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The hedgehog ansatz for spherically symmetric spacetimes in self-gravitating nonlinear sigma models

and Skyrme models is revisited and its generalization for nonspherically symmetric spacetimes is

proposed. The key idea behind our construction is that, even if the matter fields depend on the Killing

coordinates in a nontrivial way, the corresponding energy-momentum tensor can still be compatible with

spacetime symmetries. Our generalized hedgehog ansatz reduces the Skyrme equations to coupled

differential equations for two scalar fields together with several constraint equations between them.

Some particular field configurations satisfying those constraints are presented in several physically

important spacetimes, including stationary and axisymmetric spacetimes. Incidentally, new exact solu-

tions are obtained under the standard hedgehog ansatz, one of which represents a global monopole inside a

black hole with the Skyrme effect.
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I. INTRODUCTION

Nonlinear sigma models are among the most important
nonlinear field theories due to their many applications,
ranging from quantum field theory to statistical mechanics.
(See Ref. [1] for a detailed review.) Examples are quantum
magnetism, the quantum hall effect, mesons, and string
theory. It has also been successfully applied as an effec-
tive field theory to super fluid 3He. A sigma model in
D-dimensional spacetime ðMD; g��Þ is defined by a set

of n real scalar fields Yiði ¼ 1; . . . ; nÞ which take on values
in a flat manifold, called the target manifold. It is called a
nonlinear sigma model if the target manifold is nonflat, the
Lagrangian density of which is given by

L ¼ 1

2
g��Gijðr�Y

iÞðr�Y
jÞ;

where GijðYÞ is the metric on the target manifold.

Actually, nonlinear sigma models do not admit any static
soliton solutions in 3þ 1 dimensions, which is shown by a
scaling argument. (See Ref. [1] for instance). For this
reason, Skyrme introduced his famous term, which allows
the existence of static solutions with finite energy called
Skyrmions [2]. Remarkably, excitations around Skyrme
solitons may represent Fermionic degrees of freedom suit-
able to describe nucleons. The Skyrme model is therefore
one of the most important nonlinear field theories in
nuclear and high-energy physics.

However, it is difficult to obtain exact solutions in non-
linear sigma models or Skyrme models, due to their highly
nonlinear characters. Therefore one often adopts a certain
ansatz to make the field equations more tractable. Under
such ansätze, the results can be interpreted more clearly

and the simplified equations are also useful for numerical
studies. Among others, the best known one for Skyrme
models is the hedgehog ansatz for spherically symmetric
systems, which reduces the field equations to a single
scalar equation.
Because of its great advantage, the hedgehog ansatz has

been also adopted in self-gravitating Skyrme models. The
Einstein-Skyrme system has attracted considerable atten-
tion since Droz, Heusler, and Straumann numerically
found spherically symmetric black hole solutions with a
nontrivial Skyrme field, namely a Skyrme hair [3]. (Before
them, Luckock and Moss numerically constructed such
hairy configurations in the Schwarzschild background
spacetime [4]). This was the first counterexample to the
black hole no-hair conjecture, and it is stable against
spherical linear perturbations [5]. Regular particle-like
configurations [6] and dynamical properties of the system
have also been investigated numerically [7].
In this decade, not only spherically symmetric configu-

rations [8] but also more realistic black holes or regular
configurations with axisymmetry have been studied in the
Einstein-Skyrme system [9]. In those studies, one mostly
relies on numerical analyses because of the complexity of
the system. (See Ref. [10] for a review.) Under these
circumstances, it would be helpful for both analytic and
numerical investigations to provide a new useful ansatz
which also makes the field equations much simpler and
tractable. In the present paper, we generalize the hedgehog
ansatz in an applicable way not only to spherically sym-
metric spacetimes but also to other symmetric spacetimes.
In the following section, we review the Einstein-Skyrme

system in the presence of a cosmological constant. In
Sec. III, we revisit the standard hedgehog ansatz in spheri-
cally symmetric spacetimes and obtain a new exact black
hole solution. In Sec. IV, we present the generalized hedge-
hog ansatz and derive the basic equations. We also present
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some particular configurations which are compatible with a
variety of symmetric spacetimes. Concluding remarks and
future prospects are summarized in Sec. V. Our basic
notation follows Ref. [11]. The conventions for curvature
tensors are ½r�;r��V� ¼ R�

���V
� andR�� ¼ R�

���.

The signature of the Minkowski spacetime is ð�;þ;þ;þÞ
and Greek indices run over all spacetime indices. We adopt
the units such that c ¼ ℏ ¼ 1.

II. THE EINSTEIN-SKYRME SYSTEM

In the present paper, we study the Einstein-Skyrme
system with a cosmological constant� in four dimensions.
A Skyrme field is described by a nonlinear sigma model
with additional terms and can be conveniently written
in terms of an SU(2) group-valued scalar field U. The
dynamical sector in the total action of this system is written
as [10]

S ¼ SG þ SSkyrme; (2.1)

where the gravitational action SG and the Skyrme action
SSkyrme are given by

SG ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p ðR� 2�Þ; (2.2)

SSkyrme ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
Tr

�
F2
�

16
R�R� þ 1

32e2
F��F

��

�
:

(2.3)

Here R� and F�� are defined by

R� :¼ U�1r�U; (2.4)

F�� :¼ ½R�; R��; (2.5)

while G is the Newton constant and the parameters F� and
e are fixed by comparison with experimental data. The first
and the second terms in SSkyrme, respectively, represent a

nonlinear sigma model and the Skyrme term. Skyrme fields
satisfy the dominant energy condition and the strong en-
ergy condition [12].

The Skyrme Lagrangian describes the low-energy
nonlinear interactions of pions or baryons. The deep
observation of Skyrme [2] was that if one adds a suitable
term (the Skyrme quartic term) to the Lagrangian of a
nonlinear sigma model the resulting action describes
not only the low-energy interactions of pions but also of
baryons. This observation is remarkable in that it was the
first example of a purely bosonic Lagrangian that is able to
describe both bosons and fermions.

For convenience, defining K :¼ F2
�=4 and � :¼

4=ðe2F2
�Þ, we write the Skyrme action as

SSkyrme ¼ K

2

Z
d4x

ffiffiffiffiffiffiffi�g
p

Tr

�
1

2
R�R� þ �

16
F��F

��

�
: (2.6)

The resulting Einstein equations are

G�� þ�g�� ¼ 8�GT��; (2.7)

where G�� is the Einstein tensor and

T�� ¼ �K

2
Tr

��
R�R� � 1

2
g��R

�R�

�

þ �

4

�
g��F��F�� � 1

4
g��F��F

��

��
: (2.8)

The Skyrme equations are written as

r�R� þ �

4
r�½R�; F��� ¼ 0: (2.9)

Here R� is expressed as

R� ¼ Ri
�ti (2.10)

in the basis of the SU(2) generators ti (where the Latin
index i ¼ 1, 2, 3 corresponds to the group index, which is
raised and lowered with the flat metric 	ij), which satisfy

titj ¼ �	ij1� "ijktk; (2.11)

where 1 is the identity 2� 2 matrix and "ijk and "ijk are

the totally antisymmetric Levi-Civita symbols with
"123 ¼ "123 ¼ 1. ti are related to the Pauli matrices as
ti ¼ �i�i. Using the identity

"ijk"mnk ¼ 	m
i 	

n
j � 	n

i 	
m
j ; (2.12)

we obtain the commutation relation of R�,

½R�;R��i ¼ �2"ijkR
j
�Rk

�: (2.13)

Hereafter we will use the following standard parametri-
zation of the SU(2)-valued scalar Uðx�Þ:
Uðx�Þ ¼ Y01þ Yiti; U�1ðx�Þ ¼ Y01� Yiti; (2.14)

where Y0 ¼ Y0ðx�Þ and Yi ¼ Yiðx�Þ satisfy
ðY0Þ2 þ YiYi ¼ 1: (2.15)

From the definition (2.4), Rk
� is written as

Rk
� ¼ "ijkYir�Yj þ Y0r�Y

k � Ykr�Y
0: (2.16)

Using the quadratic combination

S�� :¼ 	ijR
i
�R

j
� ¼ GijðYÞr�Y

ir�Y
j; (2.17)

where

Gij :¼ 	ij þ
YiYj

1� YkYk

; (2.18)

we obtain

TrðR�R�Þ ¼ �2S��; (2.19)

TrðF��F�
�Þ ¼ 8S��S�

� � 8S��S: (2.20)
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Using these results, we can write the Skyrme action (2.6)
only with Yi as

SSkyrme ¼�K
Z
d4x

ffiffiffiffiffiffiffi�g
p �

1

2
Gijðr�Y

iÞðr�YjÞ

þ�

4
fðGijðr�Y

iÞðr�YjÞÞ2

�Gijðr�Y
iÞðr�Y

jÞGklðr�YkÞðr�YlÞg
�
; (2.21)

while the energy-momentum tensor (2.8) is expressed as

T�� ¼ K

�
S�� � 1

2
g��S þ �

�
SS�� � S��S�

�

� 1

4
g��ðS2 � S��S��Þ

��
: (2.22)

It is seen that the contribution of the Skyrme term to the
energy-momentum tensor is traceless (in four dimensions)
and shares some characteristics of a Yang-Mills field.

Here Gij is the metric corresponding to the group

(target) manifold, which is S3 in the present case. It is
worth noting here that if one considers a configuration with
vanishing Y0, then Gij becomes 	ij.

III. HEDGEHOG ANSATZ FOR SPHERICALLY
SYMMETRIC SPACETIMES

A. Tensorial formulation of the basic equations

In this section we will derive the field equations under
the standard hedgehog ansatz for spherically symmetric
spacetimes. The most general metric with spherical
symmetry may be written as

ds2 ¼ gABðyÞdyAdyB þ rðyÞ2
abðzÞdzadzb; (3.1)

where gABðA; B ¼ 0; 1Þ and yA are the metric and coordi-
nates on a two-dimensional Lorentzian manifold M2,
respectively, while 
ab (a, b ¼ 2, 3) and za are the metric
and coordinates on a two-dimensional unit sphere S2,
respectively. We are going to derive the basic equations
under the hedgehog ansatz in a covariant form on
ðM2; gABÞ.

In terms of the group element U, the usual hedgehog
ansatz reads

U ¼ 1 cos�þ n̂iti sin�; U�1 ¼ 1 cos�� n̂iti sin�;

(3.2)

where n̂i ¼ n̂iðzÞ (i ¼ 1, 2, 3) are given by

n̂1 ¼ sin � cos�; n̂2 ¼ sin� sin�; n̂3 ¼ cos�;

(3.3)

and � ¼ �ðyÞ. Here we have adopted the coordinates on
ðS2; 
abÞ such that


abdz
adzb ¼ d�2 þ sin 2�d�2: (3.4)

In terms of the variables Y0 and Yi, this ansatz corresponds to

Y0 ¼ cos�; Yi ¼ n̂i sin�: (3.5)

n̂i are normalized as 	ijn̂
in̂j ¼ 1 so as to satisfy Eq. (2.15).

It is also possible to define the normalized internal vectors
n̂i by

�D2n̂i ¼ �2n̂i; (3.6)

where �Da is the covariant derivative on S2 and �D2 :¼
�Da

�Da. Namely, n̂i are the eigenvectors of the Laplacian
operator on S2 with the eigenvalue �2. They satisfy
	ijð �Dan̂

iÞð �Dbn̂
jÞ ¼ 
ab, which will be used in the follow-

ing calculations.
Let us derive the expression of the energy-momentum

tensor (2.22) in a tensorial way on M2. Using Eqs. (2.16)
and (3.5), we obtain the following expression of Rk

�:

Rk
�dx

� ¼ ðn̂kDA�ÞdyA

þ
�
sin 2�	sk"ijsn̂

i �Dan̂
j þ 1

2
sin ð2�Þ �Dan̂

k

�
dza;

(3.7)

where DA is the covariant derivative on M2. Using
Eqs. (2.17), (3.5), and (3.7), we obtain

S��dx
�dx� ¼ ðDA�ÞðDB�ÞdyAdyB þ sin 2�
abdz

adzb;

(3.8)

and finally derive the energy-momentum tensor (2.22) as

T��dx
�dx�

¼ K

�
ð1þ 2�r�2sin 2�Þ

�
ðDA�ÞðDB�Þ � 1

2
gABðD�Þ2

�

� gABr
�2sin 2�

�
1þ �

2
r�2sin 2�

��
dyAdyB

� 1

2
KððD�Þ2 � �r�4sin 4�Þr2
abdz

adzb; (3.9)

where ðD�Þ2 :¼ gABðDA�ÞðDB�Þ. The Einstein equations
are written down with the following expression of the
Einstein tensor with the �-term:

ðG��þ�g��Þdx�dx�

¼
�
�2

DADBr

r
þgAB

�
2
D2r

r
�1�ðDrÞ2

r2
þ�

��
dyAdyB

þ1

2

�
2
D2r

r
�ð2ÞRþ2�

�
r2
abdz

adzb; (3.10)

where ð2ÞR is the Ricci scalar on M2 and D2 :¼ DAD
A.

Next we derive the expression of the field Eq. (2.9).
Using the formula r�u� ¼ DAuA þ r�2 �Daua þ
2r�1ðDArÞuA, we obtain the divergence of Rk

� as

r�Rk
� ¼ n̂k½D2�� r�2 sin ð2�Þ þ 2r�1ðDArÞðDA�Þ�;

(3.11)
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where we have used Eq. (3.6). Hence, the field Eq. (2.9)
without the Skyrme term reduce to the following single
scalar equation on M2:

D2�þ 2r�1ðDArÞðDA�Þ � r�2 sin ð2�Þ ¼ 0: (3.12)

This is a very nontrivial characteristic of the hedgehog
ansatz, which reduces a system of coupled nonlinear partial
differential equations (2.9) to a single Eq. (3.12). Actually,
this still holds even with the Skyrme term, as shown below.

It is straightforward to show that

½R�; F��� ¼ 4ðSRk
� � S�

�R
k
�Þtk: (3.13)

Using the two expressions

SRk
�dx

�¼ððD�Þ2þ2r�2sin2�ÞðDA�Þn̂kdyA
þððD�Þ2þ2r�2sin2�Þ
�
�
sin2�	sk"ijsn̂

i �Dan̂
jþ1

2
sinð2�Þ �Dan̂

k

�
dza;

(3.14)

S�
�R

k
�dx

�¼ðD�Þ2ðDA�Þn̂kdyAþr�2sin2�

�
�
sin2�	sk"ijsn̂

i �Dan̂
jþ1

2
sinð2�Þ �Dan̂

k

�
dza;

(3.15)

we obtain

r�½R�;F���k
¼4r�2½2ðD2�Þsin2�þððD�Þ2�r�2sin2�Þsinð2�Þ�n̂k;

(3.16)

and finally the Skyrme Eq. (2.9) reduce to the following
single scalar equation on M2:

0 ¼ ð1þ 2�r�2sin 2�ÞD2�þ 2r�1ðDArÞðDA�Þ
� r�2 sin ð2�Þ

�
1� �ððD�Þ2 � r�2sin 2�Þ

�
: (3.17)

Equations (3.9), (3.10), and (3.17) give a complete set of
the basic equations in this system.

B. Exact monopole black hole

The simplest nontrivial solution of the master Eq. (3.17)
is � ¼ �=2þ N�, where N is an integer. The energy-
momentum tensor (3.9) then becomes

T��dx
�dx� ¼ �KgABr

�2

�
1þ 1

2
�r�2

�
dyAdyB

þ 1

2
K�r�2
abdz

adzb: (3.18)

It is shown that the most general solution with � ¼ �=2þ
N� and ðDrÞ2 � 0 is given by

ds2 ¼ �fðrÞdt2 þ fðrÞ�1dr2 þ r2ðd�2 þ sin 2�d�2Þ;
(3.19)

fðrÞ :¼ 1� 8�GK � 2GM

r
þ 4�GK�

r2
� 1

3
�r2: (3.20)

This solution with � ¼ 0 (without the Skyrme term) was
obtained in Ref. [13] and represents a global monopole
inside a black hole. In the present solution, there is the
Skyrme contribution in the metric function which, at first
glance, is similar to the Maxwell term in the Reissner-
Nordström solution. However, unlike the Maxwell case,
the coefficient of the 1=r2 term is not an integration
constant since it is fixed by the couplings of the theory.
(This is similar to the case of the meron black hole [14]).
To the best of the authors’ knowledge, the above solution
has not been mentioned in any literature. The metric (3.19)
withM ¼ � ¼ � ¼ 0 is the same as the Barriola-Vilenkin
monopole spacetime [15].
It is worth emphasizing that there are also nonspherical

exact solutions with � ¼ �=2þ N� such as the following
Taub-NUT-type solution;

ds2 ¼ �FðrÞðdt� 2n cos�d�Þ2 þ FðrÞ�1dr2

þ ðr2 þ n2Þðd�2 þ sin 2�d�2Þ; (3.21)

FðrÞ: ¼ r

r2 þ n2

�
ð1� 8�GK � 2�n2Þr� 2M

þ 4�GK�þ�n4 � n2ð1� 8�GKÞ
r

� 1

3
�r3

�
(3.22)

and the (Euclidean) Eguchi-Hanson-type solution;

ds2 ¼ gðrÞ r
2

4
ðdtþ cos�d�Þ2 þ gðrÞ�1dr2

þ r2

4
ðd�2 þ sin 2�d�2Þ; (3.23)

gðrÞ: ¼ 1� 8�GK � 32�GK�

r2
� a

r4
� 1

6
�r2; (3.24)

where n and a are constants.
We discuss the properties of the spacetime (3.19) with

� ¼ 0 for simplicity. Although this solution can represent
a black hole, the spacetime is not asymptotically flat but
asymptotic to the global monopole spacetime for K � 0.
The location of the Killing horizon is given by fðrhÞ ¼ 0,
which is solved to give

rh ¼ GM

1� 8�GK

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�K�ð1� 8�GKÞ

GM2

s 1
A:

(3.25)

The relation between M and rh is
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M ¼ 1

2G

�
ð1� 8�GKÞrh þ 4�GK�

rh

�
: (3.26)

In addition to K > 0 and � � 0, we also assume
0< 8�GK < 1 in order to have an outer Killing horizon
defined by df=drjr¼rh > 0, which coincides with the black

hole event horizon. The location of the outer Killing hori-
zon is given by Eq. (3.25) with the upper sign, and it
satisfies

1

r2h
<

1� 8�GK

4�GK�
: (3.27)

The temperature of the black hole is given by

T ¼ 1

4�

df

dr

��������r¼rh

¼ 1

4�

�
1� 8�GK

rh
� 4�GK�

r3h

�
; (3.28)

while the Wald entropy is

S ¼ 1

4G
Ah ¼ �

G
r2h: (3.29)

There is a subtle problem about the global mass of this
monopole black hole. Since there is no free parameter
except for M, the first law must have the form of
	E ¼ T	S for some global mass E. The parameter M
coincides with the ADM mass and satisfies 	M ¼ T	S if
and only if K ¼ 0. On the other hand, Nucamendi and
Sudarsky showed that if the spacetime approaches the metric

ds2 ¼ �gðrÞdt2 þ gðrÞ�1dr2

þ ð1� �Þr2ðd�2 þ sin 2�d�2Þ; (3.30)

gðrÞ ’ 1� 2G ~M

r
; (3.31)

~M is identified as the global mass in the monopole space-
time [16]. For our monopole black hole spacetime, the

Nucamendi-Sudarsky mass is ~M ¼ M=ð1� 8�GKÞ3=2
and—as can be seen directly—it does not satisfy the first
law. Instead, by integrating 	E ¼ T	S, we obtain the
following expression of E:

E ¼ 1

2G

�
ð1� 8�GKÞrh þ 4�GK�

rh

�
þ E0; (3.32)

where E0 is a constant and M ¼ E� E0 is satisfied.
Once the first law is fulfilled, it is possible to discuss the

thermodynamical properties of the present black hole with
the above energy. The heat capacity C and the free energy
F read

C ¼ dE

drh

	
dT

drh
¼ 2�

G
r2h

�
ð1� 8�GKÞ � 4�GK�

r2h

�

�
�
�ð1� 8�GKÞ þ 12�GK�

r2h

��1
; (3.33)

F ¼ E� TS ¼ 1

4G

�
ð1� 8�GKÞrh þ 12�GK�

rh

�
þ E0:

(3.34)

Although it is difficult to discuss the global thermodynam-
ical stability due to the fact that we have no a priori argu-
ment to fix the integration constant E0 in Eq. (3.32), the
local thermodynamical stability can be analyzed. It is seen
that C< 0 is satisfied for

r2h >
12�GK�

1� 8�GK
; (3.35)

while C> 0 holds for

4�GK�

1� 8�GK
< r2h <

12�GK�

1� 8�GK
: (3.36)

This result shows the local thermodynamical stability of a
small monopole black hole with the Skyrme term. Without
the Skyrme term, we have C< 0 and the black hole is
always thermodynamically unstable.

IV. GENERALIZED HEDGEHOG ANSATZ

A. The ansatz

In this section, we propose a generalization of the
hedgehog ansatz for self-gravitating Skyrme fields and
derive the basic equations in a covariant form. We start
from the following configuration:

Y0 ¼ cos�; Yi ¼ n̂i sin�; (4.1)

which is the same as the hedgehog ansatz, and then Rk
� is

given by

Rk
� ¼ sin 2�"ijkn̂iðr�n̂

jÞ þ 1

2
sin ð2�Þðr�n̂

kÞ þ n̂kðr��Þ:
(4.2)

We now assume the following form of n̂i:

n̂1 ¼ cos�; n̂2 ¼ sin�; n̂3 ¼ 0; (4.3)

which satisfy 	ijn̂
in̂j ¼ 1 and hence Eq. (2.15). Here� and

� are scalar functions. Using the above expressions, we
obtain S�� defined by Eq. (2.17) as

S�� ¼ ðr��Þðr��Þ þ sin 2�ðr��Þðr��Þ; (4.4)

and hence

S ¼ sin 2�ðr�Þ2 þ ðr�Þ2: (4.5)

The energy-momentum tensor for the nonlinear sigma
model is then given by

T�� ¼ K

�
ðr��Þðr��Þ þ sin 2�ðr��Þðr��Þ

� 1

2
g��ððr�Þ2 þ sin 2�ðr�Þ2Þ

�
: (4.6)
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Next let us see the field equations for the nonlinear
sigma model. It is shown that they reduce to a single scalar
equation under the following assumptions:

r2n̂i ¼ Ln̂i; (4.7)

ðr��Þðr��Þ ¼ 0; (4.8)

where L is a scalar function. This ansatz for the nonlinear
sigma model was first introduced on flat backgrounds in
Ref. [17] with a particular choice of�. From Eq. (4.3), the
condition (4.7) gives r2� ¼ 0 and L ¼ �ðr�Þ2 and then
we obtain

r�Rk
� ¼

�
ðr2�Þ � 1

2
ðr�Þ2 sin ð2�Þ

�
n̂k: (4.9)

In summary, the field equations for the nonlinear sigma
model (2.9) (with � ¼ 0) have been decomposed into the
following equations for � and �:

r2� ¼ 0; (4.10)

ðr2�Þ � 1

2
ðr�Þ2 sin ð2�Þ ¼ 0; (4.11)

with a constraint, Eq. (4.8). The corresponding Einstein
equations are sourced by the energy-momentum tensor
(4.6). We call the set of conditions (4.1), (4.3), and (4.8)
the generalized hedgehog ansatz for nonlinear sigma
models. Unlike the standard hedgehog ansatz, it also works
in systems without spherical symmetry, as shown in the
following subsections.

At first glance, the simplest nontrivial solution
� ¼ �=2þ N� of the field Eq. (4.11) is very similar to
the Einstein-Klein-Gordon system since the energy-
momentum tensor (4.6) becomes

T�� ¼ K

�
ðr��Þðr��Þ � 1

2
g��ðr�Þ2

�
(4.12)

and � is governed by Eq. (4.10). However, as shown in
Sec. IVC, the present system allows a larger class of
solutions than the Einstein-Klein-Gordon system.

Let us add the Skyrme term to the system under the
generalized hedgehog ansatz. Using the expressions

S��S�
� ¼ sin 4�ðr�Þ2ðr��Þðr��Þ

þ ðr�Þ2ðr��Þðr��Þ; (4.13)

S2 � S��S�� ¼ 2sin 2�ðr�Þ2ðr�Þ2; (4.14)

we obtain the energy-momentum tensor as

T�� ¼ K

�
ðr��Þðr��Þ þ sin 2�ðr��Þðr��Þ þ �sin 2�

� ððr�Þ2ðr��Þðr��Þ þ ðr�Þ2ðr��Þðr��ÞÞ
� 1

2
g��ððr�Þ2 þ sin 2�ðr�Þ2

þ �sin 2�ðr�Þ2ðr�Þ2Þ
�
: (4.15)

Now we derive the Skyrme equations. We will show
that they reduce to a single scalar equation under the
assumptions (4.8) and (4.10) and the following additional
conditions:

ðr�r��Þðr��Þðr��Þ ¼ 0; (4.16)

ðr�r��Þðr��Þðr��Þ ¼ 0: (4.17)

From Eqs. (4.1), (4.3), and (4.16), we obtain

ðr��Þðr��Þðr�r�n̂
kÞ ¼ �ðr�Þ4n̂k: (4.18)

It is a trivial computation to derive the following
expressions:

SRk
� ¼ ðsin 2�ðr�Þ2 þ ðr�Þ2Þ

�
sin 2�"ijkn̂iðr�n̂

jÞ

þ 1

2
sin ð2�Þðr�n̂

kÞ þ n̂kðr��Þ
�
; (4.19)

S�
�R

k
�dx

� ¼ sin 2�ðr��Þðr��Þ
�
sin 2�"ijkn̂iðr�n̂

jÞ

þ 1

2
sin ð2�Þðr�n̂

kÞ
�
þ ðr��Þðr�Þ2n̂k;

(4.20)

from which it follows

r�ðSRk
�Þ ¼

�
ðr��Þr�ðsin 2�ðr�Þ2 þ ðr�Þ2Þ

þ ðsin 2�ðr�Þ2 þ ðr�Þ2Þ
�

�
ðr2�Þ � 1

2
sin ð2�Þðr�Þ2

��
n̂k; (4.21)

r�ðS�
�R

k
�Þ ¼

�
r�ððr��Þðr�Þ2Þ

� 1

2
sin ð2�Þsin 2�ðr�Þ4

�
n̂k: (4.22)

Finally, the Skyrme field Eq. (2.9) reduce to the following
scalar equation:
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0 ¼ ðr2�Þ � 1

2
sin ð2�Þðr�Þ2

þ �

�
ðr��Þr�ðsin 2�ðr�Þ2Þ þ sin 2�ðr�Þ2

� ðr2�Þ � 1

2
sin ð2�Þðr�Þ2ðr�Þ2

�
: (4.23)

In summary, the set of conditions in Eqs. (4.1), (4.3),
(4.8), (4.16), and (4.17), define the generalized hedgehog
ansatz for Skyrme models, under which the Skyrme equa-
tions are decomposed into Eqs. (4.10) and (4.23). Again,
� ¼ �=2þ N� is a solution of Eq. (4.23). In this case, the
Skyrme term does not appear directly in the geometry, as
seen in Eq. (4.15). This system is also not equivalent to the
Einstein-Klein-Gordon system because of the constraints
(4.16) and (4.17). (See also the discussion in Sec. IVC.)

In the following subsections, we will present several
spacetimes with suitable isometries which are compatible
with the generalized hedgehog ansatz and, in particular,
with the constraints (4.8), (4.16), and (4.17), for � and �.

B. Spherically, plane, hyperbolically,
and cylindrically symmetric spacetimes

The metric in the most general spacetime with spherical
(k ¼ 1), plane (k ¼ 0), or hyperbolic (k ¼ �1) symmetry
is given by

ds2 ¼ gABðyÞdyAdyB þ rðyÞ2
abðzÞdzadzb: (4.24)

We assume � ¼ �ðyÞ and � ¼ �ðy; zÞ in Eqs. (4.1), (4.3),
(4.16), and (4.17). The canonical coordinates on the sub-
manifold ðK2; 
abÞ are


abðzÞdzadzb ¼ d�2 þ hð�Þ2d�2; (4.25)

where hð�Þ ¼ sin �, 1, and sinh � for k ¼ 1, 0, �1,
respectively. The most general energy-momentum tensor
compatible with this symmetry is given by

T��dx
�dx� ¼ TABðyÞdyAdyB þ PðyÞ
abdz

adzb; (4.26)

where P is a scalar onM2. The compatibility of the energy-
momentum tensor (4.15) with the above form requires
� ¼ �ðyÞ or � ¼ �ðzÞ.

In the case of � ¼ �ðzÞ, the conditions (4.8) and (4.16)
are fulfilled, while Eq. (4.10) becomes

�D2� ¼ 0; (4.27)

where �D2 :¼ �Da
�Da. It is still not clear if there exist

solutions of the above equation which give the energy-
momentum tensor in the form of Eq. (4.26) and fulfill the
condition (4.17).

In the case of � ¼ �ðyÞ, Eqs. (4.10) and (4.8) become

D2�þ 2rðDArÞðDA�Þ ¼ 0; ðDA�ÞðDA�Þ ¼ 0;

(4.28)

where D2 :¼ DAD
A. There are two interesting solutions of

the above equations which give the energy-momentum
tensor in the form of (4.26). One is the static spacetime

ds2¼�gttð�Þdt2þg��ð�Þd�2þrð�Þ2
abdz
adzb; (4.29)

� ¼ �ð�Þ; � ¼ $t; (4.30)

and the other is the cosmological spacetime

ds2 ¼ �gttðtÞdt2 þ g��ðtÞd�2 þ rðtÞ2
abdz
adzb; (4.31)

� ¼ �ðtÞ; � ¼ $�; (4.32)

where $ is a constant. In both cases, the conditions (4.16)
and (4.17) for Skyrme fields are fulfilled.
Our ansatz works also in nonrotating cylindrically sym-

metric spacetimes. We consider the most general nonrotat-
ing cylindrically symmetric space-time,

ds2 ¼ gABðyÞdyAdyB þ rðyÞ2d�2 þ sðyÞ2d�2; (4.33)

and assume � ¼ �ðyÞ and � ¼ �ðy; �;�Þ in Eqs. (4.1)
and (4.3). The most general energy-momentum tensor
compatible with this symmetry is given by

T��dx
�dx� ¼ TABðyÞdyAdyB þ P1ðyÞd�2 þ P2ðyÞd�2;

(4.34)

where P1 and P2 are scalars on M2. The compatibility of
the energy-momentum tensor (4.15) with the above form
requires � ¼ �ðyÞ, � ¼ �ð�Þ, or � ¼ �ð�Þ. Actually,
the configuration � ¼ m� or � ¼ m� is compatible with
the generalized hedgehog ansatz, namely, it satisfies the
conditions (4.8), (4.16), and (4.17), and gives the energy-
momentum tensor in the form of Eq. (4.34). In the case of
� ¼ �ðyÞ, the following configurations are compatible
with or without the Skyrme term:

ds2 ¼ �gttð�Þdt2 þ g��ð�Þd�2 þ rð�Þ2d�2 þ sð�Þ2d�2;

(4.35)

� ¼ �ð�Þ; � ¼ $t; (4.36)

and

ds2 ¼ �gttðtÞdt2 þ g��ðtÞd�2 þ rðtÞ2d�2 þ sðtÞ2d�2;

(4.37)

� ¼ �ðtÞ; � ¼ $�: (4.38)

C. Axisymmetric spacetimes and nontrivial
realization of symmetries

It is shown that the conditions (4.8), (4.16), and (4.17)
are satisfied for the following configuration:

ds2 ¼ habðvÞdwadwb þ gABðvÞdvAdvB; (4.39)

� ¼ �ðvÞ; � ¼ $tþm�; (4.40)
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where$ and m are constants and vA ¼ r, z. wa ¼ t, � are
Killing coordinates and hab is the induced metric on the
Killing leaves, which are the fr ¼ const; z ¼ constg
surfaces. An interesting example of the above metric is
the well-known Weyl-Papapetrou metric for stationary and
axisymmetric spacetimes,

ds2 ¼ �Ae�=2ðdtþ!d�Þ2 þ e2�ffiffiffiffi
A

p ðdr2 þ dz2Þ

þ Ae��=2d�2; (4.41)

where the metric functions depend only on r and z (see
Ref. [18]). We will follow the notation in Ref. [19].

Here let us focus on the nonlinear sigma model. The
nonzero components of its energy-momentum tensor are
given by

Tz
z þ Tr

r ¼ �KA�1e�=2½�$2e�� þ ðm�$!Þ2�sin 2�;

(4.42)

Tz
z � Tr

r ¼ K
ffiffiffiffi
A

p
e�2�½ð@z�Þ2 � ð@r�Þ2�; (4.43)

T�
t ¼ K$A�1e�=2ðm�$!Þsin 2�; (4.44)

Tt
� ¼ �KmA�1e�=2½!ðm�$!Þ þ$e���sin 2�;

(4.45)

Tt
t � T�

� ¼ �KA�1e�=2½$2e��

þ ðmþ$!Þðm�$!Þ�sin 2�; (4.46)

Tt
t þ T�

� ¼ �K
ffiffiffiffi
A

p
e�2�½ð@r�Þ2 þ ð@z�Þ2�: (4.47)

The relevant combinations of the tensor G�
� :¼ G�

� þ
�g�� are

Gz
z þ Gr

r ¼ e�2�ffiffiffiffi
A

p ð4Aþ 2�
ffiffiffiffi
A

p
e2�Þ; (4.48)

Gz
z � Gr

r ¼ e�2�ffiffiffiffi
A

p
�
@2rA� @2zAþ 1

8
Aðð@r�Þ2 � ð@z�Þ2Þ

� 1

2
Ae�ðð@r!Þ2 � ð@z!Þ2Þ � 2ðð@rAÞð@r�Þ

� ð@zAÞð@z�ÞÞ
�
; (4.49)

G�
t ¼ e�2�

2
ffiffiffiffi
A

p ~r � ðAe� ~r!Þ; (4.50)

Gt
� ¼�e�2�

2
ffiffiffiffi
A

p ½A!4�þ!ð ~rAÞ � ð ~r�Þ þ 2A!e�ð ~r!Þ2

þ ð1þ!2e�Þf�4!þ ~r! � ð ~rAþA ~r�Þg�;
(4.51)

Gt
t � G�

� ¼ � e�2�ffiffiffiffi
A

p
�
1

2
~r � ðA ~r�Þ þ! ~r � ðAe� ~r!Þ

þ Ae�ð ~r!Þ2
�
; (4.52)

Gt
t þ G�

� ¼ e�2�ffiffiffiffi
A

p
�
1

2
4Aþ 2A4�þ 1

8
Að ~r�Þ2

� 1

2
Ae�ð ~r!Þ2 þ 2�

ffiffiffiffi
A

p
e2�

�
; (4.53)

where � ¼ @2r þ @2z and ~r ¼ ð@z; @rÞ. Equations (4.42)–
(4.53) provide a complete set of the Einstein equations.
It is seen that, in the static case (! ¼ 0), we have Gt

� ¼
G�

t ¼ 0 and hence the Einstein equations require
$m ¼ 0.
The master Eq. (4.11) for � ¼ �ðr; zÞ is written as

e�2�ffiffiffiffi
A

p ðA4 �þ ~rA � ~r�Þ

þ e�=2

2A
ð$2e�� � ð$!�mÞ2Þ sin 2� ¼ 0: (4.54)

� ¼ �=2þ N� is again a special solution and gives the
following energy-momentum tensor:

Tz
z þ Tr

r ¼ �KA�1e�=2ð�$2e�� þ ðm�$!Þ2Þ;
(4.55)

Tz
z � Tr

r ¼ Tt
t þ T�

� ¼ 0; (4.56)

T�
t ¼ K$A�1e�=2ðm�$!Þ; (4.57)

Tt
� ¼ �KmA�1e�=2ð!ðm�$!Þ þ$e��Þ; (4.58)

Tt
t�T�

� ¼�KA�1e�=2ð$2e��þðmþ$!Þðm�$!ÞÞ:
(4.59)

At first glance, the above form of the energy-momentum
tensor can also be realized by a massless Klein-Gordon
field. A linear configuration

c ðt; �Þ ¼ p1tþ p2� (4.60)

certainly solves the Klein-Gordon equationhc ¼ 0 in the
axisymmetric spacetime (4.41), where p1 and p2 are con-
stants. This configuration gives the following energy-
momentum tensor:

Tz
zþTr

r ¼�A�1e�=2ð�p2
1e

��þðp2�p1!Þ2Þ; (4.61)

Tz
z � Tr

r ¼ Tt
t þ T�

� ¼ 0; (4.62)
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T�
t ¼ p1A

�1e�=2ðp2 � p1!Þ; (4.63)

Tt
� ¼ �p2A

�1e�=2ð!ðp2 � p1!Þ þ p1e
��Þ; (4.64)

Tt
t�T�

� ¼�A�1e�=2ðp2
1e

��þðp2þp1!Þðp2�p1!ÞÞ;
(4.65)

which are indeed the same as Eqs. (4.55)–(4.59) with

p1 ¼
ffiffiffiffi
K

p
$ and p2 ¼

ffiffiffiffi
K

p
m. However, there is a crucial

difference between the present system and the Klein-
Gordon system: unlike the generalized hedgehog ansatz
constructed here, the configuration (4.60) of the Klein-
Gordon field is not physical. Indeed, the configuration
with p2 � 0 is not compatible with the axisymmetric
spacetime because the periodic boundary condition
c ðt; �Þ ¼ c ðt; �þ 2�Þ is not satisfied. Even in the case
with p2 ¼ 0, if one assumes that the scalar field is observ-
able, the configuration c ¼ p1t is not quite realistic
due to the obvious unboundedness of c for t ! �1.
In contrast, one obtains the same energy-momentum
tensor in which the fields Yi are completely smooth and
bounded in the case of the nonlinear sigma model and
automatically satisfy the boundary conditions, as can be
seen in Eqs. (4.1) and (4.3).

Thus, the configuration (4.40) discloses a new sector of
research of stationary and axisymmetric spacetimes. Such
spacetimes have been deeply analyzed until now and the
solution-generating techniques have been established for
the self-gravitating nonlinear sigma models [20,21]. By
adopting the powerful techniques introduced in Ref. [18],
however, one assumes that the nonlinear sigma model
does not depend on the Killing coordinates. (See also the
recent paper [22] on exact solutions with this assumption.)
Indeed, in such a case, the corresponding energy-
momentum tensor is trivially compatible with the space-
time symmetry. In the configuration (4.40), in contrast, the
nonlinear sigma model (both with and without the Skyrme
term) depends on the Killing coordinates in a nontrivial
way such that the energy-momentum tensor is still com-
patible with the spacetime symmetry.

V. SUMMARYAND PERSPECTIVES

In the present paper, we have reinvestigated the hedge-
hog ansatz for spherically symmetric spacetimes and con-
sidered its generalization for nonspherically symmetric

spacetimes for self-gravitating nonlinear sigma models
and Skyrme models. Our main results are broadly classi-
fied into two types.
In Sec. III, we derived the basic equations under the

hedgehog ansatz for future investigations in a fully cova-
riant form on the two-dimensional orbit spacetime under
the spherical isometries. We then obtained an exact solu-
tion representing a global monopole inside a black hole and
briefly discussed its thermodynamical properties. The
Skyrme term in the metric function resembles the
Maxwell term but its coefficient is fixed by the coupling
constants.
In Sec. IV, we proposed the generalized hedgehog ansatz.

Under this new ansatz, the field equations reduce to coupled
partial differential equations for two scalar fields � and �
with several constraint equations between them. We have
presented some particular configurations compatible with
the generalized hedgehog ansatz in physically interesting
spacetimes, including stationary and axisymmetric space-
times. In those configurations, the Skyrme fields depend on
the Killing coordinates but the corresponding energy-
momentum tensor does not depend on the Killing
coordinates. As a result, they allow one to implement the
spacetime symmetries in a nontrivial way.
For this reason, the field configurations constructed here

are quite different from the usual ones and it is still
unknown at present what kind of solutions they allow.
For this purpose, to extend the solution-generating tech-
niques to this new sector is an important subject. Also, the
generalized hedgehog ansatz is useful to construct black
hole or regular solutions numerically. Those studies will
shed new light on the nature of Skyrmions.
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