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We prove a new type of finite time blowup for a class of semilinear wave equations on extremal black

holes. The initial data can be taken to be arbitrarily close to the trivial data. The first singularity occurs

along the (degenerate) future event horizon. No analogue of this instability occurs for subextremal black

holes or the Minkowski spacetime.
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I. INTRODUCTION

The dispersion of the linear wave equation

hgc ¼ 0 (1)

on black hole spacetimes ðM; gÞ provides a good indica-
tion of the stability properties of the background in the
context of the Cauchy problem of the Einstein equations.
Definitive quantitative decay results for solutions to the
wave equation (1) in the exterior of general subextremal
Kerr backgrounds ðjaj<MÞ were proven in Refs. [1,2]
(see also Refs. [3–6] for small slowly rotating Kerr space-
times). These works, however, did not include the extremal
case.

The general study of the wave equation (1) on extremal
black holes was initiated by the author in a series of papers
[7–11] where it was shown that solutions to (1) exhibit both
stability and instability properties. In particular, it was
shown that jc j decays in the future; however, there are
translation-invariant derivatives Yc that generically do not
decay along the future event horizon Hþ. Moreover, the
higher order derivatives Ykc , k � 2were shown to asymp-
totically blow up along Hþ (see Fig. 1).

The source of these instabilities is a hierarchy of conser-
vation laws for the scalar field along the event horizon first
established in the aforementioned series of papers. These
conservation laws have been extended to more general linear
fields such as Maxwell’s equations and linearized gravity on
extremalKerr byLucietti andReall [12].Murata [13] has also
provided similar generalizations for extremal vacuum black
holes in arbitrary dimensions. Bizon and Friedrich [14] have
remarked that the conserved quantities on exactly the ex-
tremal Reissner-Nordström spacetime correspond to the
Newman-Penrose constants at null infinity under a conformal
transformation of the background that exchanges the (future)
event horizonwith (future) null infinity. The relation between
the conserved quantities of the present paper and the
Newman-Penrose constantswas also independently observed
by Lucietti, Murata, Reall, and Tanahashi [15]. The same
authors studied analytically and numerically the late time
behavior of massive and massless scalars on the extremal
Reissner-Nordström spacetime. An important conclusion of

their numerical analysis is that scalar instabilities are present
even if the scalar perturbation is initially supported away
from the horizon (in which case all the conserved quantities
are zero). The author rigorously showed in Ref. [11] that
perturbations which are initially supported away from the
horizon indeed (generically) develop instabilities in the
future confirming the numerical analysis of Ref. [15].
The study, however, of purely linear fields is not satis-

factory in the context of the Cauchy problem to the
Einstein equations. The simplest nonlinear problem one
can consider is that of a semilinear wave equation

hgc ¼ Nðc ; @c Þ; (2)

where Nðc ; @c Þ is a nonlinear expression of c and @c .
The study of such equations is of course more complicated
even for the flat Minkowski spacetime ðR3þ1; mÞ. It is well
known that if the nonlinearity satisfies

Nðc ; @c Þ ¼ Oðjc jnÞ þOðj@c jnÞ; n � 3; (3)

then small data lead to global solutions in time. Note that
the power here must satisfy n � 3. This is because the
decay for c , @c is not very strong and hence a sufficiently
high power in the nonlinearity is needed in order to stabi-
lize the evolution. On the other hand, the quadratic case
where n ¼ 2 is borderline. Indeed, John [16] showed that
any nontrivial C3 solution of the wave equation

hmc ¼ ð@tc Þ2

blows up in finite time. Moreover, Klainerman [17] showed
that if the nonlinearity N satisfies the so-called null
condition then global existence is guaranteed for small
data. The nonlinearity N ¼ Nðc ; @c Þ satisfies the null
condition with respect to the Minkowski metric if

Nðc ; @c Þ ¼ A��@�c @�c ; (4)

where A�� are constants and satisfy A������ ¼ 0

whenever � is a null vector.
Recently, Yang [18] has in fact extended the above

result to more general perturbations of the Minkowski
spacetime using a robust method introduced by Dafermos
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and Rodnianski [19]. His result can in fact be modified to
work for Schwarzschild and more general subextremal
Kerr backgrounds. Luk [20] has shown a similar result
for slowly rotating Kerr backgrounds.

The aim of this paper is to show that there exist non-
linearities N ¼ Nðc ; @c Þ on extremal Kerr such that

Nð0; 0Þ ¼ 0; dNð0; 0Þ ¼ 0;

Nðc ; @c Þ ¼ Oðjc jnÞ þOðj@c jnÞ; n � 2

and for which C1 solutions to (2) with arbitrarily small
initial data blow up in finite time. It is important to empha-
size here that n 2 N can be chosen arbitrarily large (and
hence this result is in stark contrast with the subextremal
case). As we shall see, this result holds for more general
extremal black holes. This shows that extremal black holes
exhibit a genuine nonlinear scalar instability.

II. A GENUINE NONLINEAR INSTABILITY

Let ðM; gÞ denote the exterior region of an extremal
Kerr black hole. Let �0 be a spacelike hypersurface that
crosses the future event horizon Hþ and terminates at
spacelike infinity i0. We consider the following equation:

hgc ¼ Nðc ; @c Þ; (5)

where

Nðc ; @c Þ ¼ c 2n þ ðYc Þ2n þ ðTc Þ2n; (6)

where T ¼ @v, Y ¼ @r and n 2 N with n � 1. Here @v, @r
correspond to partial derivatives with respect to the ingoing
Eddington-Finkelstein coordinates ðv; r; �; ��Þ.

We also prescribe smooth compactly supported initial
data

c 0 ¼ c j�0
; c 1 ¼ nc j�0

;

where n denotes the unit normal to �0.
The main result of the present paper is the following:
Theorem 2.1. For all natural numbers n � 1 there are

solutions of (5) with arbitrarily small initial data ðc 0; c 1Þ
which in finite time fail to be C1. In other words, there are
solutions of (5) with arbitrarily small initial data such that
Nðc ; @c Þ ! þ1 in finite time along the future event
horizon Hþ (see Fig 2).
Proof. �� ¼ �T

� ð�0Þ, where �T
� denotes the flow of T.

Let also S� ¼ �� \Hþ. Note that S� is diffeomorphic to
S2. Consider initial data ðc 0; c 1Þ such that

H0½c � ¼
Z
S0

Msin 2�ðTc Þ þ 4MðYc Þ þ 2c ¼ �;

where � > 0 can be taken to be arbitrarily small.
In Ref. [10] it was established that for linear scalar

perturbations there exists a conserved quantity H0½c �
along Hþ. In our case, the existence of this quantity
implies that if c satisfies (5) then

TðH�Þ ¼
Z
S�

N; (7)

where

H�½c � ¼
Z
S�

Msin 2�ðTc Þ þ 4MðYc Þ þ 2c

and N ¼ Nðc ; @c Þ is given by (6). Note now the
following:

Z
S�

N ¼
Z
S�

c 2n þ ðYc Þ2n þ ðTc Þ2n

�
Z
S�

c 2n þ ðYc Þ2n þ ðsin �Þ4n � ðTc Þ2n

� ~C
Z
S�

ðc þ Yc þ ðsin �Þ2 � ðTc ÞÞ2n

� C

�Z
S�

c þ Yc þ ðsin �Þ2 � ðTc Þ
�
2n

� CðH�Þ2n; (8)

where we have used Chebyshev’s inequality

a2n þ b2n þ c2n � ~Cðaþ bþ cÞ2n; a; b; c 2 R;

and Hölder’s inequality

�Z
S�

jfj2n
� 1
2n �

�Z
S�

1

�2n�1
2n �

Z
S�

jfj;

which implies

Z
S�

jfj2n � C

�Z
S�

jfj
�
2n � C

�Z
S�

f

�
2n
:

FIG. 1. The derivatives Ykc asymptotically blow up along the
event horizon.

FIG. 2. The term Nðc ; @c Þ blows up at finite time along the
event horizon.
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In view of (7) and (8) we obtain

TðH�Þ � CðH�Þ2n � 0: on Hþ; (9)

where C is a constant that depends only on n and the
geometry of S0. Since � parametrizes the flow of T, we
should think of T as ‘‘@�.’’ Because we assume that ini-
tially H0 ¼ � > 0 and since, in view of (9), H� is non-
decreasing, we obtain that

H� > 0: for all � � 0:

Hence we can rewrite (9) as follows:

T

�
� 1

ðH�Þ2n�1

�
� C:

Therefore,

1

ðH0Þ2n�1
� 1

ðH�Þ2n�1
�C ��) 1

ðH�Þ2n�1
��C ��þ 1

�2n�1
:

Therefore, as � ! 1
C��2n�1 we necessarily have H� ! þ1.

This immediately shows that c cannot be extended as a C1

function in the region � 2 ½0; 1
C��2n�1�. h

We remark that a modification of our arguments
works for the extremal Reissner-Nordström spacetime
and in fact, in view of the conservation laws established
in Refs. [10,12], it works for more general extremal black
holes.
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