what is going one, start from a normal

quantum field theory. Pure states are vectors in Fock space.
Mixed states are density matrices, namely trace class op-
erators � on Fock space. These form an Hilbert space,
which we can call H : notice that a statistical state � is
now represented by a vector in this Hilbert space, for which
a convenient notation is j�i. If a is an observable on Fock
space, we can represent it on H as aj�i ¼ ja�i, which is
again trace class. If � is a Gibbs state for a HamitonianH at
inverse temperature �, namely � ¼ e��H, then a straight-

forward calculation shows that Jjki ¼ jk�i and eh=2jki ¼
je��=2Hke�=2Hi satisfy the definition of S. Therefore the
Tomita flow of the Gibbs state is precisely the time flow

scaled by the temperature: �ta ¼ e�itð�HÞaeitð�HÞ. In other
words, the Tomita relation between a state and a flow is the
quantum field theoretical version of the classical relation
between a state on phase space and its Hamiltonian flow.
The operator J flips creation and annihilation operators of the
quanta over the thermal state, and therefore codes the split
between positive and negative frequencies. For a more de-
tailed discussion, see Ref. [24]. Time flow is fully coded into
the statistical state. The local relation between thermal time
d�, proper time dt and temperature T is given by Eq. (24).
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