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We investigate the contributions of quantum fields to black hole entropy by using a cutoff scale at which

the theory is described with a Wilsonian effective action. For both free and interacting fields, the total

black hole entropy can be partitioned into a contribution derived from the gravitational effective action

and a contribution from quantum fluctuations below the cutoff scale. In general, the latter includes a

quantum contribution to the Noether charge. We analyze whether it is appropriate to identify the rest with

horizon entanglement entropy, and find several complications for this interpretation, which are especially

problematic for interacting fields.
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I. INTRODUCTION

The concept of black hole entropy, first introduced
by Bekenstein [1,2] using information theory and the anal-
ogy between black hole mechanics and thermodynamics,
became firmly established when Hawking [3] derived
black hole radiation and its thermal properties by consid-
ering quantum fields on a black hole background. The
formula expressing the black hole entropy in terms of the
horizon area A and Newton’s constant,

SBH ¼ A

4ℏG=c3
; (1)

has since then become a focal point of quantum gravity
research. Attempts to derive it from an analysis of micro-
scopic, fundamental degrees of freedom have met with
varying degrees of success in string theory, loop quantum
gravity, and other approaches.

Staying within an effective treatment in which gravity
is described by a metric field, there appear to be two
contributions to black hole entropy. Firstly, the gravita-
tional field itself in the absence of matter fields seems to
have a ‘‘gravitational’’ entropy given by the Bekenstein-
Hawking formula. This can be derived from the first law of
black hole mechanics and the Hawking temperature, or
from the saddle-point evaluation of the Euclidean gravita-
tional path integral for the thermal partition function [4].
Secondly, the contribution of quantum matter fields on the
black hole background (and of gravitons, if metric fluctua-
tions are quantized perturbatively) to the thermal entropy is
also proportional, in the leading order, to the event horizon
area, but with a divergent coefficient. This entropy arises
from the one-loop correction to the thermal partition func-
tion. It can be conceptualized as the entropy of a thermal
state for quantum fields outside the horizon, or, at least in
some cases, as the entanglement entropy across the horizon

of quantum fields in a global pure state. For reviews of the
main issues and results, see Refs. [5,6].
The area-scaled divergence in the matter contribution

to the entropy can be absorbed into a renormalization of
Newton’s constant. More precisely, the divergences in the
entropy are related to the ‘‘bare gravitational’’ entropy in
the same way as the divergences in the effective gravita-
tional action are related to the bare gravitational action [7].
The renormalization properties of the black hole entangle-
ment entropy have been further studied in Refs. [8–10],
with the case of nonminimally coupled fields receiving
special attention both for scalars [11] and for gauge fields
[12–14]. Different regularization methods (brick-wall
boundary at the horizon, Pauli-Villars regulator, UV cutoff
� in heat kernel expansion, etc.) do not always give the
same results for the matter contribution [8,15–19]. These
discrepancies are not surprising, since the UV regulator
modifies precisely those degrees of freedom which are
most responsible for the entropy.
While black hole entropy emerges, formally, from the

gravitational partition function, that does not reveal the
nature of the states that are counted by the entropy. It is
tempting to think that, like the minimally coupled matter
contribution, all of the entropy might be interpreted as
entanglement entropy. For this to make sense, it would
seem that the low-energy Newton constant must arise fully
from integrating out quantum fluctuations—i.e., that there
is no ‘‘bare’’ gravitational action or entropy at the UV
cutoff scale, so that gravity is entirely ‘‘induced’’ [10].
From the QFT viewpoint, there seems to be no reason
why this should be so, although a thermodynamic argu-
ment suggests it must be [20,21]. But, in any case, without
a UV completion of the theory, it is not really possible to
assess this entanglement interpretation of the full entropy
because the value of the entropy depends on the artificial
UV cutoff at scale �UV.
However, it is possible to test the entanglement inter-

pretation of black hole entropy in a way that sidesteps the
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unknown physics of the UV cutoff and deals only with
finite quantities. We can partition the degrees of freedom
into those with momenta greater than an intermediate scale
k � �UV, which are integrated out and absorbed into a
Wilsonian effective action, and those with momenta
less than k, whose quantum fluctuations contribute explic-
itly to the entropy. As k is lowered, contributions to
the total entropy transfer from the explicit fluctuations to
the ‘‘gravitational entropy’’ of the effective action (i.e., the
area term plus curvature corrections), via the flow of the
gravitational couplings. This allows us to exhibit the re-
normalization behavior of the contributions to the entropy
without sensitivity to the UV cutoff, which in turn allows
us to make precise sense of the question whether the
entropy of the modes with momenta less than k admits
an interpretation as entanglement entropy. We shall find
that such an interpretation, while at first superficially plau-
sible, suffers from a number of difficulties.

The renormalization group (RG) flow of black hole
entropy from state-counting of explicit field fluctuations
to effective gravitational action was studied long ago in
Ref. [22]. That paper studied how the entropy accounting
changes when the renormalization scale drops below a
mass scale of the fluctuations, and focused on the inter-
pretation of the contribution from nonminimal couplings to
curvature. Our study is very similar in spirit, but we con-
sider a continuously varying RG scale, and we try to assess
more precisely the validity of the state-counting interpre-
tation even when nonminimal coupling is absent.

A somewhat similar scheme was introduced recently in
Ref. [23] (see especially Secs. 4.1.3 and 4.3.3). The main
difference is that in that paper, the full physical description
of the system is assumed to be contained in the gravitational
effective action, with no consideration of the quantum
fluctuations below the cutoff scale. The same assumption
is made in Ref. [24], where an explicit identification of the
cutoff scale with the size of the black hole is proposed. We
take an alternative interpretation of the renormalization
group, in which the cutoff scale is an arbitrary parameter
separating short and long wavelength modes, and use it as a
tool for probing the entanglement interpretation of the long-
wavelength contribution to the entropy.

The structure of the paper is as follows: In Sec. II,
we present the definition of black hole entropy from a
canonical ensemble and its connection with the effective
action for the gravitational field. In Sec. III, we focus on free
quantum fields, and we introduce the definition of the run-
ning effective action dependent on a RG cutoff scale, and
exhibit the renormalization properties of black hole entropy,
including a detailed computation for the massless scalar
field. In Sec. IV, we present a scheme for extending this
idea to interacting fields. In Sec. V, we discuss a number of
issues that impede a direct interpretation of the IR contri-
butions to the entropy as entanglement entropy. Section VI
includes a summary of the results and a discussion.

Throughout this paper, we work in four dimensions and
use units with ℏ ¼ c ¼ 1.

II. CANONICAL ENSEMBLE AND
ENTANGLEMENT ENTROPY

This paper will focus on the properties of black hole
entropy in a thermal state, as defined by a canonical
partition function at fixed temperature:

Z ¼ Tr e��H : (2)

The canonical Hamiltonian H in Eq. (2) includes terms
for both the gravitational field and the matter field. Because
of diffeomorphism invariance,H is a boundary term when
acting on physical states that satisfy the diffeomorphism
constraints. The thermal ensemble is thus specified by
boundary conditions. The entropy is computed, as is stan-
dard in statistical mechanics, by application of the operator
(�@� � 1) to � lnZ. This expression for Z is formally

equivalent [4] to the Euclidean path integral

Zð�; gBÞ ¼
Z
�;gB

DgD’ e�Sb½g��S½g;’�; (3)

where Sb is a bare action for the gravitational field
and Sðg;’Þ is an action for the matter field ’ on back-
ground g.1 The notation

R
�;gB

represents integration over

Euclidean fields with the metric gB fixed and stationary
with periodicity � in Euclidean time at an outer boundary.
For the matter fields, we are free to choose any boundary
condition (e.g., Dirichlet or Neumann) as long as it is
stationary and compatible with the � periodicity. These
alternative choices may represent genuinely different
physical ensembles, leading to different results for the
entropy. In this paper, we will make the simplest assump-
tion of Dirichlet boundary conditions, leaving a broader
discussion of the issue for later work. We take the bound-
ary to have a finite size, small enough for the canonical
ensemble to be stable [26]. (Alternatively, we could work
in asymptotically anti–de Sitter spacetime [27].)
We can formally integrate out the matter field in Eq. (3),

defining

W½g� ¼ � ln
Z
�;gB

D’ e�S½g;’�;

�½g� ¼ Sb½g� þW½g�;
(4)

so that

Zð�; gBÞ ¼
Z
�;gB

Dg e��½g�: (5)

The matter contribution W to the gravitational effective
action � is generally UV divergent. We assume that a

1A demonstration of this formal equivalence taking the con-
straints into account is given in Ref. [25].
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regularization scheme for it is in place, and that the bare
gravitational couplings (parameters of Sb) are adjusted so
that the renormalized couplings in � are finite.

We use now a zeroth-order approximation for quantum
gravity, in which the gravitational path integral is evaluated
at the saddle point. (This amounts to disregarding from the
calculation all graviton fluctuations; in a more full treat-
ment, which we omit for simplicity, they could be included
perturbatively among the matter fields ’). Therefore, we
write

Zð�; gBÞ ¼ e��½ �gð�;gBÞ�: (6)

Here �gð�; gBÞ is the metric that solves the equations of
motion derived from �½g�, with the boundary conditions
that we have set. We assume that the renormalized cosmo-
logical constant is zero or negligible, and that the higher-
order-in-curvature terms of � (which include nonlocal
terms) can likewise be neglected in the regime of interest.
Then �½g� is composed only of the bulk curvature term and
the corresponding Gibbons-Hawking boundary term2:

�½g�¼� 1

16�Gren

Z ffiffiffi
g

p
R� 1

8�Gren

Z
@M

ffiffiffi
h

p
K: (7)

Now, we specialize the discussion to the ensemble
defined by a spherically symmetric boundary metric gB,
which is a 2-sphere of radius rB. We also work in four
dimensions, though most of our results generalize straight-
forwardly to d dimensions. The on-shell metric �g is
Euclidean Schwarzschild:

ds2¼
�
1� �rþ

r

�
dt2þ

�
1� �rþ

r

��1
dr2þr2d�2; (8)

with the horizon radius �rþð�; rBÞ defined so that (i) there is
no conical singularity at r ¼ �rþ, and (ii) the ensemble is
stable (drþ=d� < 0). These conditions imply [26] that
�rþ is the larger root of the equation:

� ¼ 4�rþ
�
1� rþ

rB

�
1=2

: (9)

The ‘‘box’’ at the boundary rB stabilizes the ensemble by
giving the black hole a positive heat capacity.3

When evaluated on this metric, the bulk term vanishes
and the boundary term yields

�½ �g� ¼ 1

Gren

ð3��r2þ � 4�rB �rþÞ: (10)

The entropy is given by the standard thermodynamical
formula

SBH ¼ �ð�@� � 1Þ lnZð�; rBÞ ¼ ð�@� � 1Þ�½ �gð�; rBÞ�:
(11)

When applied to Eq. (10), this results in the renormalized
Bekenstein-Hawking formula:

SBH ¼ A

4Gren

; (12)

where A ¼ 4��r2þ is the horizon area.
The above approach to evaluating the matter field

contribution to SBH has been dubbed in the past the ‘‘on
shell’’ computation or the ‘‘thermodynamical’’ computa-
tion [16,17]. Within this procedure, the fact that the full
entropy including quantum corrections is expressed by the
Bekenstein-Hawking formula involving the renormalized
Newton constant Gren is an immediate consequence of the
renormalization of the effective action, as was emphasized
in Ref. [9]. Note that this also implies that the so-called
‘‘species problem’’ (the dependence of the quantum con-
tribution to black hole entropy on the kinds of existing
quantum fields, apparently contradicting the universality of
the Bekenstein-Hawking formula [28]) is moot, because in
terms of the renormalized value Gren, this formula is al-
ways correct regardless of the field species (which affect
the relation of Gren to the unobservable bare value).
In contrast, when computing the contribution of the

matter fields as entanglement entropy on the black hole
background [28–31], this renormalization property is much
less apparent. We shall therefore discuss in more detail the
relation to entanglement entropy computations.
To compute the entanglement entropy contribution

to black hole entropy, we consider a minimally coupled
quantum field ’ on a Schwarzschild background.
The entanglement entropy across the event horizon is
defined by

Sent ¼ �Tr�out ln�out; (13)

where �out is the restricted density matrix for the ex-
ternal region, with the internal states traced over. Using a
Euclidean path integral representation for �, this can be
rewritten [32–34] as the operation (�@� � 1) applied to the
matter contribution W� to the effective action, computed
on the Euclidean Schwarzschild background with a conical
singularity introduced at the horizon. Here 2�� is the
periodicity of the angular ‘‘time’’ coordinate, and � is set
to 1 after the differentiation:

Scone ¼ ð�@� � 1ÞW�j�¼1: (14)

Actually, this ‘‘conical’’ procedure yields the entanglement
entropy only for minimally coupled fields. For nonminimally

2It has recently been pointed out [23] that the Gren that appears
in the boundary term of the effective action might not be the
same as the one in the bulk term when the matter field is
nonminimally coupled to the curvature. For the moment, we
assume that this is not the case, and that the bulk and boundary
Gren are equal, as is the case, for example, when ’ is the
minimally coupled scalar field.

3If the black hole grows a little bit, its horizon is closer to the
box, so less redshifting of temperature occurs from the horizon
to the box. If rB < 3rþ=2, then this suppression of redshifting
makes the temperature of the larger black hole higher than 1=�
at the box.
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coupled fields, Scone is not equal to Sent, as it includes an extra
contribution, interpretable [13,35] as the expectation value of
a term in the Wald entropy [36]. Our subsequent discussion
in this section assumes minimal coupling. We shall return to
expand a bit on this issue in Sec. V.

The use of a background with a deficit angle 2�ð1� �Þ
is equivalent to using periodic quantum fields whose physi-
cal periodicity � at a radius rB is related to the horizon
parameter rþ by

� ¼ 4�rþ�
�
1� rþ

rB

�
1=2

(15)

rather than by Eq. (9). Hence, � and � are proportional at
fixed rþ, and the entanglement entropy is equivalently
given by

Sent ¼ ð�@� � 1ÞW½gð�; rB; rþÞ�jrþ¼�rþ : (16)

Comparing with Eq. (11) and recalling Eq. (4), the
relationship between the entanglement black hole entropy
and the thermodynamical black hole entropy becomes
clear: The entanglement entropy (when computed using
as background the metric �g) differs from the matter con-
tribution to the thermodynamical entropy only in that the
variation with respect to � is done while keeping rþ fixed
(thus involving the introduction of a deficit angle), instead
of taking into account the dependence of rþ on� in the on-
shell solution. Hence the dubbing of this as the ‘‘off shell’’
method in Ref. [16].

However, it can be argued that the two methods
actually give the same results. First, consider again
Eq. (11), and recast the dependence of �½ �gð�; rBÞ� as
�½gð�; rB; �rþð�; rBÞÞ�. Then the ‘‘total’’ � derivative
appearing in Eq. (11) can be unpacked as

@��½ �gð�; rBÞ� ¼ ð@��½gð�; rB; rþÞ�
þ @rþ�½gð�; rB; rþÞ�@�rþÞjrþ¼�rþ : (17)

The last term should vanish, because @rþ�½gð�; rB; rþ�
expresses a variation of the action with respect to the
metric with fixed boundary conditions, which is zero at
the on-shell value of rþ (a stationary point of �).4 Indeed,
this can be checked with a direct computation of this
derivative evaluated on the deficit-angle version of
Schwarzschild, where the conical singularity is accounted
for as an extra term in the curvature scalar:

R ¼ �Rþ 4�ð1� �Þ��: (18)

So, we conclude that the thermodynamical entropy can be
expressed using just the first term of Eq. (17), which
includes the same kind of ‘‘off shell’’ partial derivative as
Eq. (16). Hence, we have

SBH ¼ ð�@� � 1ÞðSb½gð�; rB; rþÞ�
þW½gð�; rB; rþÞ�Þjrþ¼�r

¼ ð�@� � 1ÞSb½gð�; rB; rþÞ�jrþ¼�rþ þ Sent: (19)

Therefore, the entanglement entropy must share the
renormalization property of the thermodynamical entropy:
its divergences should be absorbable in a redefinition of the
bare gravitational couplings, as it occurs for W in the
thermodynamical entropy.
Note that the equality requires the entanglement entropy

to be computed using as background spacetime the metric
�g that solves the quantum-corrected equations of motion.
In practice, this metric is assumed to be Schwarzschild
(or another known black hole solution to the gravitational
theory) expressed in terms of the observable low-energy
couplings.
An issue we have mentioned but not dedicated proper

attention to is the need to regularize W (the matter con-
tribution to �) to make it finite. Insofar as W is divergent,
the whole argument is not rigorously defined. It would
clearly be preferable if the renormalization properties of
the entropy and the relation to entanglement entropy could
be studied by manipulation of manifestly finite quantities
only. In the rest of this paper, we achieve this by introduc-
ing aWilsonian renormalization group scale k, at which the
entropy can be decomposed into respective contributions
from the gravitational action and the matter action. The
flow of these contributions as k changes is then well
defined. In the next section, we study this flow for free
matter fields, and in Sec. IV matter interactions are in-
cluded. In Sec. V, the viability of interpreting the matter
contributions as entanglement entropy is probed.

III. RG FLOW OF BLACK HOLE ENTROPY
FOR FREE FIELDS

In this section, we will show how the black hole entropy,
in the ‘‘thermodynamical’’ framework presented above,
can be described in a way that makes its renormalization
properties clear, avoiding the handling of divergences.
In the spirit of the Wilsonian interpretation of the renor-
malization group [38], the idea is to introduce a cutoff scale
k and to integrate out only the quantum modes above that
scale.
Let us start by going back to Eq. (6), after the zeroth-

order approximation for the gravitational path integral has
been made, and replace �½ �g� with its definition:

Zð�; rBÞ ¼ e�Sb½ �gð�;rBÞ��W½ �gð�;rBÞ�

¼ e�Sb½ �gð�;rBÞ�
Z
�;rB

D’ e�S½ �gð�;rBÞ;’�: (20)

The path integral should be assumed to contain an implicit
covariant UV regulator—for example, a short-distance
cutoff � in the heat kernel expansion. If ’ is a free field,

4This argument has been made previously in Ref. [11]; see
also Ref. [37].
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assumed for illustration to be a scalar, then its action takes
the general form5

S½g; ’� ¼ � 1

2

Z ffiffiffi
g

p
’�g’; (21)

where �g is an elliptic operator depending on the metric g;

for example, � ¼ �r2
g for a massless minimally coupled

scalar field, and � ¼ �r2
g þ �RðgÞ for a nonminimally

coupled one. Here r2
g is the Laplacian operator on back-

ground g. The matter contributionW to the effective action
is given by the one-loop determinant:

�½g� ¼ Sb½g� þ 1

2
Tr� ln�g; (22)

which can be computed with standard heat kernel
expansion techniques. With the regulator � removed, the
right-hand side is divergent; leaving it in place, we can
make the couplings of the bare action Sb dependent on � in
such a way that the effective action � and the physics
derived from it are independent of �.

We now want to introduce an intermediate RG scale
k < 1=�. One simple way of doing this is using an additive
cutoff as introduced by Wetterich [39] to study the exact
renormalization group. The gravitational effective action at
scale k is defined in general as

�k½g� ¼ Sb½g� � ln
Z

D’ e�S½g;’��1
2

R ffiffi
g

p
’½Rkð�gÞ�’: (23)

Here Rkð�Þ ¼ k2rð�
k2
Þ, with rðzÞ being a function that

satisfies the properties rð0Þ ¼ 1 and rðzÞ ¼ 0 for z * 1.
This implies that the Rk term serves as an IR cutoff
in the path integral, suppressing from �k the contribution
of the modes with eigenvalue p2 < k2. Hence, �k is an
‘‘average’’ effective action that only incorporates the effect
on the gravitational couplings of fluctuations on length
scales smaller than k�1. For k ! 0, �k approaches the
full effective action �.6

In the free field case, �k can be computed exactly as a
modified one-loop determinant:

�k½g� ¼ Sb½g� þ 1

2
Tr� ln ½�g þRkð�gÞ�; (24)

which by differentiation with respect to RG flow ‘‘time’’
t ¼ ln k yields the well-known RG flow equation [39]:

@t�k ¼ 1

2
Tr

�
@tRk

�g þRkð�gÞ
�
: (25)

Comparing Eqs. (24) and (22), we get the following
expression for the difference between the total effective
action and the effective action at scale k:

�½g� � �k½g� ¼ 1

2
Tr ln

�
�g

�g þRkð�gÞ
�
� Wk½g�: (26)

Notice that we can drop the UV cutoff � in this expression,
because the trace has now acquired a lower intrinsic UV
cutoff at scale k, since Rk ¼ 0 for eigenvalues p2 * k2;
the right-hand side of Eq. (26) is well defined regardless of
any overall UV cutoff for the theory. Evaluating at the on-
shell Euclidean Schwarzschild metric �g ¼ �gð�; rBÞ and
applying the operator (�@� � 1), we obtain the relation

for the entropies:

SBH � SðkÞBH ¼ ð�@� � 1ÞWk: (27)

SBH is the total black hole entropy, incorporating the
bare gravitational contribution and the total effect of the

quantum matter fields. SðkÞBH is the ‘‘effective gravitational
entropy at scale k,’’ derived from the effective action �k½g�;
it incorporates both the bare gravitational contribution
and the effect that the high-frequency quantum modes
have on the renormalization of the gravitational couplings.
The right-hand side encompasses the effect of the
low-frequency modes, whose contributions had been
suppressed from �k. The total entropy SBH is independent
of the sliding scale k, which partitions it into two comple-
mentary contributions. Thus, the renormalization proper-
ties of the entropy are made clear without need to worry
about the global UV cutoff and the treatment of divergen-
ces. SBH is expressed in terms of low-energy, observable
couplings, and the other terms in the equation differ from it
by a finite RG scale k, which in principle can receive a
physical interpretation.
To investigate whether the right-hand side of Eq. (27)

can be interpreted as the entanglement entropy of the
modes below scale k, let us evaluate it in a concrete
example. We consider a minimally coupled massless scalar
field ’, so �g ¼ �r2

g. We choose as our cutoff function

the ‘‘optimized cutoff’’ introduced by Litim [40], which is
given by

Rkð�Þ ¼ k2r

�
�

k2

�
; rðzÞ ¼ ð1� zÞ�ð1� zÞ: (28)

We have, in this case, that the operator traced upon in Wk

[Eq. (26)] is exactly zero for eigenvalues above k2:

Wk½ �g� ¼ 1

2
Tr

�
ln

��r2
�g

k2

�
�½k2 � ð�r2

�gÞ�
�
: (29)

We can use the procedure described in Appendix A of
Ref. [41], adapted for a four-dimensional manifold with
boundaries, for using the heat kernel expansion to compute
the trace of an arbitrary function of our operator, Fð�Þ.

5We assume that there is no boundary term in the matter
action, or, more exactly, that it vanishes when the boundary
conditions are imposed.

6Note that with the cutoff function Rk, the suppression of the
modes with p2 < k2 is not complete; it is rather like giving them
a mass �k2.
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Assuming Dirichlet or Neumann boundary conditions are
imposed, one has

Tr½Fð�Þ� ¼ 1

16�2
½a0ð�ÞQ2ðFÞ þ a1ð�ÞQ3

2
ðFÞ

þ a2ð�ÞQ1ðFÞ þ � � ��; (30)

where the coefficients QnðFÞ are defined as

QnðFÞ ¼ 1

�ðnÞ
Z

dzzn�1FðzÞ; (31)

and the heat kernel coefficients an take the form [42]

a0ð�Þ ¼
Z ffiffiffi

g
p

; (32)

a1ð�Þ ¼
ffiffiffiffi
�

4

r Z
@M

ffiffiffi
h

p
; (33)

a2ð�Þ ¼ 1

6

�Z ffiffiffi
g

p
Rþ 2

Z
@M

ffiffiffi
h

p
K

�
: (34)

For FðzÞ ¼ ln ½ z
k2
��½k2 � z�, we have Qn ¼ �k2n=n2�ðnÞ.

Hence, we obtain

Wk½g� ¼ � 1

32�2

�Z ffiffiffi
g

p �
k4

4
þ k2

6
R

�

þ
Z
@M

ffiffiffi
h

p �
4k3

9
þ k2

3
K

�
þ � � �

�
: (35)

The next step is to evaluate at the on-shell Euclidean
Schwarzschild metric �gð�; rBÞ and to compute the right-
hand side of Eq. (27). The bulk curvature term is zero, and
the bulk and boundary volume terms are proportional to
� and hence vanish upon application of the (�@� � 1)

operator. The boundary K term gives a result proportional
to the event horizon area. Hence, neglecting higher-order
curvature terms, Eq. (27) takes the form

A

4G0

� A

4Gk

¼ A

4

�
k2

12�

�
: (36)

This equation can be read in two ways. On one hand,
canceling the A=4’s, it just expresses the RG running of
G due to the quantum corrections induced by the scalar
field, which was already implicit in Eq. (35). On the other
hand, we can interpret it as expressing two contributions to
black hole entropy: For any scale k, the total black hole
entropy A=4G0 (where G0 is the fully renormalized
Newton constant) can be partitioned in two contributions,
the effective gravitational entropy at scale k (which is
A=4Gk) and the contribution of the scalar field’s modes
that are below k (which is Ak2=48�). When sliding the RG
scale k, the balance of the entropy is shifted between the
two terms, leaving the total entropy unchanged.

It would seem natural to regard the contribution
of the lower modes as corresponding to their horizon
entanglement entropy. It has the same form as the total

entanglement entropy calculated with a UV momentum
cutoff �, with the intermediate scale k playing the role of
�. Of course, the precise expression for the running of Gk

depends on the cutoff function Rk. A different choice of
regulator would lead to a different numerical coefficient of
Ak2. In itself, this does not seem problematic for the
entanglement entropy interpretation, since it just reflects
the implementation of the partitioning of the contributions
from degrees of freedom above and below the RG scale.
In Sec. V, we shall discuss some other questions con-

cerning the justification of the entanglement interpretation
of the contribution of the lower modes. First, however, we
consider how the preceding analysis must be modified in
order to account for interactions of the matter degrees of
freedom.

IV. INTERACTING FIELDS

In this section, we will discuss how our framework can
be extended to interacting quantum fields. It turns out that
the distinction at a scale k between the gravitational
entropy and the contribution from the modes below k can
be defined as we did for free fields, though it is much more
difficult to write down the exact form of each contribution
for a given example. There are also further interpretational
issues, which will be addressed in Sec. V.
Let S½g; ’� be a bare action for the quantum field ’ on

the gravitational background g. Equation (20) for the black
hole partition function is true regardless of whether S
contains interactions. We can, as before, introduce an addi-
tive cutoffRk and define the running gravitational effective
action �k½g� by Eq. (23), and define the gravitational part of
the entropy at scale k by applying the (�@� � 1) operator to

�k½ �g�. However, since for interacting ’ the one-loop deter-
minant is not an accurate evaluation of the effective action,
we are lacking a compact expression like Eq. (27) for the
contribution of the modes below k. Not only does integrat-
ing out the upper modes produce running in the gravita-
tional effective action, but theWilsonian effective action for
’ depends on the scale k. In the following, we elaborate on
how to quantify this running and obtain expressions for
interacting fields as close as possible in spirit to Eq. (27).
Let us start, again, with the total partition function,

with an overall UV cutoff implicitly in place with a
short-distance regulator �. We isolate the kinetic term in
the matter action and define as Sb½g; ’� the sum of the
bare gravitational action Sb½g� and the nonkinetic terms
of the bare matter action. Then the partition function is
given by

Z½g� ¼ e��½g� ¼
Z

D’ e�
1
2

R
’ð�r2

gÞ’�Sb½g;’�: (37)

We now introduce the IR cutoff function Rk, with the
same properties as in the previous section, defining the
Wilsonian effective action at scale k by
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e�Sk½g;�� ¼
Z

D’ e�
1
2

R
’ð�r2

gþRkð�r2
gÞÞ’�Sb½g;�þ’�: (38)

The purely gravitational part of Sk coincides with our
previous definition of �k, and we shall be decomposing
the entropy into the contribution from �k and that from the
remainder, which captures the physics of the lower modes
of the matter field � on the background g. To that end, we
introduce the notation

�k½g� :¼ Sk½g;� ¼ 0�; (39)

~Sk½g;�� :¼ Sk½g;�� � �k½g�: (40)

The action Sk includes the effects of the modes
‘‘above k,’’ so the partition function [Eq. (37)] should be
expressible as a path integral over the modes ‘‘below k’’
using this action. We find such an expression by assuming
it can be written in the form

Z½g� ¼ Nk½g�
Z

D� e�
1
2

R
�P�1

k
��Sk½g;�� (41)

for some suitable choice of normalization Nk and IR
propagator Pk. Substituting Eq. (38) into Eq. (41), shifting
one of the field variables so that its integral is Gaussian,
and performing the integral, we find that Eq. (37) is recov-
ered with the following definitions of Nk and Pk:

Nk½g� ¼ det1=2
�ð�r2

g þRkðr2
gÞÞ2

Rkðr2
gÞ

�
; (42)

Pkðr2
gÞ ¼

�Rkðr2
gÞ

�r2
g

�
1

�r2
g þRkðr2

gÞ
: (43)

Note that sinceRk vanishes for modes above k, so does the
propagator Pk, and hence the path integral in Eq. (41)
acquires a UV cutoff at this scale. We stress that Eq. (41)
is identical to the full path integral, with the information
about the upper modes encoded in the Wilsonian effective
action Sk½g;��, which is obtained from integrating them
out according to Eq. (38).

The definition of Sk given by Eq. (38) is purely formal,
however, and unsuitable for analyzing the entropy of the
black hole at scale k. In the first place, the path integral
cannot be computed in a closed form for an interacting
theory. Moreover, the expression in terms of a bare action
and a path integral which is divergent requires an explicit
regularization procedure to deal with divergences. This
goes against the spirit of our approach, based on analyzing
the difference between the expressions for the entropy
obtained at different effective scales, in terms of finite,
effective quantities only.

The right tool for these purposes is an RG flow equation,
detailing how Sk½g;�� changes with the scale k in a local
way. This is the Polchinski equation [43], which in the
present case takes the form

_Sk ¼ _�k þ _~Sk (44)

¼ 1

2

�
�~Sk
��

� _Pk � �
~Sk

��
� Tr

�
_Pk � �2 ~Sk

����

�

þ Tr½ _Pkð�r2
g þRkÞ�

�
; (45)

where the overdots represent k derivatives, and the center
dot notation ð�Þ is explained in the Appendix. Since this
equation differs by the last term from the flat space form
that is derived in standard presentations of the Wilsonian
renormalization group [44,45], we detail in the Appendix
how it is obtained using Eq. (38) as our starting point.
Expanding the flow equation with a systematic approxi-

mation method (e.g., a derivative expansion) would give
beta functions for each of the gravitational couplings in �k

and the field couplings in ~Sk. Let us assume we are in
possession of a solution to these flow equations for the
couplings (found, perhaps, with numerical techniques, and
using as initial condition for the flow a known form of the
effective action at low energies). This would then allow us

to write down the form of �k½g� and ~Sk½g;�� for any given
value of the RG scale k. The log of the partition function
[Eq. (41)] is then expressible in terms of these quantities as

� lnZ½g� ¼ �½g� ¼ �k½g� þWk½g�; (46)

with

Wk½g� ¼ � ln

�
Nk½g�

Z
D� e�

1
2

R
�P�1

k
��~Sk½g;��

�
: (47)

In this way, the free energy is decomposed into finite,
purely gravitational and matter parts in a scale-dependent
manner. This decomposition generalizes the one discussed
previously [Eq. (26)] for free fields.
The saddle-point approximation to the total entropy of

the thermal ensemble is obtained using the partition func-
tion evaluated at the metric �gð�; rBÞ given by Eq. (8),
which is a solution to the full effective action at k ¼ 0,
i.e., with all fluctuations integrated out. Using the decom-
position [Eqs. (46) and (47)] for Z, we obtain

SBH ¼ ð�@� � 1Þð�½ �g� þWk½ �g�Þ
¼: SðkÞBH þ ð�@� � 1ÞWk½ �g�: (48)

The term SðkÞBH is (as before) what we define as the gravita-
tional black hole entropy at scale k. The second term, with
the definition in Eq. (47), generalizes the right-hand side of
Eq. (27) with its definition [Eq. (26)], and encompasses the
contribution to the entropy of the quantum modes below
scale k, as computed with the appropriate Wilsonian action
for them. It can easily be checked that for the case of free
fields, where the path integral is Gaussian and can be done
exactly, Eq. (47) reduces precisely to Eq. (26) so that both
expressions for the entropy agree.
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Once more, the renormalization properties of the en-
tropy are made explicit without the need of specifying the
global UV cutoff and handling divergences; a global im-
plicit regulator � is needed to make Eq. (37) well defined,
but it drops from the calculations, and when we reach
Eq. (48) we are dealing only with finite physical quantities.
The total entropy, the right-hand side of Eq. (48), does not
depend on the scale k, but when the scale is shifted, the
relative balance of the two contributions on the right-hand
side is changed, as the gravitational and nongravitational
parts of the effective action flow according to Eq. (45).

V. INTERPRETATION OF THE IR CONTRIBUTION
TO THE ENTROPY

We have studied in the previous two sections the
RG flow of black hole entropy contributions coming
from above and below a running scale k. We obtained
expressions [Eq. (27)] for free fields and [Eq. (48)] for
interacting fields, with the associated definitions [Eqs. (26)
and (47)] for Wk in each case. These decompositions are
interesting in their own right, as they illustrate how a black
hole entropy computation tracks the RG flow of gravita-
tional couplings. But our main motivation for undertaking
this exercise was to test the notion that black hole entropy
is, at least in part, entanglement entropy of quantum fields,
in a controlled setting where no divergent quantities arise
and where properties of the UV completion of the theory
are irrelevant. In this framework, the results may have a
more direct and less ambiguous physical interpretation.

In particular, the tempting interpretation of Eqs. (27)
and (48) [as discussed briefly with regard to Eq. (36)] is
that the IR contribution to the entropy,

ð�@� � 1ÞWk½ �g�; (49)

can be identified with the entanglement entropy of the
modes below scale k. There are a number of considerations
that complicate this interpretation, however. We will now
discuss them.

A. Contact terms

As mentioned in Sec. II, for nonminimally coupled
scalar fields, and perhaps for gauge fields and gravitons,
the ‘‘conical entropy’’ (i.e., the entropy of the thermal
partition function defined on a space that acquires a conical
deficit when the Euclidean period is varied off shell) con-
tains a contribution from the tip of the cone, the so-called
contact term, that does not appear to admit a statistical
interpretation.7 This contact term arises also in the contri-
bution from the modes below scale k, so in general that
contribution would not consist only of entanglement en-
tropy. In a specific interacting model in 1þ 1 dimensions

[22], it was illustrated how nonminimal coupling and the
associated contact term can arise from a Wilsonian effec-
tive action when some degrees of freedom above a certain
mass scale are integrated out. Hence, it is possible, in a
given setting, that the contact term is a stand-in for an
entanglement contribution, but that need not be so.
The contact term is a hybrid between a gravitational and

a quantum contribution. It can be interpreted [13,35] as a
term in the Noether charge, i.e., in the Wald entropy [36],
involving the expectation value of the squared matter field
with the cutoff k. Thus, in the presence of nonminimal
coupling, we should refine our conjecture about the decom-
position of the total entropy at scale k into gravitational and
entanglement contributions. The gravitational part must
include all contributions from the Noether potential at
scale k. For example, for the scalar field with an R’2

coupling in ~Sk, the gravitational part would arise both
from this term and from �k. Since ’ is a fluctuating
quantum field, this makes the Noether potential an operator
rather than a classical quantity. The gravitational part in the
conjecture involves the expectation value of this operator.

B. Euclidean vs. Lorentzian RG scale

The running scale k in our calculations is defined as a
cutoff in the eigenvalues of the Euclidean Laplace operator.
In the Euclidean domain, we have a clean separation
between two contributions to the entropy: the term of
Eq. (48) coming from �k represents the ‘‘gravitational

entropy’’ at the scale k, and the one involving ~Sk represents
the contribution of the Euclidean modes below k. But what
exactly do these terms correspond to in the Lorentzian
domain, where the entanglement entropy is fundamentally
defined? There, the subsystem of interest would be defined
by a cutoff in the eigenvalues of the spatial Laplace opera-
tor, in a 3þ 1 decomposition.8 In a thermal state with
temperature of the order of the cutoff, the two procedures
should yield qualitatively similar results. Something like
this seems to be the case in the black hole setting: the near-
horizon part of the ‘‘lower’’ contribution to the entropy is
dominated by momenta of order k at a distance of order
k�1 from the horizon, where the fluctuations have a local
temperature�k. However, the precise relation between the
quantity [Eq. (49)], defined by a Euclidean cutoff, and the
entanglement entropy of a subset of the Lorentzian quan-
tum fluctuations, remains to be fully clarified.

C. Uncertainty relation between horizon location
and momentum cutoff

The notion of ‘‘horizon entanglement entropy’’ refers to
the von Neumann entropy of the reduced density matrix of
the exterior degrees of freedom. We are here considering
this notion in the presence of a momentum cutoff. If the

7However, in Refs. [35,46,47], a statistical interpretation was
proposed in terms of zero energy modes localized at the horizon. 8See Ref. [48] for a specific implementation.
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calculation were strictly in the Lorentzian domain, the
limitation on momenta would presumably imply that the
separation of degrees of freedom on one side of the horizon
could not be arbitrarily sharp, and in fact would be fuzzy
at the scale of the inverse momentum cutoff. Since the
entanglement entropy is dominated by the contributions at
the shortest scales, this means that there would be an order-
unity fuzziness in its value, computed in this fashion. This
dependence on the cutoff would not be so disturbing if it
were a feature of an UV regulation of an otherwise unde-
fined quantity, but one might have hoped for a more precise
definition of the entanglement entropy at the RG scale k.

We do not encounter this fuzziness in our computation.
The unregulated Euclidean path integral for the partition
function can be viewed as a formal computation of the
trace of exp ð��HextÞ, where Hext is the Hamiltonian for
the degrees of freedom exterior to the horizon. However,
when this path integral is filtered to include only the modes
with momentum below k, it is no longer exactly the trace of
an operator on the exterior Hilbert space. For this reason,
what we compute in Eq. (49) is not precisely the entropy of
a reduced density matrix corresponding to a subset of the
exterior modes.

D. Momentum entanglement

For interacting theories, a further complication arises.
In the ground state, degrees of freedom with different
momenta are entangled. In Minkowski spacetime, the
reduced vacuum density matrix for IR degrees of freedom
below a scale k has an entanglement entropy per unit
volume. This was computed perturbatively for various
theories in various dimensions in Ref. [49], but it is
explained there that for some theories the perturbative
calculation is not adequate. Nevertheless, we can estimate
that a lower bound for theories in 3þ 1 dimensions should
scale as 	2k3, where 	 is the coupling constant. The actual
result for a given theory might involve some power of a
higher energy scale M and logarithms of the ratio M=k.

Momentum entanglement will also play a role for the
reduced density matrix of IR modes outside a black hole
horizon. If we restrict attention to the volume of space at a
proper distance l from a spherical horizon, the lower bound
for momentum entanglement entropy would scale as
	2k3lr2þ, whereas the horizon entanglement entropy scales
as k2r2þ; hence, the former dominates unless 	2kl & 1. If 	
is much smaller than unity, the momentum entanglement
contribution could potentially be suppressed by focusing
only on a region of radial width l < ð	2kÞ�1, which would
be much larger than the cutoff wavelength and hence
compatible with the cutoff.

The IR contribution [Eq. (49)] to the total entropy does
not appear to have any contribution corresponding to
momentum entanglement, and it should not, since that is
‘‘internal’’ entanglement that does not contribute to the
total entropy. Therefore, Eq. (49) must differ from the

von Neumann entropy of the reduced density matrix of
the lower modes outside the horizon. We now attempt to
identify the origin of this discrepancy using a formal
computation in which the issues raised in the previous
two sections are ignored. This strategy is sensible, because
the issue of momentum entanglement is orthogonal to
the others.
Let Z ¼ Tra;A exp ð��HÞ denote the full partition

function of the exterior degrees of freedom, where a and
A stand for IR and UV degrees of freedom, schematically.
If we first trace only over A, we have

TrA exp ð��HÞ ¼ Zg exp ð��HaÞ: (50)

Here Zg is a �-dependent number, independent of the

fields a, and Ha is an effective Hamiltonian for the lower
modes. This split may be ambiguous in general, but for the
scalar field we defined Zg ¼ exp ð��k½g�Þ via the part of

the effective action that was independent of the scalar field,

and the remaining effective action was ~Sk, which is the
action that would correspond to Ha. In the presence of

interactions, we expect ~Sk to include nonlocal terms, and
we expect � dependence inHa simply because it is defined
by a �-dependent procedure.
It follows then that Z ¼ ZgZa, where Za ¼

Tra exp ð��HaÞ. Now when we compute the contribution
to the entropy, �ð�@� � 1ÞðlnZg þ lnZaÞ, the Zg term

contributes a ‘‘gravitational entropy,’’ and the Za contribu-
tion corresponds to Eq. (49). If Ha did not depend on �
(for example, for a noninteracting field), then the Za term
would contribute the von Neumann entropy of the density
matrix �a ¼ Z�1

a exp ð��HaÞ. This would just be the
entropy of the a subsystem. However, the � dependence
ofHa produces an extra term,�2h@�Hai. This term may be

the origin of the discrepancy. If it were to contain the
negative of the momentum entanglement entropy, it would
cancel the contribution of the latter to the von Neumann
entropy term, leaving us with no momentum entanglement
in Eq. (49). We leave a more complete understanding of
this point for future work.

E. Nonlocality of the effective action

One further conceptual issue arising for interacting
fields is that the Wilsonian effective action for the lower

’modes, ~Sk, is in general nonlocal (though the nonlocality
should be suppressed at length scales much longer than
k�1). This raises further questions for the interpretation of
the IR contribution [Eq. (49)]. The Hamiltonian formalism
corresponding to a nonlocal action is at least nonstandard,
so the canonical thermal ensemble is nonstandard, and
therefore the relation between the path integral with a
nonlocal action and the thermal partition function is un-
clear. (The nonlocality problem is less severe at the level of
the gravitational effective action �k, where a curvature
expansion has the first nonlocalities appearing at order
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R2 [50], beyond the range of our approximation.) We leave
clarification of this issue also to future work.

Finally, it is worth mentioning that in the setting of
the analysis of Ref. [22], the entropy contributions were
studied at scales above or below mass scales in the theory.
Presumably, in that setting, the presence of the mass
threshold suppressed any nonlocality in the Wilsonian
effective action, in addition to any � dependence of the
Hamiltonian analogous to Ha [Eq. (50)].

VI. SUMMARYAND DISCUSSION

The aim of this paper has been to investigate black hole
entropy within the framework provided by the renormaliza-
tion group, in order to probe the role of entanglement entropy
in a setting where its contribution is inherently finite. The
idea was to avoid the regulator dependence that arises for an
otherwise divergent quantity. In Sec. II, we first reviewed
how the entropy of the canonical ensemble containing a
spherical black hole is computed (neglecting metric fluctua-
tions) from the on-shell evaluation of the full effective action
for the gravitational field, �½g�. We then reviewed how the
contribution from a minimally coupled matter field is for-
mally equal to its (divergent) entanglement entropy.

In Sec. III, we introduced an RG cutoff scale k, and
defined a flowing effective action �k½g� for the metric,
which excludes the effects of IR excitations that are below
the scale k. The Bekenstein-Hawking entropy computed
from this effective action, in terms of the running coupling
Gk, is complemented by a contribution from the remaining,
unintegrated modes to give the total entropy, according to
Eq. (27) in general, and Eq. (36) for the massless scalar.
In Sec. IV, we developed a similar decomposition of
the entropy in the case of interacting quantum fields. The
upshot is Eq. (48), which differs from Eq. (27) in that
the quantity Wk encapsulates the contribution of the
lower modes not by an explicit one-loop determinant
[Eq. (26)], but implicitly through a path integral involving
the Wilsonian effective action for the low-energy mo-

des, ~Sk½g; ’� [Eq. (47)]. The combination Sk ¼ �k þ ~Sk
evolves with k according to Eq. (45), which is a curved-
space version of the Polchinski equation. The results of
Secs. III and IV can in principle be extended to include
gravitational fluctuations, using a background field quan-
tization of gravity along the lines of Ref. [23].

Section V was devoted to analyzing whether the
contribution from the modes below k can be identified
with their entanglement entropy as a subsystem. We
identified a number of problems for this interpretation.
Some just concern the precise definition of the entangle-
ment and are thus perhaps not very significant, while
others may pose a serious challenge to the very notion of
a RG-scale-dependent entanglement entropy. Five issues
were discussed in Sec. V. The first three are relevant for
both free and interacting fields, while the last two arise
only in the presence of interactions:

(i) The well-known presence of a contact term in the
entropy for nonminimally coupled fields means
that the contribution of the lower modes cannot
reflect only their entanglement (unless the proposal
mentioned in footnote 7 is correct). However, the
contact term is at least isolated from the rest of the
contribution. It can be thought of as a quantum
correction to the Noether potential at scale k, and
thus as part of the ‘‘gravitational’’ entropy at that
scale.

(ii) Our use of Euclidean momentum cutoff means that
the RG scale has no direct real-space interpretation,
although this may not be a serious impediment,
since a precise Lorentzian correspondence could
perhaps be established, or the RG scale could be
implemented in a different fashion.

(iii) The fuzziness of the horizon concept, and therefore
of the horizon entanglement entropy, in the pres-
ence of a momentum cutoff is a more basic issue.
However, this could be looked at as a necessary
ambiguity in the notion of scale-dependent entan-
glement entropy, and not a fundamental problem
with that notion per se.

(iv) Interactions of the matter field produce an entan-
glement between sub- and super-kmodes that is not
included in the contribution of the sub-k modes to
the total entropy of the thermal ensemble. Perhaps
the momentum entanglement can be isolated by its
coupling constant dependence. Also, if the coupling
constant 	 is much smaller than unity, the momen-
tum entanglement could perhaps be suppressed by
focusing on a sufficiently small neighborhood of
the horizon while remaining compatible with the
momentum cutoff.

(v) After integrating out the super-k modes in an inter-
acting theory, the effective action must be nonlocal,
since the dynamics of the sub-k modes is not truly
autonomous. While perhaps only on scales shorter
than k�1, this nonlocality might invalidate the pre-
cise link between the sub-k partition function on a
cone and the entanglement entropy, since then no
standard Hamiltonian for the system exists.

Our conclusion is that when the gravitational black hole
entropy is derived from the Noether charge for an effective
action at scale k, the finite remaining contribution to the
total entropy from the IR quantum modes below this scale
has no straightforward interpretation as entropy of entan-
glement across the horizon. However, for free fields, this
interpretation may be admissible provided that difficulties
(ii–iii) can be suitably finessed. For interacting fields, the
points raised in (iv–v) raise a larger challenge to this
interpretation. In any case, blithe claims involving that
interpretation should be avoided.
All these concerns, however, are introduced by the

attempt to justify the entanglement interpretation for the
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contribution to the entropy of the modes below a finite
energy scale (in order to avoid dealing with divergent
quantities). Even if this interpretation is not fully justified,
it could still be that the total black hole entropy originates
as entanglement entropy in an UV-complete theory of
quantum gravity.
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Note added.—Another perspective on renormalization
of entanglement entropy was presented in Ref. [51], which
appeared after this work was completed.

APPENDIX: POLCHINSKI EQUATION
ON CURVED BACKGROUNDS

In this appendix, we derive the RG flow equation
[Eq. (45)] that Sk½g;�� satisfies. We consider the definition
in Eq. (38) evaluated for two close RG scales k and
kþ�k, subtract the equations and expand for small �k,
obtaining

Skþ�k½g;�� � Sk½g;�� ¼ �k

2
Trh’ � _Rk � ’i�;k: (A1)

We use a compact notation, with the overdot being a k
derivative, writing F �D ¼ R

dxFðxÞDðx; yÞ for a function
F and an operator D, and

hFi�;k �
R
D’F e�

1
2

R
’ð�r2

gþRkÞ’�Sb½g;�þ’�
R
D’ e�

1
2

R
’ð�r2

gþRkÞ’�Sb½g;�þ’� : (A2)

The right-hand side of Eq. (A1) can be related to the
functional derivatives of Sk½g;�� with respect to �, using

the following relation between two-point operators com-
puted by differentiation of Eq. (38):

�2Sk
����

� �Sk
��

�Sk
��

¼ Dk � h’ �DkDk � ’i�;k; (A3)

where Dk stands for the two-point operator (�r2 þRk).
This leads in the limit �k ! 0 to the flow equation:

_Sk½g;�� ¼ 1

2

�
Tr

�
�Sk
��

�D�1
k � _Rk �D�1

k � �Sk
��

�

� Tr

�
D�1

k � _Rk �D�1
k � �2Sk

����

�

þ Tr½ _Rk �D�1
k �

�
: (A4)

Using Eq. (43), this can be rewritten in a more compact
way in terms of the low-momentum propagator Pk:

_Sk½g;�� ¼ 1

2

�
�Sk
��

� _Pk � �Sk��
� Tr

�
_Pk � �2Sk

����

�

þ Tr½ _Pkð�r2
g þRkÞ�

�
: (A5)

This is the Polchinski equation in a curved-background
setting. Standard presentations of the Wilsonian renormal-
ization group [44,45] are restricted to flat space and include
only the first two terms, omitting the third one since it
affects only the gravitational effective action and is thus
irrelevant in flat space. (The same thing happens for the
normalization factor Nk). The expression in Eq. (A4) in
terms of the cutoff functionRk highlights the similarity to
our framework for free fields; note in particular that if
Sk½g;�� does not depend on �, as happens when the
bare action is a free massless field, the first two terms of
Eq. (A4) vanish and we recover Eq. (25). (The form of the
equation is the same whether the overdot stands for @k or
for k@k).
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