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We improve the effective-one-body (EOB) description of nonspinning coalescing black-hole binaries
by incorporating several recent analytical advances, notably: (i) logarithmic contributions to the con-
servative dynamics; (ii) resummed horizon-absorption contribution to the orbital angular momentum loss;
and (iii) a specific radial component of the radiation-reaction force implied by consistency with the
azimuthal one. We then complete this analytically improved EOB model by comparing it to accurate
numerical-relativity (NR) simulations performed by the Caltech-Cornell-CITA group for mass ratios
q = (1,2,3,4,6). In particular, the comparison to NR data allows us to determine with high accuracy
(~107*) the value of the main EOB radial potential: A(u;v), where u = GM/(Rc?) is the interbody
gravitational potential and » = ¢/(g + 1)? is the symmetric mass ratio. We introduce a new technique for
extracting from NR data an intrinsic measure of the phase evolution [Q,,(w) diagnostics]. Aligning the
NR-completed EOB quadrupolar waveform and the NR one at low frequencies, we find that they keep
agreeing (in phase and amplitude) within the NR uncertainties throughout the evolution for all mass ratios
considered. We also find good agreement for several subdominant multipoles without having to introduce

and tune any extra parameters.
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I. INTRODUCTION

The effective-one-body (EOB) formalism [I-5] has
been proposed as a new analytical method for describing
the motion and radiation of coalescing black-hole binaries.
One of its main aims is to provide analytical' gravitational
wave (GW) templates covering the full coalescence pro-
cess, from early inspiral to ringdown, passing through late
inspiral, plunge and merger. The definition of the EOB
formalism mainly relies on two sources of information:

(i) high-order results of post-Newtonian (PN) theory;

(i1) high-accuracy results from numerical-relativity

(NR) simulations of coalescing black-hole binaries
[both in the comparable-mass case, » = O(1), and
in the extreme-mass-ratio limit, » << 1]. [Here, v =
mym,/(m; + m,)? denotes the symmetric mass ratio. ]

In addition, EOB theory has recently tapped useful infor-
mation out of gravitational self-force (GSF) computations at
order O(v). All this information is not used in its original
form, but rather as a way to determine, or at least constrain,
the structure of the few basic functions that enter the defini-
tion of the EOB formalism. For recent general reviews of the
EOB formalism and its historical roots, see Refs. [6,7].

The EOB formalism has been developed in a sequence
of papers, both for nonspinning black-hole binaries
[1-3,5,8,9] and for spinning ones [4,10-14]. In addition,

"Here we use the adjective “analytical” (instead of ““semi-
analytical’”) for methods that are based on solving analytically
given ordinary differential equations, even if one needs to use
numerical tools to solve them.
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it has been extended to the case of tidally interacting
neutron star binaries [15,16]. For all those types of
systems, many comparisons between the predictions of
EOB theory and the results of NR simulations have been
performed [9,17-29] and have demonstrated that it is
possible to devise accurate EOB waveforms by combining
improved resummation methods [5,8,9], high-order PN
results (see Ref. [30] for a review), and some nonperturba-
tive information coming from high-accuracy NR results.
These EOB waveforms can be used both in GW detection
and in GW parameter-estimation protocols. The EOB
formalism can thereby crucially help detecting the GWs
emitted by coalescing black-hole binaries, since many
thousands of waveform templates need to be computed to
extract the signal from the broadband noise, an impossible
task for NR alone. The EOB formalism might also be
crucial in allowing one to extract information on the equa-
tion of state of nuclear matter from observations of coales-
cing neutron star binaries [31]. An early version of the
EOB waveform [28] has already been incorporated2 and
used [33] in the LIGO and Virgo search pipeline.

In addition, some recent comparisons between NR stud-
ies of the dynamics of black-hole binaries and its EOB
description have directly confirmed the ability of EOB
theory to accurately describe several (gauge-invariant)
aspects of the conservative dynamics of binary systems,
such as periastron precession [34] and the relation between
energy and angular momentum [26].

2See Ref. [32].
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The aim of the present paper is to improve the definition
of some of the basic elements of the EOB formalism both
by including for the first time recently obtained analytical
information, and by extracting, in a new way, nonpertur-
bative information from accurate NR simulations per-
formed by the Caltech-Cornell-CITA group [35]. Though
our study will be limited to nonspinning binaries, the EOB
structures we shall improve [such as the basic EOB radial
potential A(R)] are central, and should then be included
both in the spinning and tidal extensions of the EOB
formalism.

The recent analytical progresses that we shall incorpo-
rate here in EOB theory are

(i) 4PN and 5PN logarithmic contributions to the
conservative dynamics [36-39];

(ii) the O(v) 4PN nonlogarithmic contribution to the
conservative dynamics [37,39-41];

(iii)) resummed horizon-absorption contributions to

angular momentum loss [42,43];

(iv) the radial component of the radiation-reaction force
implied by consistency with the azimuthal one [44];

(v) an additional 3.5PN contribution to the phase of the
(factorized [5,8,9]) quadrupolar waveform [45].

In addition, we shall bring up some novelties in the
definition of the EOB formalism, and in the way to extract
information from (comparable-mass) NR data. Namely,

(a) we introduce a Padé resummation of the additional
tail phases 6, of the factorized EOB waveform,;

(b) we show how to accurately extract from NR data the
0. (w) function measuring, in an infrinsic way, the
phase evolution of the (curvature) quadrupolar
waveform;

(c) we introduce a new way to improve the EOB
waveform during plunge and merger by matching
it to the NR one at a specifically chosen
(v-dependent) NR time MR (») around merger.
More precisely, we impose [by using six next-to-
quasicircular (NQC) parameters] a C> contact con-
dition between the amplitudes and the frequencies of
the NR and EOB waveforms at an NR instant
YR (v), corresponding to the maximum of the

EOB orbital frequency 7¢00,

The paper is organized as follows. In Sec. II we present,
in a self-contained manner, the detailed definition of our
improved EOB formalism. Section III explains how to
extract the Q,(w) function from NR data while Sec. IV
revisits the extreme-mass-ratio case. In Sec. V we then
complete our new EOB formalism by comparison with
several comparable-mass simulations performed by the
Caltech-Cornell-CITA group. Section VI studies the struc-
ture of the main EOB radial potential [A(x) function]
obtained from the latter NR comparison and Sec. VII dis-
cusses how to compute EOB waveforms for arbitrary
values of v. We summarize our main conclusions in
Sec. VIII, while some supplemental material is presented
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in several Appendixes. In particular, Appendix D gives the
explicit expressions of the py,, and &, bricks of the EOB
factorized waveform we use.

II. EFFECTIVE-ONE-BODY
ANALYTICAL FRAMEWORK

In this section we shall present in detail the definition of
the new (nonspinning) EOB formalism, incorporating
several recent analytical improvements that we shall use
in this paper. Our presentation will be self-contained so as
to allow readers to generate for themselves all our EOB
results. We also intend to make available soon a public
version of our EOB codes.

The EOB formalism is made of three basic building
blocks: (i) a EOB Hamiltonian that resums the conserva-
tive two-body dynamics; (ii) a resummed EOB radiation-
reaction force that completes the conservative dynamics
by causing the system to inspiral down to merger; and
(iii)) a resummed EOB inspiral-plus-plunge waveform,
together with a prescription for extending the waveform
through merger and ringdown. Each one of these building
blocks has been developed in previous papers. In par-
ticular, the construction of the EOB Hamiltonian was
initiated in Refs. [1,3], while the definition of the
resummed, factorized inspiral waveform was initiated in
Refs. [5,8,9]. Here we bring new (recently derived) theo-
retical improvements to each element of the formalism;
namely, (i) we include logarithmic contributions [36-39]
to the EOB Hamiltonian; (ii) we include the effect of a
resummed version of horizon absorption [42,43] in the
radiation reaction; (iii) we add a recently derived [44]
radial component of radiation reaction; (iv) we include
the 3.5PN contribution [45] to the phase &,, of the
factorized quadrupolar waveform; (v) we resum 0,,, as
well as some higher-multipole &,,’s, by Padé methods.
All these improvements either add some new physics that
was not included in the previous EOB models [22,28], or
improve [in the case of (v)] the robustness of the EOB
resummations. We shall discuss them in detail in the
sections below.

A. Improved Hamiltonian: Logarithmic
contributions to the A function

The conservative (nonspinning) two-body dynamics is
described, within the EOB formalism, by a Hamiltonian
Hgop(Q', P;), describing the relative motion Q' = Q) —
Q) of the binary, and depending on two radial functions,
A(R) and B(R), where R = |Q'| is the binary separation
(in EOB coordinates). We are using phase space vari-
ables (R, Py, ¢, P‘p) associated to polar coordinates in
the equatorial plane 6 = 7r/2. Actually it is useful to
replace the radial momentum Py by the momentum Py =

(A/B)"/2Py conjugate to the “tortoise” radial coordinate
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R. = [dR(B/A)'?. Furthermore, it is convenient to use
suitably rescaled dimensionless variables:

R P P T
r=—-" Pr.= ) pq:: ¢ ’ I=——. (1)
GM w wGM GM

Here, and in the following, we use the notation

mym, m

MEm|+m2, M V= q

it L
my+m,’ M’ m,

(2)

Note that the dimensionless symmetric mass ratio v =
mym,/(m; + my)> = q/(g + 1)> varies between 0
(extreme-mass-ratio case) and % (equal-mass case), and
that we shall conventionally consider that m, =< m;, so
that ¢ = 1. In addition we generally set ¢ = 1, and shall
also often set G = 1 in the following.

With the above notation, the u-rescaled (real) EOB
Hamiltonian reads

N H 1 -
Ason(r prs ) = % = 241+ 20(Heg = 1), )

where I:Ieff denotes the (u-rescaled) effective EOB
Hamiltonian, given by

A Py | PP
A=t +a0(1+ %42 75) @)

with z3 = 2v(4 — 3v).

The (rescaled) EOB Hamiltonian (3) leads to equations
of motion for (r, ¢, p,., p,) With respect to the rescaled
time t = T/GM, Eq. (1), of the form®

de _ o _ 9 HEop ()
dt P,
dr (A)I/Z dHEop 5b)
dt B op,.
dp N
T;D = f(pr (5C)
dp, A\!/20Hgop | 4
c— ()T 5d
dt (B) or F (5d)

which explicitly read

3For clarity, we shall sometimes restore the M’s in the text
below, as well as in the figures.
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A
49 _qg__ _4pe (62)
dt VFZHEOBHeff
dr A\1/2 1 2A
- = (—> ﬁ(l?r* + 2335 Py, ) (6b)
dl B yHEOBHeff I
dp A
d—;p = T(p; (6C)
dp,, _ _<A>1/2 1
dt B)  2vHgopH.s
2 /
p 24 A 24 R
X {A' + r—Z)(A/ - T) + Z3(ﬁ - ?)Pér‘]‘ +Fn

(6d)

where A’ = dA/dr. In these equations, F = F/u denotes
the u-rescaled radiation-reaction force. Its explicit form
will be given in Sec. IID below.

Let us now define the explicit forms of the two basic
EOB radial functions A(r) and B(r) entering the
Hamiltonian (3). One of the main theoretical novelties of
the EOB model used in the present work is the inclusion in
A(r) (which plays the role of the main radial potential in
the EOB Hamiltonian) of the recently computed logarith-
mic contributions appearing at the 4PN and 5PN levels
[36-39]. If we first focus on the Taylor-expanded version
of the A potential, it has, when considered at the SPN level,
the form

94 41
AT () = 1 — 24 + 2wud + <? - §W2>Vu4

+ v[ai(v) + a (v) Inulu’

+ v[ai(v) + al (v) Inu]u®, @)

where u = GM/R = 1/r denotes the (EOB) dimension-
less gravitational potential, and where

ar ) =%, ®)

7004 144
e TV ©)

4=~ To5 "

denote the analytically known logarithmic contributions,
while a$(v) and a§(v) represent currently unknown,
nonlogarithmic v-dependent 4PN and 5PN contributions
to A(u). Following the EOB methodology initiated in
Ref. [3], we do not use the Taylor-expanded radial poten-
tial AT&r(y) to define the EOB Hamiltonian, but use
instead its (1, 5) Padé approximant, namely

A(us as(v), ag(v); v)
= Pé[ATaylor(u)]
_ 1+nu
1+ dyu + dyu® + dyud + dyu* + dsuw’

. (10)
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where the coefficients n; and d; appearing in the numerator
and the denominator of the Padé approximant depend
rationally on ag, ag, v and Inu.

As is well known, Padé approximants can sometimes
exhibit “spurious poles” in u. The appearance of such
poles was emphasized by Pan et al. [46] within the context
of an EOB model for spinning black holes where the A(u)
radial potential is defined by Padéing a Taylor-expanded A
function augmented by Kerr-like spin-dependent terms (as
suggested in Ref. [4]). In the case we shall investigate here
[with af fixed to the value in Eq. (13) below] we found that
such a spurious pole is present even in the absence of spin,
but that it is always located behind a horizon [i.e., a zero of
A(u)]. However, when » = 0.25 and af = —130, the pres-
ence of this pole (even “hidden” behind the horizon) starts
visibly affecting the position of the adiabatic light ring
[i.e., the location of the maximum of u?A(u)], and thereby
the late-plunge dynamics.* This hidden pole will not affect
our analysis below because we shall work in the range
ag = —110. We note in this respect that the presence of
spurious poles in the context of a spinning EOB model has
motivated Barausse and Buonanno [12] to propose a differ-
ent resummation of the A potential which does not rely on
Padé approximants, but imposes by hand the presence of
a horizon.

The logarithmic-dependent SPN-Padé-resummed radial
potential A(u;as, ag; v) will play in our work the role
played by the nonlogarithmic 5PN Padéed potentials
A™7%¢(y; a5, aq; v)  [obtained by replacing a$(v) +
a(w)Inu — as(v) and ai(v) + a"(v)Inu — ag(v) in
the formulas above] used in the previous EOB works
[6,22,28]. As in those references, we shall use NR data to
constrain, for each value of the symmetric mass ratio v, the
values of a$(») and ag(v). To simplify this task, we shall
take into account from the beginning a finding of
Refs. [6,22,28]. The latter references found that there is,
for each value of v, a good EOB/NR agreement within a
long and thin bananalike region in the (as, ag) plane. In
view of this degeneracy between as and a¢, we shall then
fix the value of a$ and fit only for the (-dependent) value
of ag(v).

Recent works connecting PN and/or EOB theory to
gauge-invariant observables computable from GSF theory
have succeeded in determining the w»-linear contribu-
tions to the two EOB potentials A(u;v) and B(u;v)
[36,39,41,47-49]. In particular, the limiting values as
v—0 of the Taylor value of a§(») and ag(v) [defined from
Eq. (7)] were found by Barausse, Buonanno, and Le Tiec
[39] to be af™''(0) = 23.50190(5) and af ™"'(0) =
—131.72(1). Tt is important to note here that these values
correspond to the ‘“‘true” Taylor coefficients of the PN

4By contrast, for » =< 0.2 the spurious pole still exists but has
nearly no effect neither on the location of the adiabatic light ring
nor on the late-plunge dynamics.
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expansion of the A(u) function when u — 0, i.e., the coef-
ﬁcients5 of u> and u® in an expansion in powers of « around
u=20.

However, within our present EOB model the meaning of
the parameters (a$(v), af(v)) is different. First, when
v — 0, as the expansion (7) does not include powers of u
beyond u®, any attempt at determining values of
(a5(0), ag(0)) by comparing Eq. (7) to GSF data will
strongly depend on the u interval where this comparison
is done. For instance, we might want to require that the
function a(u) [36] takes at u = 1/6, i.e., at the unperturbed
v = 0 last stable orbit (LSO), the numerical value corre-
sponding to periastron precession, as determined by GSF
calculations [49,50]. This would lead (similarly to what is
done in Ref. [36] which did not take into account logarith-
mic contributions) to determining values of (a$(0), a§(0))
such that Eq. (92) of Ref. [49], namely

a(1/6, as, ag) = 0.795 883 004(15) (11)

is satisfied. Taking for instance a$(0) = 23.50190(5)
[39], we would then get the following “‘effective” value
of a¢(0):

ag(0) = +39.1223  [from GSFLSO precession]. (12)

Note that this value is completely different, even in sign,
from the value af "''(0) = —131.72(1) which refers to
the Taylor expansion around u# = 0.

A second reason why the meaning of (a$(v), ai(v)) is
different in our framework than in the GSF one is that the
function A(u; a$(v), ag(v); v) defined by Eq. (10) is the
Padé-resummed version of the Taylor polynomial given
in Eq. (7), which does not contain any term beyond . This
implies that, when » # 0, the Taylor expansion of
A(u; a§(v), ai(v); v) does contain higher-order terms in u
which are all expressed in terms of (aS, af) and wv.
Therefore, the values of (a$(v), af(v)) extracted by com-
parison with NR data (for » # 0) represent a kind of mix
between the true Taylor values and a plethora of higher-
order PN corrections. In other words (a$(»), ag(v)) repre-
sent an effective parametrization of the global shape of the
A potential.

Summarizing, in view of the effective character of the
parameters (a$(v), ag(v)) there is no necessity to impose
that their » — 0 limits coincide with those of Ref. [39].
However, due to the strong degeneracy between
(a&(w), ag(v)), it is convenient to fix a$(») to some fiducial
value. We then decided to use the following simple,
v-independent, fiducial value:

ag idueial () = 235, (13)

By contrast, note that Ref. [49] obtained slightly different
values of a$(0) and a¢(0), namely a$®(0) = 23.47267 and
ag®(0) = —127.154, because they were derived from
u-global fits instead of an expansion around u = 0.
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We will see later that we could have replaced this value
[which is compatible with the rounded-off Taylor value of
a$(0)] with a significantly different one.
Finally, as the other EOB potential B(u), or equivalently
the associated potential
D(u; v) = A(u; v)B(u, v), (14)
plays only a secondary role in the dynamics of coalescing
binaries, and is therefore difficult to probe by using NR

data, we used its 3PN-resummed value as obtained in
Ref. [3], namely

1
D(u;v) = R 15
;) 1 + 6vu® + 223 — 3v)vi’ (15

without trying to improve it by including the known loga-
rithmic contributions appearing at 4PN and 5PN [38,39]
(which mix with unknown nonlogarithmic contributions).

Summarizing—Our EOB Hamiltonian Hyog(7, p,., p,)
contains only one free (v-dependent) parameter, namely
ag(v). The Hamiltonian Hyog(r, p,,, p,;ag(v)) is defined
by Egs. (3), (4), (10), and (15), with Egs. (7)—(9) and (13),
together with p, = (A/B)"?p,, B(u) = D(u)/A(u) and
u=1/r.

B. Improved EOB waveform during
inspiral and plunge
Following Refs. [5,8,9], we describe the inspiral-plus-
plunge multipolar waveform by the factorized structure

insplunge
h tm

= higy ISR M penWDI R, (16)
where we indicated the (main) arguments used in several
factors of the waveform. Here € = 0, 1 is the parity of the
considered multipole (i.e., the parity of € + m), h(N < the
Newtonian waveform, ngz a source factor, with ngf H .
or Sfalfz = p,/(r,v,) according to the parity of the multi-
pole (see below for definitions),

AE(Y) = Tep(y)ei®m®), (17)

the tail factor [5,8,9], pg,, the resummed modulus cor-
rection and hNQC a next-to-quasicircular correction. The
precise deﬁn1t10ns of the factors entering Eq. (16) and of
their arguments is given next.

The Newtonian contribution reads

My Iz
ey ven(Tie)as)

hi}N e)(
where ¢ is the orbital phase, v, = r,{) a suitably defined

azimuthal velocity, and r,, = ri'/3 a modified EOB radius
with ¢ defined as

PHYSICAL REVIEW D 87, 084035 (2013)

w(r, p,) =%<‘;—A) |:1 +2,,< A(l + 1;*") 1)]
(19)

The definitions of v, and rw are such that they satisfy
Kepler’s law, 1 = Q%r}, = v%r,,, during the adiabatic in-
spiral [51]. In Eq. (18) n(E) and ¢4 (v) are numerical
coefficients given by [5]

87 €+ 1D +2)

0) _ (s ¢
Mo (lm) (2€ T 1) €(€ — 1) (20)
nl) = — (im)¢ 20T J<2€ + D+ — md)
" ¢+ DY 20— D+ DI -1’
1)
Cope = X§+efl + (_1)mx~]€+571’ (22)

where X;, =m;,/M. [Note that, in our EOB/NR
comparisons below, we shall often work with a
“Zerilli-normalized” waveform, denoted V¥,,,, whose
normalization differs from that of hy, by a factor

R/(M/(I + 2)_([ + 1)(I)(I — 1)).] For what concerns the
tail factor h}‘“ni, Eq. (17), its main contribution, Ty, is
written as

T(¢+ 1 — 2ik)

77'1? 2il§ln (2krg) 23
re+n ¢ )

Tem(y) =

with £ = mGHgopQ), k = mQ and ry = 2GM/.Je. Note
that, apart from the logarithm term In (2kr,), the main tail
contribution 7, depends on the dimensionless argument
y = (GHgopQ)??, which differs from the usual dimen-
sionless frequency parameter x = (GMQ)*? by the re-
placement M — Hggp.

1. Further resummation of the residual tail phase 6,,(y)

The main factorized tail term Tj,,(y) = |T¢, e is a
complex quantity whose modulus |Ty,,| describes the tail
amplification of the waveform modulus, and whose phase
7o, describes the main part of the dephasing caused by
tails. There are, however, additional dephasings caused by
tails, which are described by the supplementary phase
factor e’® in Eq. (17). The residual phase corrections
S¢m(y) entering the tail factor (17) were obtained in
Ref. [5] as a PN series in the variable y = (GHgopQ)*>.
Here we shall use for 8,,(y) an expression that differs both
from the one originally given in Ref. [5], and from its
test-mass-higher-PN completion given in Ref. [52]. More
precisely, (i) we do not include the highest-order O(y*/2)
test-mass (¥ = 0) PN corrections because of their PN gap
with respect to the last known comparable-mass terms;
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(i1)) we include the 3.5PN, v-dependent, contribution to
8,,(y) that can be deduced from a recent analytical com-
putation of the PN-expanded waveform at 3.5PN accuracy
[45]; and (iii) we Padé-resum the Taylor series in powers of
y'/2 giving 8,,(y). Indeed, we found that the PN-expanded
version of &g, (y) presents some unpleasant features
(discussed below in the £ = m = 2 case) that are avoided
if one resums &,,(y'/2) by factorizing the leading-order
term and replacing the rest with a suitable Padé approx-
imant N(y'/2)/D(y'/?).

Let us explain our new procedure on the (most impor-
tant) example of the £ = m = 2 phase (the others are listed
in Appendix D). Let us start from its Taylor-expanded form

—v )y7/2.

(24)

Taylor( )

7 42 2
:§y3/2_24yy5/2 +—87T 3 (30995 96

105 1134~ 135

Here we did not include the highest-order test-mass
term (—2203/81 + 1712/3157%)y*/? that was obtained
in Ref. [52]. On the other hand, the 3.5 PN »-dependent
term proportional to y’/? is a new contribution that is
obtained by applying the factorization of Ref. [5] to the
results of Ref. [45]. Note that this is the only genuinely new
information given by this calculation; indeed, the real
3.5PN contributions to %,, are already contained in the
modulus of the EOB-resummed tail factor A% For the
comparable-mass cases that are of primary concern for
upcoming GW observations (say for » = 0.1) the O(y”/?)
contribution is numerically quite significant compared to
the lower-order terms. To better appreciate the relative
importance of the successive PN corrections we factorize
Eq. (24) in a leading-order (LO) part, S0y = (7/3)y*/?
and a fractional PN-correction term, &,, = 812" /659, In
terms of v, = ,/y, the latter fractional PN correction has
the structure

8 = 1+ v} + 30} + cuvi. (25)

We plot in Fig. 1 the successive truncated PN approxim-
ants, at 1PN, 1.5PN and 2PN accuracy (i.e., up to v, v}
and v}) for =1 (v =1/4) and ¢ =6 (v =6/49 =
0.1224). This figure illustrates two facts: (i) the successive
PN approximants to 85, = 1 + cvy + e3vy + eqvy + -

are suspiciously different from each other; and (ii) they
introduce rather large fractional modifications of the LO
phase 850(y) = (7/3)y*?> when v, = 0.3 (which is
reached during the late plunge). This suggests a nonrobust
behavior of the Taylor approximants in the high-velocity
regime. In addition we have found that using 85" (y) in
the generation of the EOB waveform generates pathologi-
cal features in the waveform phase in the very late plunge
phase, compromising the accuracy of the phasing in a
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FIG. 1 (color online). Comparing the Taylor-expanded 322
with its (2,2) Padé approximant for two mass ratios.

crucial region. To overcome this difficulty, we replace
Taylor(v ) with its (2, 2) Padé approximant; i.e., we take

P2[65,(vg)]. Finally, we use in defining the factorized
EOB waveform the following resummed version of the
8,,(y) phase:

3170 + pivy t PzU
" po + prvy + phuy
(26)

82(y) = 8PS0 = 5

where v, = y!/2. The explicit expressions of the
v-dependent Padé coefficients py(v), pi(v), p,(v), p5(v)
will be found in Appendix D. Note that this Padé repre-
sentation degenerates as v — 0, and yields P%[éAzz(vy)] —
1; this occurs because the definition of this Padé approx-
imant crucially depends on having a nonvanishing 3.5PN
contribution. Figure 1 compares the Padé-resummed
Szz(vy) to its successive Taylor approximants. This figure
suggests that the Padé approximant represents a reasonable
“average” of the successive Taylor approximants.

We found that the (known) successive PN approximants

STaylor  ATayl ATayl Iy
to 0,1" ", 035 and 05", exhibited a rather nonrobust

behav10r similar to that of 6Tay1°r We therefore decided to
Padé-resum them, using now (1, 2) Padé approximants, in
view of the available PN knowledge. For the other residual
phase corrections, 83, 04, With m=1,...,4 and 0Jss,
there is too little PN information to try a resummation, so
that we keep them in their unresummed Taylor-expanded
form. See Appendix D for details.
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2. Further factorized corrections to the waveform:
2 ANQC
pgm(v¢) and h,,,

Let us first emphasize that, as in our previous work [22],
we shall use as argument in the modulus correction pg,, (to
replace the generic variable x used in Ref. [5]) the quantity
x, = v2 = (r,Q)? defined above. By contrast, Ref. [28]
uses x = (MQ)?/3 as argument in the py,,’s. The py,,’s that
enter Eq. (16) are taken at the complete 372PN approxi-
mation (as done in previous work [26,27,31,43,53)), i.e.,
by completing the 3PN-accurate, v-dependent results of
Ref. [5] by the v = 0, SPN-accurate, terms obtained® by
Fujita and Iyer [52]. Note that in doing so we are taking
into account more test-mass terms in the p,,,’s than was
done in Ref. [28], which was stopping one PN order earlier
for p33, P31, Pam, and two PN orders earlier for ps,,, pen
and p,. For completeness we list in Appendix D the
explicit expressions of the pg,,’s that we use. As we said,
one must replace the generic variable x used in these
expressions by x, = v2 = (r, Q)%

Let us now discuss the structure of the final, NQC factor
}?ZSC in the factorized waveform, Eq. (16), as well as the
procedure we shall use to determine (from NR data) the
values of the coefficients a!” and b!" entering this NQC
correction factor ﬁfN"?C We shall adopt here a more elabo-

rate NQC factor ﬁr;n?c than what was considered in pre-
vious EOB literature. In particular, for each multipole
(€, m) this NQC factor depends on six real parameters,
three for the amplitude, af’", i=1,...,3, and three for
the phase bf’", i=1,...,3, and reads

3 3
ﬁI;,SC = <1 + Z af”’;@) exp <i Z bf”’nj+3), 27
=1 =1

= =

where the n,’s factors are chosen here to be

(P2
m = (%), (28a)
(;)(0)
n2 = W, (28b)
nz = "1]’%*: (28¢)
Pr,
ne =T (28d)
ns = ny(rQ)%, (28e)
ng = nspl. (28)

Here, the superscript (0) on the right-hand side of
the definition of n, means that the second time derivative
of r is evaluated along the conservative dynamics
(i.e., neglecting the contributions proportional to F; see
Appendix A for a discussion).

In successive steps, this computation has been recently
pushed to the remarkable 22PN order by Fujita [54,55].

PHYSICAL REVIEW D 87, 084035 (2013)

One should keep in mind that the EOB (dynamical) time
tFOB differs from the NR (retarded) time "R by an a priori
unknown constant shift: 1598 = "R 4 7 Determining 7 is
equivalent to the problem of aligning the NR and EOB
waveforms. Physically, determining 7 is equivalent to
identifying one specific feature in the EOB waveform to
a corresponding specific feature in the NR one. This choice
has been different in various EOB-related works. From the
beginning, i.e., Ref. [2], it was emphasized that a good
marker on the EOB time axis of the “moment of merger”

was the time 702, where the EOB orbital frequency

reaches its maximum. The issue is then to select the
corresponding moment on the NR time axis. In all early
EOB studies, it was assumed that the NR correspondent of

EOB ¢ /NR : : -y =
1) peak 1S L4y, peak> 1-€-» the NR instant when the £ = m = 2

amplitude reaches its maximum. However, several recent
EOB-related works [29,56,57] gave evidence that, in the

i ; EOB NR
test-mass limit, the two instants 7¢ 0, and 7,7 .\ do not

exactly correspond to each other. )
In this work, we shall define the correspondence
between 1FOB and /R by requiring that the correspondent

on the NR time axis of the EOB instant 7o, is a spe-

cific time X% which will be defined in Eq. (55) below. In
addition, we shall use this time r7? < & both as NQC
determination point and as quasinormal mode (QNM)
attachment one.” More precisely, for each multipole, the
six parameters a‘™ and b{" entering Eq. (16) are deter-
mined from NR data by imposing that the EOB waveform
hEOB(EOB) (which is a function of the EOB dynamical
time 59B) “osculates” the NR waveform AR ("R) (which
is a function of the NR retarded time "}) around the NQC-
determination point t?)o;?eak

Note again that in this work we shall use as NQC-
determination point on the EOB time axis the EOB

dynamical time r7? , when the EOB orbital frequency

Q(r59B) reaches its (first) maximum.® The degree of oscu-
lation between the EOB and NR waveforms is defined by
separately imposing a C? contact between the amplitudes,
Ay, and the frequencies, wy,, of the two waveforms at

the NQC-determination point 75 < £ We do not

constrain the relative phase of the EOB and NR
waveforms. Explicitly, we impose the following six
conditions:

NR
- textr'

"Note that this choice differs from the one used in
Refs. [29,57]. In these references the NQC and QNM EOB
instant is chosen to be earlier than f£°B  and to correspond to
the NR instant tgli cak

8This EOB time was often referred to, in previous works, as
the “effective EOB light-ring crossing time,” because, in the
test-mass limit, it does correspond to the dynamical time when
R(¢FOB) = 3M, and, in the comparable-mass case, it is very close
to the time when R(tFOB) crosses the formal EOB analog of the
light ring. Here, to avoid confusion, we shall call it the {)-peak

: : EOB
time, and denote it as 7, peak”

peak
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AGP () = Apn (158, (29a)
AGIB(IES 1) = ADR (S, (29b)
AGP (e 1) = ADR (1), (29¢)
@ P (1 o) = @ (155, (29d)
D (10 i) = D (1050, (2%)
P (10 k) = D (1), (299)

which yield two separate 3 X 3 linear systems to be solved
to obtain the af’”’s and, separately, the bfm’s.
Note that the values of the af’"’s affect the modulus of

the inspiral-plus-plunge waveform, which then affects the
computation of the radiation-reaction force (through the
angular momentum flux; see below). In turn, this modifies
the EOB dynanelics itself and, consequently, the determi-

nation of the (a;", bf’”)’s. This means that one must boot-

strap, by iteration, the determination of the (af’”, bf’”)’s
until convergence (say at the third decimal digit) is
reached. This typically requires three iterations. In pre-
vious work only the dominant (2, 2) NQC correction was
included in the radiation reaction (though they were all
taken into account when finally comparing EOB and NR
waveforms). Here we shall follow the same simplifying
prescription, though we have explored the effect of includ-
ing also the subdominant (2, 1) and (3, 3) NQC corrections
to the flux. We found that their effect amounts only to
a small change in the NR determination of the “good
values” of ag (see Appendix C).

Summarizing.—Our EOB waveform is given by Eq. (16)
and employs the resummation of residual phases &, as
in Eq. (26). The NQC correction is defined by Eqs. (27) and
(28) with constants determined from NR data by Eqs. (29).

C. EOB waveform during merger and ringdown

One of the specificities of the EOB formalism is to
construct a complete waveform, covering the full process
from early inspiral to ringdown, passing through late in-
spiral, plunge, and merger. This is done by attaching a sum
of QNMs to the end of the plunge waveform. The proce-
dure for doing so has improved over the years [2,8,46].
Here, we use a new way of extending the inspiral-plus-
plunge waveform to describe the merger-plus-ringdown
subsequent signal, which fits with the NQC-determination
procedure we have explained above. Our new procedure
for, simultaneously, determining NQC corrections, and
attaching QNMSs, is motivated by the findings of
Bernuzzi, Nagar and Zenginoglu [56] in the extreme-
mass-ratio limit (¥ << 1). We shall discuss the rationale
for this procedure in the next section.

The merger-plus-ringdown signal is described, for each
multipole €m, by a sum of N QNM signals of a final Kerr
black hole (of mass M, and spin parameter a), say

PHYSICAL REVIEW D 87, 084035 (2013)

<Rcz>hringdown(t) _ Nil Cgme—g:vfm(t—tgofeak) (30)
GM o n=0 ! ’

where o, = al™ + iwl is the complex frequency of
the nth QNM of multipolarity €m and C{" are complex
constants.

In this work, we use N = 5 positive frequency (w’">0)
QNMs. These complex frequencies are functions of the
mass M, and spin parameter a; of the final hole [58]. For
M and a; we adopt the fit to the numerical results given in
Egs. (29) of Ref. [28],

M 8
ﬁf =1+ ( 9~ 1)1/ —0.4333% — 0.43922%,  (31)

L= T2y~ 38715 + 40280 (32)
The procedure we shall use here for matching the ring-
down signal (30) to the inspiral-plus-plunge signal (16) is
similar to the ones used in previous EOB work [56] though
it differs in a significant way from the one used in Ref. [28].
Namely, contrary to the latter reference, the attachment
(along the EOB dynamical time axis £°B) of the QNM
signal (30) to the NQC-corrected inspiral-plus-plunge sig-
nal (16) is done, for each multipole €m, at the time

EOB — EOB — +EOB
t€mQNMattachment - t€mmatching ) peak’ (33)

where we recall that t%opzak denotes the EOB dynamical

time where the EOB orbital frequency reaches its (first)

maximum. Note in particular that 70> does not depend

on the considered multipolarity €m, so that we are attach-
ing the QNMs corresponding to all the different multi-
polarities at the same EOB dynamical time.

To complete the description of our QNM attachment
procedure it remains to say that we determine, for each
multipolarity €m, the values of the N complex coefficients
CY™ by requiring that the (NQC-corrected) EOB inspiral-
plus-plunge waveform hj“P"*"(FOB) Eq. (16), coincides
with the QNM sum (30) at N points, say tq,t, ..., Iy,
forming a regularly spaced “comb” on the rFOB axis,
centered on 7¢" ;. Such a “matching comb” is specified

by choosing its total length, say
Amatch — ¢ — 1), (34)

D. Improved radiation reaction: Including horizon
absorption and a radial component F,

Let us now turn to our improved description of the
radiation-reaction force F entering the EOB dynamics.
Note that we have included in the equations of motion
(5) not only an azimuthal radiation reaction j:‘p (as in
all previous EOB works), but also an explicit radial
contribution ?r We have improved the analytical
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description of both components of F. Let us discuss them
in turn.

The azimuthal component, f¢, of the radiation-reaction
force describes the loss of the orbital angular momentum
p, of the system during evolution. Indeed, Hamilton’s
equation for p, reads

dp, 4
7 Fo (35)
where j—"(p =F,/v.

Following a standard EOB practice (since Ref. [2]),
we require that the loss of orbital angular momentum be
balanced by the instantaneous flux of angular momentum
leaving the orbital system. In previous EOB work, one took
into account only the flux of angular momentum in the
form of GWs at infinity. However, there is also a flux of
angular momentum which is drained out of the two-point
mass orbital system by penetrating within the two horizons
of the moving black holes. [The latter flux is transformed
from the orbital form measured by p, to some intrinsic
spin-angular momentum of the holes; from the point of
view of the orbital p, this represents a loss that must be
accounted for by an additional contribution to F,.] We
shall include here such an additional horizon-absorption
flux by using the recent work of Nagar and Akcay [42]. The
corresponding effect is rather small and, in a PN sense,
starts only at the 4PN level [59,60]. Reference [60], using a
leading-order (Newtonian) approximation both to the
phase evolution and to the horizon flux, had estimated
that, in the nonspinning case (that we consider here), the
inclusion of the horizon flux entails an additional dephas-
ing at R = 6M smaller than 0.01 rad for mass ratios 1 =
g = 4. On the other hand, recently Bernuzzi, Nagar and
Zenginoglu [43], using an EOB description of the phase
evolution together with an improved estimate of the hori-
zon flux (resumming higher effects), have found signifi-
cantly larger dephasings (accumulated over the last 20-30
orbits) than those estimated in Ref. [60]. Within the EOB
model that we use here we confirmed the findings of
Ref. [43]. For instance taking the most relevant case
q = 6 with initial separation ry, = 15 (corresponding to
~27 orbits up to merger; see Table II below) the effect
of horizon absorption entails a dephasing A# ¢p = pH 1 —
¢! ~0.12 rad at 16y peak- that increases up to 0.18 rad dur-

ing ringdown.” Such dephasings are quite significant for
the EOB/NR comparison that we shall perform below. This
is why we decided to include the horizon contribution to
the angular momentum flux.

It is convenient to decompose F, as the product of
the usual quadrupolar GW flux (expressed in terms of
r, and of the orbital frequency () = de/dr) and of a

Note that one has A” ¢ ~ 1.6 X 10™* at the initial separation
ro = 15, which is negligible compared to the dephasing accu-
mulated during the subsequent evolution.

PHYSICAL REVIEW D 87, 084035 (2013)

supplementary dimensionless correction factor [of the
1 + O(x) typel:

F,=- 3’53 vt Q3 f(v2; v). (36)
Here the function f(x;») =1+ O(x) (taken with the
argument x = vf,,) is the reduced flux function. It can be
defined, for a circularized binary, as the ratio between
the total energy flux (including the horizon flux) and the
€ = m = 2 asymptotic energy flux. In our case this func-
tion is given by the sum of an asymptotic (labeled by )
and a horizon (labeled by H) contribution, and can be
further written as

flxyv) =

where each function f (LH)(x: 1) is of the 1 + O(x) type and
is defined by dividing by the corresponding € = m = 2LO
contribution, namely

FED (x; v) =

Floov) + (1 —4v + 20224 (x;v),  (37)

I, I.H),
F PG, (38)

Here, FE,I’H) is either the total asymptotic (J) or horizon

(H) energy flux for circular orbits summed up to multi-
pole € = €., while FLX° = (32/5)»2% is the LO
(or “Newtonian’’) quadrupolar (asymptotic) energy flux,
and FIE0 = (32/5)v%(1 —4v + 202)x° = x*(1 —4v +
2V2)F the LO quadrupolar horizon flux [59,60]. In the
EOB model one uses suitably factorized expressions for
the multipolar fluxes F%;H) to resum and improve them
with respect to standard PN-expanded expressions in the
strong-field, fast-velocity regime. In the case of the multi-
polar asymptotic flux F jrm, this factorized flux is simply
defined (as first proposed in Ref. [22]) by squaring the
corresponding factorized multipolar waveform of Ref. [5],
recalled above. An analogous procedure for the multipolar
horizon fluxes, F ?m’ was introduced in Ref. [42] and com-
pared with Regge-Wheeler-Zerilli numerically computed
horizon fluxes in Ref. [43]. [Here, we are considering
nonspinning binaries.]

The horizon and asymptotic energy fluxes along circular
orbits are then written as multipolar sums, say

FUD G () = Z Z FiPP 9 w),  (39)

=2 m=1

F(I H.e)

where F (LHe) _ | SUmMs the two equal contributions

correspondmg to +m and —m (m # 0 as the m =20
contributions vanish for circular orbits).
Inserting in the (circular) asymptotic multipolar flux
contribution,
1
I,
File = - ()RR, (40)

the factorized waveform (16) yields
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€ (7,
Fle = Fir9 SEDAT ()P (p (s ) FG N, (1)
where ng\;,e) is defined by inserting the Newtonian-
order waveform in (40), and where each subsequent
factor is the squared modulus of a corresponding PN-

correction factor entering (16); e.g., Fy (I eNQC =€ =

(1~|—Zj: f’"nj)z. Let us mention that [T ()] can be
explicitly written in the simple form

1 4

Ten P =

l'l(s +(@h2). @)

Similarly the horizon partial multipolar fluxes are
written in factorized form [42]

F(H €)

P19 (x; v) = oo (o n)[8L) (s v) (L (s )P, (43)
where p# (x;v) =1+ O(x) are the residual amplitude
corrections to the horizon waveform. Following
Refs. [42,43] we use a 13PN approximation for
pH (x;v) and we include only the ¢ = 2 contribution in
Eq. (43) [i.e., we fix €,,,, = 2 in Eq. (39)].

Finally, this means that the fractional horizon correction
(before multiplication by the additional factor 1 — 4v +

22?) in Eq. (37) is of the form

x4 v) = A8 (0% (v v P + S (of) ()T,

(44)
&0 _ o)

where Sgit = Her, Syt = po/(r,v,), and where we use

4PN accurate expressions for pf (x; v),

pH (s v) =1+ clmx + cfmx? + §mxd + bt (45)

with values for the needed € =2 coefficients c!,

i=1,...,4, listed in Table I.

Let us finally come to discussing the radial component
JF,. of the radiation-reaction force. Such a contribution
was generally neglected in previous EOB papers, or re-
placed (e.g., in Refs. [10,28]) by an expression which was
not consistently derived. Recently, Bini and Damour [44]
(building on previous work by Iyer and collaborators
[61-63]) have shown that consistency with the usual EOB
definition of F, (as being equal to minus the instantaneous

flux of angular momentum) required a specific form for j-',
which differed from previously used expressions.

TABLE 1. Coefficients of our hybrid 173PN-accurate

pil (x; v) functions as given by Eq. (45).

£ m clm cim cém cim
4=21v+271>—83

2 2 m 478752  26.760136  43.861478

2 1 0.58121 1.01059  7.955729 1.650228
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The result of Ref. [44] that we use here has the form

A _ Sprx
:Fr*_ 3]7

Fo.(+ci(vu+ c,(n)ud),  (46)
@

where the coefficients entering the 2PN correction
read [44]

227 1957
=—-"_p+__— 4
a1 (v) 140" " 1680 “7
753 , 165703 25672541
=122 - .48
(") =507 T 70560 © 50803200 ¥

E. Post-post-circular initial data

The construction of initial data for the EOB dynamics
has been refined in a series of works [2,9,10,20]. Here
we shall use the post-post-circular prescription, introduced
in 2007 (see Sec. III B of Ref. [9]), and then used
in all subsequent EOB-related works by our group
[15,20-22,24-26,31,43,53]. This choice allows one to start
the EOB dynamics (with negligible initial eccentricity) at a
frequency that is compatible with the initial frequency of
the NR waveforms we shall use here (Mw,, = 0.0345
approximately corresponding to initial separation R, =~
I15M; see Table II below). Note that, by contrast, Pan
et al. [28], who use the less accurate postcircular initial
data of Ref. [10], start their EOB runs at an initial radius
Ry = 50M (corresponding to an initial GW frequency
Mwy, = 0.005) in order to get a good circularization
of the dynamics at the frequency where numerical simula-
tions start.

For completeness, let us review here the construction of
post-post-circular initial data for a given relative initial
separation ry. We introduce a formal bookkeeping parame-
ter £ (to be set to 1 at the end) in front of the radiation
reaction F', in the EOB equations of motion. The quasi-
circular inspiralling solution of the EOB equations of
motion can then be formally expanded in powers of & as

Pe = Jo(N(1 + %ky(r) + O(eY), (49)

pr. = em () + O(&) (50)

TABLE II. Post-post-circular initial data for EOB dynamics
that we shall consider in this paper to assure negligible initial
eccentricity. They are obtained with the choice a§ = 23.5 and
al(v)=[—110.5+129(1 —4»)][1 - 1.5X 1075 /(v — 0.26)*]"/2.

q v ro pcp Pr pr*

1 025 16 442467206 —0.00101207 —0.00088970
2 02 15 431684166 —0.00113064 —0.00098466
3 01875 15 431889270 —0.00096445 —0.00083930
4 01600 15 432052406 —0.00083018 —0.00072202
6 0.1224 15 432276101 —0.00064296 —0.00055874
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Here, j3(r) is the usual circular approximation to the
inspiralling squared angular momentum as explicitly
given by

A'(u)
[ A(u)]”

where the prime means d/du (recall u = 1/r). The order &
approximation to p, , i.e., 7;(r) (“postcircular”) is then
obtained by approximating the left-hand side (LHS) of
Eq. (6¢c) by dp,/dt = djy(r)/dt = (djo(r)/dr)(dr/dt).
This determines dr/dt and thereby a corresponding value
of p,.. using Eq. (6b) (where we neglect the p? contribution).
This leads to the following explicit expression for 7 (r):

B\1/2/d .
87Tl(r)=|:VHEOBHeff(A) (;}?) f¢]0, (52)

where the subscript 0 indicates that the right-hand side (RHS)
is evaluated at the leading circular approximation & — O.
The post-post-circular approximation to p? (term &2k,
above) is then obtained by approximating the LHS of
Eq. (6d) by

Jr) = — (51)

dp,. _ _dm(r) dr
dt dr dt’

where the radial derivative dr(r)/dr is numerically com-
puted. This transforms Eq. (6d) in a linear equation for p?p,
which leads to an explicit expression for the r-dependent
correction £%k,(r) introduced above. In solving for p2 we
keep, for additional accuracy, the contribution proportional
to pj. = e*mi(r).

Table II lists the post-post-circular data (as a function of
ro) obtained by this procedure, as we have used them in the
present study. Note that these values mainly depend on the
parameters entering the A function, (ag, ag), and depend
almost negligibly on the values of the NQC parameters a ™
entering F, that appears on the RHS of Eq. (52). Actually,
the values listed in Table II were computed by keeping only
the (a??, a3*) NQC contributions.

(53)

F. Analytically unknown parameters,
choices to be made, NR completion
of the EOB model

Let us summarize the parameters entering the construc-
tion of our EOB model, emphasizing which parameters
contain important dynamical information, which ones are
already known with sufficient accuracy, which ones
depend on reasonable choices we can make, and how NR
data can be used to complete the EOB model by determin-
ing the various parameters.

At face value, the EOB model defined above depends on
quite a few analytically unknown parameters, namely:
as(v), ag(v), the six NQC parameters (a!™, b{™) for each
waveform multipole, the values of the mass M, and spin a
of the final black hole, the number N of QNM modes used

PHYSICAL REVIEW D 87, 084035 (2013)

in the ringdown signal, and the width A™P of the QNM
matching comb.

Our attitude towards the use of NR data to complete
the EOB model by determining these parameters is the
following:

(1) As already said, we think (in view of previous EOB
results [22,28]) that it is a reasonable choice to
impose some a priori relation between a$(v) and
aé(v), so as to look only for one free dynamical
parameter. Here we shall fix a$(v) to the simple
value a$(v) =23.5, Eq. (13). This leaves only
a¢(v) as free parameter. We shall discuss below
(see Sec. V) how the nonperturbative information
contained in NR phasing data can be used to deter-
mine the value of a{(v), in a way which is nearly
decorrelated from the uncertainties in the determi-
nation of other parameters. Let us already indicate
here a possible analytical fit to represent the, essen-
tially linear in », final result we shall get for this
EOB parameter:

a¢(v) = (—110.5 + 129(1 — 4v))
( 0.000015 )1/2
>< —
(v — 0.26)?
from Caltech-Cornell-CITA data.  (54)

We think that the NR determination of a§(v) leads
to important information about the conservative
dynamics of binary black holes (as we shall illustrate
below).

(ii) Concerning the NQC parameters (a!™, b{™), the
procedure explained above reduces their determina-
tion from nonperturbative NR data to a single
choice, namely that of the time Y% on the NR
(retarded) time axis corresponding to the EOB

time 708, (which can be thought of as defining

the “EOB merger time”’). The choice of )%, on the
NR time axis is not a matter of convention, but has
(a priori) important physical consequences. It must
be done by combining information coming both
from comparable-mass NR simulations, and from
extreme-mass-ratio ones. For reasons that shall be
discussed below, we shall choose, for each mass
ratio v, a specific value of X% (v) given by

tIe\;l}r(V) = IIXZ peak(v)

DR o) = BR L), (59)

W

where
Flv) = é(l +3(1 - 4p)) (56)

and where tg’f; peak(¥) 18 the NR time when the NR

quadrupolar amplitude reaches its peak, and

fon veax(?) the NR time when the quadrupolar
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frequency has an inflection point. Here f(v) varies
between f(0) = 2/3 and f(1/4) = 1/6 as v varies
between 0 and 1/4. \R.(v) always lies on the right
of (i.e., later than) the NR time tﬂfg peak(v). We shall
extract nonperturbative information from NR data
by computing from the various multipolar NR
waveforms a certain number of derivatives of their
amplitudes and frequencies at the extraction
point N8 (v).

(iii) Building on previous work, we shall use the simple
(NR-based) analytical fits (31) for the mass and
spin of the final black hole. Note, however, that,
in principle, the EOB model (when NR-completed
by NQC corrections up to merger) does yield, by
itself, predictions for My and as [2,64]. This might
be useful in cases (e.g., with large, precessing
spins) where one does not have in hand accurate
analytical fits for the characteristics of the final
black hole.

(iv) We shall use here N = 5 QNMs, and as explained
below, we shall fix Amach = (.70 for all multi-
poles. Note that, by contrast, Ref. [28] uses N=8
QNMs, introduces “‘pseudo-QNMs,” and employs
much larger matching intervals, which also vary
with €m [e.g., the latter reference uses A??> = 5M
and A3 = 12M].

(v) Let us finally note that (contrary to Ref. [28])
we shall not introduce adjustable parameters in
the waveforms, nor shall we introduce special
modifications to improve the behavior of some
subdominant multipoles.

III. NUMERICAL-RELATIVITY INFORMATION
AND Q,, DIAGNOSTIC

A. Overview of numerical waveforms data

The NR data we use here to complete the EOB
waveform were obtained with the Spectral Einstein
Code (SpEC) developed by the Caltech-Cornell-CITA
Collaboration [65-69]. Specifically, we used the wave-
forms recently published in Ref. [35], coming from simu-
lations of nonspinning black-hole binaries with mass ratios
g =m;/m, = (1,2,3, 4, 6). Before their publication, these
data were already used in some EOB/NR and PN/NR
comparisons [28,34,70]. We address the reader to
Ref. [35] for all technical details about the numerical setup
and estimates of the accuracy. Here we only recall that
these are the longest published waveforms to date (together
with the 33 orbits, equal-mass waveform of Ref. [70]), with
a number of gravitational wave cycles up to merger (here
conventionally defined as the maximum of the modulus of
the quadrupolar metric waveform |[AYR|), respectively,
Ngow = {33, 31, 31, 31, 43}. We made use of two different
types of waveform data: curvature, t,lf‘e‘m, and metric, hg,,,
extrapolated to infinite extraction radius. Indeed, the metric
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waveform h,,, was also directly extracted from the numeri-
cal spacetime using a Regge-Wheeler-Zerilli-based (RWZ)
approach'’; see the Appendix of Ref. [23] for a discussion.

B. Estimating the NR @, (w) function
for the curvature waveform

In this subsection we shall explain how we extracted
from NR data a useful, intrinsic measure of the NR phase
evolution, namely the Q,(w) function. This function is a
convenient version of the “intrinsic phase acceleration”
function a(w) introduced in Ref. [9], which was defined
such that dw/dt = a(w). This function is an intrinsic
measure of the time-domain phase evolution in the sense
that it is independent of the two shift ambiguities that affect
any time-domain phase, ¢(¢): an arbitrary phase shift ¢ —
¢ + ¢ and an arbitrary time shift + — ¢ + 7. The Q,(w)
function is defined as

w? w?

Q,(w) = (57)

alw) o
Note that this definition is equivalent to saying that the
time-domain phase accumulated in the frequency interval
(w, w,) is given by the integral

Bloyoy = f ‘0,dInw. (58)
@

The function Q,(w) has proven to be a very useful
diagnostic of phase evolution in recent EOB/NR compari-
sons of binary neutron stars [24,25,27]. Note that, in the
definition, w can be the frequency either of the curvature
waveform or of the metric one (thereby defining two differ-
ent, though numerically close, functions). In general, one
only considers the frequency of the dominant quadrupolar
waveform, though one can also study the O, (w) function
of any (¢, m) multipole. Note also that we are here consid-
ering the phase acceleration of a time-domain phase. One
can also usefully consider the frequency-domain counter-
part of Q,(w), defined as QfP(w) = w’d* Y (w)/dw?,
where () denotes the phase of the Fourier-transformed
waveform. In the stationary phase approximation, Q%P (w)
is simply equal to the time-domain Q,(w) [see, e.g.,
Eq. (17) in Ref. [31]].

Let us now discuss how to accurately estimate Q,(w)
from the numerical data, in spite of the loss of accuracy
associated to the fact that its definition (57) involves the
computation of two derivatives of the phase ¢(r). We
consider the %, curvature waveform extrapolated to infi-
nite extraction radius, decompose it in amplitude and phase
with the convention

U3, = y3,le =, (59)

10This type of RWZ approach was initiated by Abrahams and
Price [71] and first implemented in the form of Ref. 23 in
Refs. [72,73].
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and consider as frequency in the definition (57) the curva-
ture quadrupolar frequency: @ = ¢,.

It is somewhat of a challenge to get an accurate Q,, out
from numerical data. For example, in the case of binary
neutron star waveforms, Refs. [24,25,27] argued that the
successive straightforward differentiation (using finite-
differencing, 4th-order stencils) of the numerical data is
unable to get this information correctly, so that a suitable
fitting of the GW phase was necessary to obtain something
qualitatively and quantitatively correct. For general binary
black-hole simulations, due to the much higher resolution
involved as well as due to the higher finite differencing
operators used, direct differentiation could be more mean-
ingful than in the binary neutron star case. This should be
even more true for SpEC data, since they are expected to be
particularly accurate.

Therefore, as a first step we directly computed Q,, from
the raw data simply by finite-differencing ¢ twice to get w
and w, i.e., applying twice a 1st-derivative finite-differencing
operator with 4th-order stencil. The result of this first step is
shown, for ¢ = 1 data, as a dashed, light-gray line in Fig. 2
(see also the close-up). The figure shows the presence of
high-frequency noise which prevents one from using this
diagnostics as is for reliable quantitative estimates.

To improve on this, and get a quantitatively useful
estimate of the O, curve, we applied three more steps.
First, in order to eliminate the high-frequency noise, we
smoothed w(#) with a Sgolay filter. Second, we computed
the time derivative of the smoothed w(f), and then
smoothed again that derivative with a Sgolay filter.
These two steps succeeded in strongly reducing the
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FIG. 2 (color online). Top panel: Raw NR, curvature wave-
form, data; smoothed data and fit. Bottom panel: The difference
between smoothed data and the fit.
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FIG. 3 (color online). Fitting the Newton-rescaled Qw, curvature
waveform, function. The top panel contrasts the smoothed data
with the outcome of the fit. The bottom panel shows their difference.

high-frequency noise in the curve (thick line in Fig. 2,
blue online). However, there remained a low-frequency
residual oscillation in the resulting Q, curve (evident in
the inset of Fig. 2). We do not know the precise origin of
this residual oscillation (it might either be related to some
small residual eccentricity in the waveform or connected to
the extrapolation procedure), but we think it is of spurious
numerical origin and that it does not have any actual
physical content (note that such an oscillation is not present
in the EOB Q,, curve).

This led us to our third step: a fitting procedure of the
0, (w) function. To implement such a fitting procedure, it
is convenient to first normalize the Q, curve with respect
to its leading-order, Newtonian part,

5
0 (w) = 3—1/2_7/360_5/3, (60)

thereby factoring out the blowing up of Q,(w) at low
frequency. The normalized function

O.(w)=0Q,/0 (61)

stays of order unity on the full frequency range (and
0, — 1 for @ — 0) and is a better starting point for any
fitting procedure (see Fig. 3 for g = 1). Then we use as
fitting template for Qw a general analytical structure con-
sistent with the structure of Qw predicted by PN theory in
the adiabatic approximation. More precisely, the 3.5PN-
accurate expansion of Qw is a Taylor expansion in half-
integer powers of x = (MQ)*3 (modulo some logarithmic
corrections) that reads
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TABLE III. Coefficients entering the fitting function for the Newton-rescaled, curvature-waveform, Qw, Eq. (64). In the second
column we also report the frequency interval M(w;, w,) on which the fit was performed.

q Mo, Mw, ny ny ns ny ns dy d, ds
1 0.03877 0.29654 —27.88757  256.94609 —1053.85269  1926.40123 —1274.57280 —6.60927 47.87468 —104.35366
2 0.04133 029709  15.51565 —372.20973  1725.17714 —3145.40474  2105.30901 —15.77371 90.80420 —103.95952
3 0.04476 0.29642 6.50413 —243.11043  1108.15054 —1913.96522  1193.58571 —14.56312 79.22950 —111.26577
4 0.04819 0.29671 0.52391 —172.68858 806.19352 —1350.57200 797.20936 —14.39733 78.72314 —124.83300
6 0.04280 0.29720 7.18353 —247.53679  1096.28420 —1833.39721  1090.77236 —14.59256 7597063 —113.64331
ON(x) = 1 + box + b3x3/% + byx? smoothed the high-frequency noise. The procedure works
s/ 3 22 in the same way for the other mass ratios, and for each one
+ b5’ 4 bex” + byx''%, 62)  the difference AQ,,(w) nicely oscillates around zero.
where We list in Table III, for all mass Aratios, the fitting
coefficients of the smoothed numerical Q,, to the template
743 11 Eq. (64). Note that this list of coefficients provides a
by = 336 + 4 (63a) convenient way of condensing the information contained
by = —4m, (63b) ip the NR phasing during most of the inspiral and plunge
3058673 5429 617 , (1n§eeq, our fit worked well up to freguency M w =0.3,
=ty +— 1 (63¢) which is quite close to the merger). This packaging of the
1016064 1008 144 NR phasing information might be useful for many pur-
bs = W(_@ + Ey> (63d)  poses, e.g., comparing various numerical simulations,
672 8 computing the Fourier transform in the stationary-phase
b — — 10817850546611 | 32 2 approximation, etc.
6 93884313600 3
(3147553127 _ 45172) 15211 2 IV. REVISITING TEST-MASS LIMIT RESULTS
12192768 48 6912 A. The new information acquired
25565 3+ 1712 (ye + 2logx + 2log?2), (63e) from test-particle computations
5118521 9335 1057 5703 14809 Before dealing with the Caltech-Cornell-CITA
_ 5 C
b, = —77( v v ) (63f)  comparable-mass waveforms, we shall revisit in this sec-
1016064 60438 3024 tion the test-mass limit case ¥ < 1 both to motivate our
introduction of an NR extraction point £3&. differing from
This motivated us to fit the smoothed version the peak of the waveforms and to test the performance of

(coming out of the first two steps) of the numerically
computed Q,(w) with a Padé-type function of the form

3/2 5/2
Oft(x. ) = 1+nx,+ nzxa,/ + nyx2 + n4xw/ + nsxl,
@re 1 +dx, + dyx2 + dyx3, ’
(64)

where x, = (Mw/2)*3.

Let us now illustrate the result of performing this three-
step evaluation of the numerical Q,(w) function. The top
panel of Fig. 2 shows, for ¢ = 1, the three successive
estimates of the numerical Qw: the raw one (dashed line,
featuring many large spikes), the smoothed one (solid line),
and finally the fit obtained using the template (64). Note
that all those curves are plotted versus Mw. The bottom
panel of the same figure shows the difference AQ,(w) =

Hemoothed 1)) — Ofit(4) between the smoothed data and the
fit. Note that this difference is oscillating around 0, which
indicates that the fit has been effective in averaging away
the low-frequency oscillation remaining after having

the basis of functions #n;’s that we shall use in our NQC
correction factor, (27).

State-of-the-art computations of multipolar RWZ wave-
forms for the plunge and merger of a test particle (of mass
M), moving in a Schwarzschild background (of mass M),
and submitted to a leading-order EOB resummed
radiation-reaction force, have been presented in a recent
series of works [43,56,74,75]. These works have used a
recently developed method [76-78] allowing one to com-
bine an accurate treatment of the particle motion in the
strong-field region, with the extraction of the waveforms
directly at null infinity (J). The findings of Ref. [56] that
will be of direct interest for our present study are

(i) The extraction of the waveforms at J allows one to

relate the retarded time "R used as argument of the
waveforms to the EOB time 0B used in the dynam-
ics of the particle (namely, one has simply NR =
{FOB). This allows one to connect without ambiguity
features in the waveform [such as, say, a peak in the
modulus of /,,("R)] with features in the dynamics
[such as, say, the location along the fF°B axis of the
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maximum of the orbital frequency Q(f£°B)]. Such a
possibility is not available in comparable-mass NR
simulations, because they do not track the light cones
emitted by the center of mass of the binary system. In
addition, even if they did, this would not allow one to
relate the dynamical EOB time P to the waveform
time MR, because we would not know the exact
relation between tEOB and the NR coordinate time
relevant for the NR dynamics.

(i) Using the connection between the waveform time
R and the dynamical time F9B offered by (i), it
was found that the waveform amplitude A,, peaks
approximately = 2.56M earlier than the orbital

frequency Q, i.e., r50 . = 8 . + 2.56M. This

is new information which conflicts with the standard
simplifying EOB assumption of a coincidence
between the peaks of Ay, and of (). The existence
of a difference between 7} | and )X\ was later

confirmed in Ref. [57] and extended to the case of a
spinning central black hole.

(iii) Using this new information, Ref. [56] suggested to
incorporate it in a new prescription for the deter-
mination of the EOB NQC correction factor based
on extracting numerical data at the NR point A%
corresponding to 7§05, rather than'' at AR .

They implemented such a prescription by imposing

a C' contact at R t%OpBeak both (for the first

time) between the modulus and the frequency of
the waveform. They then showed that such a pro-
cedure produced NQC-corrected EOB waveforms
which had an excellent agreement with the numeri-
cal RWZ waveforms up to merger.
The procedure we indicated in Egs. (29a2)—(29f) above is
a generalization of this prescription to a C? contact require-
ment. We shall test below the increased accuracy brought
by using such a C? contact requirement, involving six
NQC parameters, instead of the C! contact requirement
used in Ref. [56], which involved only four NQC parame-
ters. This test will also probe the new basis of NQC
correction functions #n;’s used in Eq. (27).

B. Zooming on the structure of the test-mass
waveform near merger

Before doing the latter test, let us display the finding (ii)
of Ref. [56] by investigating in detail the structure of the
€ = m = 2 RWZ waveform around the peak of the modu-
lus, with the idea that a similar structure might hold in the
comparable-mass case.

Figure 4 shows together (as functions of the waveform
retarded time u, which can be identified with the EOB

""Note that, by contrast, Ref. [29] has chosen to keep for € =
m = 2 the NR extraction g)oint at 1% . and to map it to an

. . EO
EOB time earlier than 7§, peak-
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FIG. 4 (color online). Hierarchy of important points of the test-
mass (Zerilli-normalized) quadrupolar metric waveform (divided
by v), Wy /v = (R/M)hsy,/(v~/24) around the merger point.
The orbital frequency () peaks at approximately 2/3 of the
time interval between the peak of the metric amplitude and the
inflection point of the GW frequency, i.e., the first peak of @,,.

dynamical time) the waveform modulus A,,/v; the orbital
frequency (); and the derivative of the GW frequency wo;.
Here, Ay, is the modulus of the Zerilli-normalized quadrupo-
lar metric test-mass waveform, W, = (R/M)hy, /~/24. [For
a general multipole the Zerilli-normalized metric waveform is
Vo = (R/M)hy,, /(€ + 2)(€ + 1)(€)(€ — 1).] The figure
clearly illustrates how the orbital frequency peaks at a time
tgoiak that is between the locations of the maxima of A,, and
tig peak < tlsz),opiak < tlj)l; peak*

Quantitatively, given that we have tl;‘)ofeak - tﬂi peak

2.565388M and AR - IEE peak — 3.815784M we have

wy; i.e., we have the relation

0 @7, peak
at
fE0B — R 2.565388 2
peak Ay peak :
= = 0.6723096 = —. 65
tﬁ’; peak IEZ ek 3-815784 3 (6)

TABLE IV. Time intervals R

. ’ » “yppeak
waveforms considered in this paper.

_ ANR :
LAy peak for all numerical

q v tgl;peak - tzlé\llgpeak
1 0.25 3.2493
2 0.2 3.4426
3 0.1875 3.3261
4 0.1600 3.5714
6 0.1224 3.5681
o 0 3.8158
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The comparable-mass NR simulations show that the order-

ino ANR NR ;
INg 14 eak < 14, peak T€MAains true for all values of » (for

nonspinning binaries). By continuity, one then also expects
that the EOB orbital frequency will continue to peak be-
tween these two points for any value of ». In other words,
one expects that the correspondence between the EOB and
NR time axes should be such that the EOB dynamical time

tgop]i .« () corresponds to an NR waveform time 73 (») such

that tﬁ peak () < AR (v) < AR (v) forany v. The inter-

2, peak
NR  _ NR ;
vals 15" ek Tay,peak @ Measured on the numerical wave-

forms are listed in Table IV. It is convenient to rewrite these
inequalities as

MR(1)— AR () =FO)ER ()~ DR (1), (66)

where f(») is an unknown function satisfying the condition
that £(0) = 2/3, and expected to remain positive for any .
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MQ I
- = Mwss (RWZ) !
035F —— Muws, (EOB) l
- - - Vsl /v (RW2) |
0';,_|\1122|/V (EOB) | 4
| - - -LR crossing
0.25 E
0.2 i
0.15 E
0.1 i
0.05 E
0 . . R
4200 4250 4300 4350
u/M
0.5 T T
MQ I
045k Mwsy (RWZ) ! i
: Muws; (EOB) }
0.47——-|\I/21|/y (RWZ) !
— |[¥a|/v (EOB) |
035k~ -LR crossing :
|
0.3 }
|
025 }
|
0.2 |
0.15
0.1
0.05

PHYSICAL REVIEW D 87, 084035 (2013)

We shall discuss our choice for the function f(») in the
following section.

C. Testing the improvements brought by requiring a C?
contact when using the NQC factor Eq. (27)

Reference [56] was able to build a rather satisfactory
EOB waveform modulus and frequency up to merger for
the € = m = 2 mode (and in general for all € = m modes)
by using four NQC parameters (two for the amplitude and
two for the phase). However, their results for the modulus
were much less satisfactory for the other (€ # m) subdo-
minant multipoles, such as the € =2, m = 1 one. Let us
show here how the use of the new NQC factor, Eq. (27)
(which contains six NQC parameters, and uses different
choices for the NQC functions n3 and ny), improves the
closeness of the EOB waveform to the numerical (RWZ)
one. To be consistent with Ref. [56], the EOB dynamics
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FIG. 5 (color online).
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4200

Test-mass waveform: comparison between RWZ waveform extracted at 7+ and EOB waveform completed by

the six-parameter NQC correction factor to the waveform, Eq. (27). Top panels: £ = m = 2 multipole, modulus and frequency (left)
and phasing (right). Bottom panels: € =2 and m = 1 and € = m = 3 frequency and modulus. The ringdown is modeled using five

(positive-frequency only) QNMs.
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used for this comparison is slightly different from the one
we discussed above. Namely (i) we set to zero fg ,1.e., the
horizon-absorption part of the radiation reaction; (ii) we
also set F,, = 0; (iii) in addition, the residual phase cor-
rections Oy, for v =0 are considered in their Taylor-
expanded form and all terms (up to 4.5PN accuracy) are
included (see Appendix D).

The improved EOB waveform obtained by using the
new six-parameter NQC factor is illustrated in Fig. 5.
The top panels refer to the £ = m = 2 mode: frequency
and modulus (left) and phasing (right). The bottom panels
compare EOB and RWZ frequency and modulus for € = 2,
m = 1 (left) and € = m = 3 (right). For all waveforms the
QNM matching comb has a total width A = 0.7M and we
use five, positive frequency, QNMs. The restriction to
positive frequency QNMs is the reason why one cannot
reproduce the oscillations during ringdown in the € = 2,
m = 1 mode. The improvement with respect to Fig. 3 of
Ref. [56] is evident. Notably, the € =2 m = 1 modulus
comes out extremely well (modulo the absence of
negative-frequency modes to model the ringdown). The
{ = m = 2 phasing remains good also during merger and
ringdown —0.05 < A $pFOBRWZ < 10,05 (while the QNM
matching of Ref. [56] led to significantly larger dephasings
during ringdown). Note on the top right panel of Fig. 5 the
behavior of the phase difference: it dips just before merger
down to —0.04 rad and then jumps up to +0.06 rad during
ringdown. Such a behavior is a useful compromise for
keeping, on average, a good phasing through inspiral,
plunge, merger and ringdown.

Finally, to prove the robustness of the NQC determina-
tion procedure and the accuracy of the EOB waveform for
higher multipoles, we show in Fig. 6 the € =4, m = 1
frequency and modulus. The agreement between EOB and
RWZ waveform is again very good, modulo the absence of
negative modes in the ringdown modelization.
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FIG. 6 (color online). Test-mass limit: comparison between
€ =4, m=1EOB and RWZ modulus and frequency.
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V. COMPARABLE-MASS CASE: a¢(»), 1R (v),
AND PHASING PERFORMANCE

A. Iterative procedure for determining ¢)R (v)
and af(v): Overview

After having tested the performance of the NQC
factor (27) in the test-mass limit, we now move to
the comparable-mass case. Let us explain how we
distilled crucial nonperturbative information out of the
Caltech-Cornell-CITA waveform data. Our aim was to
determine good values of the 5PN parameter a¢(v),
and of the NR time fNR.(») corresponding to the EOB
time 7500 - We recall that #{{(v) is parametrized by a

function f(v), according to Eq. (66). Actually, the deter-
minations of a$(v) and of /NX.(v) are correlated and must
be done essentially simultaneously. From a practical
point of view, we used an iterative, trial and error
method.

First, for a given mass ratio v, and a given choice of NR
extraction time N (chosen around merger), we extract,
from the behavior of the waveform in the immediate
vicinity of the retarded time, XX, a Collection of NR
waveform quantities (ANR, ARR ANRNR GNR | 5R),
[As mentioned above, these quantities are then used, for
any given value of a¢(v), to determine the parameters
(af’”, bf’”) entering the EOB NQC factor, i.e., the last
factor in the premerger EOB waveform (16).] Second, we
study how the phase difference A$FOBNR between the so
determined NQC-corrected EOB waveform and the NR
waveform evolves (either as a function of frequency or of
time) from the beginning of the simulation up to fNX . The
evolution of the phase difference A pFOBNR depends (after
having chosen f\X. and having implemented the previous
step) only on the SPN (v-dependent) parameter a¢(v). We
then search (for each v) whether there exist values of a¢(»)
which entail that A pEOBNR(g¢(v)) remains within the nu-
merical uncertainty during the full simulation (up to tNR).
If such a tuning of a{(v) does not seem to lead to a
satisfactorily small phase discrepancy during the whole
evolution, we try another value of the NR extraction time
and repeat the two steps above, until we end up with a
better pair (K, a&(v)).

When completed (by iteration), the above two steps
completely define an NR-completed EOB model up to
merger. The EOB waveform is then extended through
merger and ringdown by attaching QNMs at the end of
the inspiral plus-plunge waveform, i.e., at the EOB time

1E0B G peak (Which corresponds to the NR time £y5). This

extension does not require the extraction of further NR
information, but only requires to choose, by trial and
error, reasonably good values of the number of QNM
modes N, and of the total width of the matching comb
Ameh around 7677 . As already said, we use N =5 and

Amatch — 0. 7M.
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B. Determining ¢ (v)

We started by applying this iterative procedure to the
equal-mass case ¢ =1 (i.e., v = 0.25). After trial and
error, we concluded that, for g = 1, the coefficient f(»)
in Eq. (66) could be taken to have the value f(0.25) = 1/6.
In other words, when g = 1, R can be taken to be rather
close to the peak of the A,, modulus, as was indeed
assumed in all previous EOB works. By contrast, when
considering larger mass ratios, we found more and more
advantageous to increase the value of f(»), up to values of
order of the test-mass value discussed above, f(0) = 2/3,
for large mass ratios. Then, as a simplifying choice, we
decided to assume for the v dependence of f(v) a simple
linear behavior between the two extreme values for v = 0
and v = 0.25, in the form

fw) = f(0.25) + (£(0) = £(0.25)(1 — 4»), (67)

which yields, when using f(0.25) = 1/6 and f(0) = 2/3,
the explicit expression
2

f(v) = 37 2. (68)
Having so chosen 73 (v), we measure, for each (€, m),
on the NR multipolar waveform the vector (AjR, AR,
ANR oNR GNRGNR) at NR (v). Then, for any value of
ag, we first compute the EOB dynamics, then we solve
the linear system given by Eqs. (29a2)—(29f) to obtain the
NQC parameters (a!™, b™), and finally we iterate the

. 6 e . .
procedure until (a;™, bi™) converge at the fourth digit.

C. Determining ag(v)

At this stage, the only freedom left in the model is the
value of ag(v). Let us now explain how we investigated the
phase difference A pEOBNR(4¢(v)) and used it to determine
a¢(v). Actually, we used a two-pronged approach towards
studying A pFOBNR We first studied the Q,(w) function
defined by the NR data, and compared it to the EOB-
predicted one. Then, in a second step, we considered the
time-domain phase difference A pEOBNR(y),

Let us start by explaining how we used the Q,(w)
diagnostics to constrain the possible good values of
a¢(v). Since, as we explained above, we could extract
from NR data a rather accurate estimate of QYR (w), we
compared it to the value QECB(w;a(v)) predicted, for
each value of a¢(v), by EOB theory. Such a comparison
(in the g = 2 case) is illustrated in Fig. 7. The top panel
of this figure shows the EOB-PN and NR-PN differ-
ences AQY = QX — Q35PN where X labels either EOB
(for the three indicated values of a®) or NR, and Q3N is
the 3.5PN-accurate, Taylor-expanded expression given by
Eq. (62). Note first that the black solid line, corresponding
to NR-PN, shows that the current best PN knowledge
of the intrinsic phasing function, Q>"N(w), differs
from the NR result by a large amount, reaching
03PN(w) — ONR(w) =~ —18 at Mw, = 0.29, which is
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TABLE V. Next-to-quasicircular  (a{™, b™)  coefficients
needed to complete the EOB for the five mass ratios considered.
They are obtained by imposing C? conditions to the waveform
amplitude and frequency around the merger.

q m afm agm agm b{l/m bgm bgm

22 —0.0577 1.8127 —0.1205 0.0794 —0.9164 —2.5890

32 00987 24076 —0.4987 0.0490 1.0532 —2.9188
2 21 —0.0656 04871 0.2959 02544 09033  1.1975
22 —0.0602 1.7571 —0.0646 0.0963 —0.8789 —2.0165
32 —0.0658 27289 —0.2130 0.0864 1.2601 —2.7701

33 —0.0068 21915 —0.1837 0.2300 —1.2604 —2.2847

3 21 —0.0566 02988 0.3668 02636  0.8883  1.8284
22 —0.0484 1.6672 —0.0347 0.1161 —0.7453 —1.4052
32 —0.1349 26377 —0.0518 0.1747 1.5855 —0.2960

33 00016 20213 —0.0789 0.2560 —1.1539 —1.0416

4 21 —00464 01260 04288 02772 10397 19334
22 —0.0396 15639 00004 01342 —0.5509 —1.1731
32 —0.1360 23134 00559 02795 1.9825 —0.0350
33 00079 1.8294 00243 02807 —0.9226 —0.5157

6 21 —00323-0.0701 05183 02770 12750  2.0649
22 00229 14177 00397 01498 —0.4375 —0.9124
32 —0.1114 17472 02487 03207 22001  1.5262
33 00296 15816 0.1347 03014 —0.7664 —0.1969

close to merger. The corresponding integrated dephasing
between PN and NR,

A GPNNR = [‘"2 dIn w(Q%™(w) — ONR(w)),  (69)

accumulated from Mw; = 0.07 to Mw, = 0.29, is found
to be equal to —11.72 rad.

By contrast to the NR-PN, or EOB-PN differences
displayed in the top panel of Fig. 7, its bottom panel
displays the much smaller EOB-NR difference AQ, =
QEOB(w; al(v)) — ONR(w) for five different values of ag.
In addition, the shaded region represents the NR-NR
difference AQ, = OQNRN=> — QNRN=4"" \here N =5
(respectively, N = 4) labels the numerical waveform
with the highest (respectively, medium) resolution [35].
The visual comparisons displayed in Fig. 7 are made
quantitative in Table VI, which lists corresponding values
of the EOB-NR phase difference over the frequency inter-
val M(w;, w,) = (0.07, 0.29) obtained from the integral

Ap = [  d1n w(QEOB(w; a§(v) — ONR(w)).  (70)

Note that Mw, = 0.29 approximately corresponds to the
merger. These phase differences indicate that a good range
of values of a¢(2/9) is roughly between —90 and —100.
Within such a range, A¢ remains of the order of the NR
phasing uncertainty as estimated in Refs. [28,35] by
comparing the two resolutions N =4 and N = 5. Note
that the small phase differences corresponding to —100 =
ag(2/9) = —90 result from a cancellation between
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FIG. 7 (color online). Using the Q,(w) diagnostics to con-
strain the good values of a(v). The figure refers to the case ¢ =
2, v = 2/9. Top panel: Difference between either QZ°8 or QNR
and the 3.5PN-accurate, Taylor-expanded Q3°"N given by
Eq. (62). Bottom panel: The lines show the differences AQ,, =
QEOB — ONRN=S for different values of a¢. The shaded region
exhibits the difference AQ,, = QNRN=3 — QNRN=4 where N =
4, 5 labels two different resolutions, respectively, medium and
high, of the NR data [35]. See text for further details.

positive and negative contributions to the above integral.
However, a look at Fig. 7 shows that within this range of ag
the nonzero values of AQ,, remain of the order £0.05 for
most of the integration region. Such a range of values of
AQ, is comparable to the numerical uncertainty on Q,,
(at least) during the inspiral, as illustrated by the shaded
region in the figure. Note indeed that the frequency
Mo = 0.1 is reached only 150M before merger (cf. bot-
tom left panel of Fig. 10). Note also that the frequency
interval 0.2 = Mw,, = 0.3 (where the top panel of Fig. 7
shows visible differences, made quantitative in the bottom
panel) only corresponds to the last 25M before merger.
[The GW frequency 0.2 approximately corresponds to the
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Mass ratio g = 2: phase difference A¢ =
@R accumulated between frequencies w; = 0.07 and
w, = 0.29 versus ag as obtained using Eq. (70).

TABLE VL
HEOB —

ag A¢ [rad]
—80 +0.0810
-90 —0.0010
—100 —0.0909
—110 —0.1942

adiabatic LSO crossing, i.e., the end of the quasiadiabatic
inspiral.]

This analysis based on the Q, diagnostics selects, for
each value of the mass ratio (¢ = 1, 2, 3, 4, 6), a range of
good values of a¢(v), which then needs to be confirmed
and refined by directly comparing the time-domain phase
evolution of the EOB waveform to the NR one. We have
done such an analysis by considering, for each value of
a¢(v) within the above range, the phase evolution from the
beginning of the simulation up to merger, and also after
merger, during ringdown. The comparison up to merger
only depends on the choices of N (v) and ag(v), while the
comparison during the subsequent ringdown also depends
on the choices made in attaching QNMs to the NQC-
corrected premerger signal. The time-domain phasing
comparison allowed us to close up, for each value
of », on a more precisely determined value of af(v)
(with an uncertainty of order unity). Actually, depending
on the criterion we put on the quality of the EOB/NR phase
agreement, the resulting best values of a(») are slightly
different. However, in all the cases we have explored, we
found that the good, v-dependent values of ag were
approximately lying along a straight line.

We choose ag according to the following two criterions:
on the one hand, we can require that the time-domain phase
difference (after alignment) ApEOBNR(z; 4¢(v)) remains
near zero in as flat a manner as possible up to merger. In
this case, the price to pay for this is that the subsequent,
somewhat coarse QNM attachment defined by the current
EOB prescriptions will cause, after merger and during ring-
down, the EOB-NR phase difference A pEOBNR(z; o€ 13( 1))
to jump to positive values of order ~ + 0.15 rad (more
about this below). On the other hand, one can also look for a
more “‘effective” description of the phasing where we allow

TABLE VII. Best values of ag selected according to the
behavior of the A¢ = ¢pFOB — ¢™R phase difference around
merger time.

q v ag (flat) ag (effective)
1 0.25 —106 —103
2 0.2 -99 —-96
3 0.1875 —82 -79
4 0.1600 —67 —63
6 0.1224 —47 —45
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A@PFOBNR (o take slightly negative values just before
merger, but to jump to smaller values ~ + 0.05 rad after
merger (see more details below). The so obtained corre-
sponding good values of ag are listed in Table VII. The
bottom panel of Fig. 8 plots these values versus ». One sees
that, for both the effective and flat cases, they approxi-
mately lie along a straight line. However, as evidenced by
these plots, a linear fit to ag(») does not give an accurate
representation of the points when the v = 0.25 value is
taken into account. Before discussing a way to fit such a
behavior, let us note that the top panel of Fig. 8 displays, for
g = 1, the phase differences for the “flat” and “‘effective”
values of a§(0.25). The same behavior, with very similar
phase differences, is found for all other mass ratios.

0.25

A
AAPPNR /AT (flat)
02F —— A@EOBNR (offoctive)
AAFOBNR J ANR (effective)
015}

0.1
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AN “oo kit nat
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N
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N
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FIG. 8 (color online). Top panel: Illustrating the meaning of
“flat” and “‘effective” EOB/NR phase differences around merger
for ¢ = 1 (v = 0.25). The flat phase difference is obtained here
with a§(0.25) = —105.719 from Eq. (73), while the effective one
uses a$(0.25) = —101.876, from Eq. (74). Bottom panel: Flat and
effective best values of ag and their analytical fits (dashed lines).
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Let us come back to the issue of constructing an
analytical fit for the behavior of the functions ag(v)
exhibited in the bottom panel of Fig. 8. We checked
that the use of a global linear fit for the values of af(v)
would give unacceptably large phase differences
(> 0.1 rad) accumulated up to merger. This suggests
the need of using a fitting function which deviates from
a linear function of » only in a rather limited interval
0.2 < v = 0.25. There are many ways to construct such
fits. Here, as a first attempt (to be possibly improved in
future work), we have used the following, factorized,
mostly linear, functional form

ai(v) =[a + b(1 — 4v)]5(c; v), (71)

where § denotes a localized (when the parameter ¢ is
much smaller than one) correction to the linear behavior
parametrized by a and b:

§(e;v) = (1 ¢ )1/2. (72)

+
(0.26 — v)?

We have determined sufficiently accurate values of the pa-
rameters (a, b, ¢) by fitting the values of ag listed in Table VII
in two steps. [For simplicity, we fixed the location of the pole
in the function §%(v) to the fiducial value v = 0.26.] First
(a, b) were determined by fitting only the g = (2, 3, 4, 6)
data in Table VII to a straight line. The raw data were then
divided by the outcome of the fit and the resulting ratios were
further fitted against the factor of Eq. (71) so as to determine
c. Applying this fitting procedure, we find (a, b, c)™ =
(—114.006, 130.774, —1.352 X 1073) for the flat choices
of a¢ and (a, b, ¢)™e = (—110.467, 129.022, —1.468 X
1073) for the effective choices of ai. Rounding up these
numbers, we summarize our search of a flat ag(») by the
following analytical expression:

a¢M(y) = [—114 + 131(1 — 4»)]5(— 1.4 X 1073; »).
(73)

For the effective description of the phasing we found instead

ag(v) =[—110.5 + 129(1 — 41)]5(=1.5 X 107%; »).
(74)

This is one of the central results of our work, and one of the
most important pieces in the NR-completion of our EOB
model.

In conclusion, we propose to define the NR completion
of our EOB model by adopting the analytical expressions
(68) and (74) for defining, respectively, 1N&.(v) and al(v).
In addition, we found that the following QNM-attachment
choices define a reasonably accurate ringdown comple-
tion of the EOB waveform: N =5 QNM modes, and

A©mb — (. 7M. In the following, we shall illustrate the
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FIG. 9 (color online). Illustrating the effect of the NQC factor
(left panel) and frequency (right panel).

comparison of the EOB multipolar waveform defined by
these choices to the corresponding NR multipolar
waveform.

D. Values of the NQC parameters (a{™, b{™)

Before doing so, let us recall that, for each mass ratio,
we must determine (by iteration) the NQC parameters
(a;, b;) defined by the above choices (using given NR
data). In Table V we list, for the mass ratios g =
(1,2,3,4,6) and for multipoles (2, 2), (2, 1), (3, 3),
(3, 2), the values of the (a!™, b!™)’s that define the NQC
corrections to the bare inspiral-plus-plunge EOB wave-
form. [When g = 1 there are no entries for {m = (2, 1)
and (3, 3), because these modes are identically zero in this
case for symmetry reasons.] We will discuss below the
issue of replacing the information contained in this table
by v-dependent fitting formulas.

E. Effect of the NQC factor on the EOB waveform

Let us first illustrate how the NQC factor modifies the
purely inspiral EOB waveform. The ¢ = 1 case is consid-
ered in Fig. 9: modulus (left panel) and frequency (right
panel). Similar results are obtained for any other mass ratio
(see also Ref. [56] for the test-mass limit). We show
together (i) the purely inspiral waveform, i.e., Eq. (16)
without the NQC factor /1) °C (dash-dotted, thin line, black
online); (ii) the inspiral+merger waveform, including the
NQC factor (dash-dotted and thick line, blue online);
(iii) the extended EOB waveform, including the ringdown
part (thick, solid line, red online); and the NR waveform
(thin, solid line, black online). As noted already in
Ref. [56] the most striking feature of this plot is that the
pure inspiral EOB waveform modulus peaks (after align-
ment as explained in Sec. V F) just ~1.4M before the peak
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on the “bare,” inspiral EOB waveform (equal-mass case): modulus

of the NR modulus. On the other hand, its amplitude is
about 20% larger than the NR one.'? Note that the largish
difference in amplitude is very effectively corrected by the
NQC factor. In order to reduce the amplitude and displace
it to the right we need a NQC factor that, near merger, is
smaller than one and growing. This is what n, succeeds in
doing thanks to its shape, as illustrated in Appendix A. This
explains why the values of the NQC parameter a3* are the
dominant ones; see Table V. By contrast, if one has to
increase the amplitude and displace it to the right [as was
needed in Ref. [28] because of the use of the argument
0?3 in py(x)], one needs a NQC factor which, near
merger, is larger than one and growing, as, for instance,
our 1y, Eq. (28a).

F. Comparison between the ¢ = m =2 NR
and EOB waveforms

Let us now present the results of the comparison be-
tween the dominant quadrupolar [(¢, m) = (2,2)] NR
waveform, and the corresponding NR-completed EOB
waveform introduced in this work. For each mass ratio
among g = (1,2,3,4,6), Figs. 10 and 11 compare the
EOB and NR modulus and frequency (left panels), the
real parts of the waveforms (right panels, bottom) and
also show the phase difference A pFOBNR = HEOB — HNR
and the relative amplitude difference AAFOBNR /ANR =
(AEOB — ANR) /ANR (right panels, top). The vertical
dashed line present in all panels marks the location of

'2Such a behavior follows from our use of x = vfo as argument
in py(x). As noted in Fig. 2 of Ref. [28], the different choice
x — Q%3 (which is however not physically justified during the
plunge) makes the EOB waveform peak considerably earlier (by
6.2M) than NR, but with an amplitude much closer to the NR
one ( = —0.23% smaller).
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(EOB
Q) peak*

domain comparisons are done by suitably determining a
relative time and phase shift between the two phases
PIR(NR) and HEVB(EOB). These shifts are estimated by
minimizing the time integral of the square of the phase
difference on a time interval corresponding to a given
frequency interval [M w;, M wg]. Following Refs. [28,68],
we perform this waveform alignment on the long inspiral
phase. Note that, in doing so, we do not enforce

: NR EOB
the constraint that fg, corresponds to 7 peak’ However,

the EOB/NR agreement is so good up to merger that

such an early-inspiral alignment succeeds in realizing,

a posteriori, a near coincidence between tN%. and rE°B

the peak of the EOB orbital frequency, These time-

Q) peak*
. - NR _ EOB .
For instance, we find that, for g = 1, o — 15 peak =

—0.13M. The right limit of the frequency for each mass
ratio is Mwgp = 0.1. The left bounds are Mw; =
(0.035, 0.035, 0.035, 0.044, 0.045).

These figures indicate an excellent EOB/NR agreement
in phasing and in modulus from the early inspiral up to
merger. The remaining disagreements are well within the
nominal error bar on numerical data. Actually, the only
estimate of the numerical error on the phasing of these
numerical data that is available in the literature is a rather
conservative one that is done by taking the difference
between the highest and the medium resolution. This
procedure gives uncertainties that are very small during
the inspiral phase (< 0.01 rad) and small, though not
negligible, in the late plunge phase up to merger
(~ 0.1-0.3 rad, depending on the mass ratio) [35]. A less
conservative NR error estimate might be smaller by
(at least) a factor 2.1 Keeping this in mind, it is remarkable

>We thank Harald Pfeiffer and Luisa Buchman for informing
us of this more realistic estimate of the NR errors.
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FIG. 11 (color online). Comparison between EOB and NR (Zerilli-normalized) waveforms for mass ratios ¢ = 3, 4, 6. Left panels:
Amplitude and frequency. In the right panels, each subplot shows the phase and amplitude differences between the EOB and NR

EOB

waveform (top) and the real part of W,, (bottom). The vertical dashed lines mark the 1 peak crossing time.

that our EOB model, with the very simple law for a¢(»)
given in Eq. (74), is able to reproduce all numerical data
within =< 0.06 rad at merger.

Let us also emphasize the very good agreement between
the moduli before and at merger (see the top-right inset in
the right panels of Figs. 10 and 11), though they exhibit a

visible difference during the subsequent ringdown. The
good agreement before merger is an improvement with
respect to previous works [22,28,46] that is due to a
combination of effects coming from the use of an improved
analytical EOB model, from a new choice of the basis
of NQC functions n;, and from the choice of an NQC

084035-23



DAMOUR, NAGAR, AND BERNUZZI

determination point which differs from the maximum of
the amplitude. [Note that such an agreement before merger
is also comparable to the one obtained by Taracchini et al.
[29] with an EOB model that is rather different from the
one discussed here.] Let us also note that, as already
mentioned, we have, on purpose, chosen effective values
of af(v) causing the phase difference A@EOBNR to dip
towards negative values ~ — 0.05 rad just before merger,
before jumping towards positive values of order +0.05 or
+0.1 rad during ringdown. Such a behavior ensures a good
average phase agreement during the entire process. Had we
instead chosen the slightly different flat values of ag(v),
Eq. (73), they would have led to a near perfect phase
agreement up to merger. However, the price for doing so
would then have been the presence of a larger global phase
disagreement (of order ~ + 0.15 rad), due to a positive
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jump in A PFOBNR after merger, and during ringdown. We
note that such a positive jump ~ + 0.15 rad in A pFOBNR jg
consistent with the study, done in Ref. [28], of the intrinsic
error in A@FOBMR coming from the procedure of QNM
attachment itself. This indicates that more work should be
devoted towards improving the current EOB technique for
attaching QNMs onto the inspiral-plus-plunge waveform.

G. Subdominant multipoles

Up to now, our study has only considered the dominant
quadrupolar € = m = 2 waveform. Let us now compare
some of the subdominant multipolar waveforms. We con-
sider here the € = 2, m = 1 and £ = m = 3 subdominant
waveforms, for the two mass ratios ¢ =2 and ¢ =6
(similar results were obtained for ¢ = 3 and g = 4). We
limit ourselves to such a partial comparison here to show

I I I
0 500 1000 1500 2000 2500 3000 3500 3650 3700 3750

u/M

u/M

u/M

u/M

FIG. 12 (color online). Subdominant multipoles, £ = 2, m = 1 (left panels) and € = m = 3 (right panels). Comparison between
EOB model and NR (Zerilli-normalized) waveform for mass ratio ¢ = 2. Top: Amplitudes and frequencies. Bottom panels: Amplitude

and phase differences. The vertical dashed lines mark the t%‘geBak crossing time.
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the capability of the EOB model, as it was defined above,
to get the main characteristics of the subdominant
multipoles, without introducing ad hoc modifications, or
tuning further parameters. At the end of this section we
will also mention some results for the £ =3, m =2
multipole.

In Figs. 12 and 13 we compare, for the two mass ratios
g = 2 and g = 6, the NR and EOB frequency and modulus
for the two subdominant multipoles € = 2, m = 1 and € =
m =3 (top panels) as well as the phase and amplitude
differences (bottom panels). We use the same matching
interval as for the € = m = 2 mode, i.e., Amah = (7M.
and the same number of QNM modes, i.e., N = 5. Note the
good agreement of the moduli in all cases, both up to
merger and during ringdown. [In the A,;, ¢ = 2 case the
multiple crossings between the NR and EOB moduli may
be due to inaccuracies in the NR waveform.] Note also

crossing time.

the good agreement, up to merger, of the frequencies, in all
cases, and the good agreement of the frequency of the (3, 3)
mode after merger, and during ringdown. The only case
which is slightly less successful is the discrepancy between
the EOB frequency and the NR frequency in the € = 2,
m = 1 case for both mass ratios (compare with Ref. [28],
but note we have not introduced here any ad hoc treatment
of the € = 2, m = 1 case.) Namely, the EOB frequency of
the (2, 1) mode shoots up, just after merger, a bit faster than
its NR counterpart. In turn, such a frequency difference
builds up a phase difference after merger. This is illustrated
in the bottom panels of the figure, which shows the phase
differences A pEOBNR (left) and A p5OBNR (right) as func-
tions of time during the entire simulation. Note that the
dephasing is remarkably small up to merger for both multi-
poles, and then accumulates a dephasing A@pSOBNR ~
0.5 rad (and A pEPBNR ~ 0,15 rad) during the ringdown.
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Let us emphasize that the phase difference A $p5OBNR(z)

plotted in the bottom panels of Figs. 12 and 13 has been
computed without introducing any new arbitrariness, nei-
ther in time, nor in phase, in comparing the two phase
evolutions. Indeed, the least-squares alignment procedure
of the NR and EOB dominant (2, 2) waveforms has deter-
mined both a shift in time, say 7,,, and a phase shift, say
oy, connecting them. The time shift 75, determines the
(a priori unknown) connection between the two time
variables "R and FOB and should therefore be used in
comparing the time evolutions of all the other physical
quantities, and in particular the subdominant multipoles.
The case of the phase shift @,, is similar, but with a
difference. Indeed, in our case (with a common, preferred
Z axis given by the total angular momentum of the system)
the only a priori unknown angular difference between NR
and EOB is a rotational shift, by some angle 3, connecting
the NR basis of tensorial spherical harmonics to the
corresponding EOB basis. This common angle 3 then
introduces a phase shift in all the various €m multipoles
simply given by

Agy = mp, (75)

independently of €. As this result applies in particular to
oy, [which is determined modulo 277 by the alignment of
the (2, 2) waveforms], we see that the phase shifts in the
subdominant multipoles are determined to be

gy = %aﬂ modulo mr. (76)

In addition to this phase shift, there might be extra phase
shifts due to the use of different conventions in defining
the phase of the tensorial spherical harmonics. Such phase
conventions differ at most by multiples of /2, corre-
sponding to powers of i. In other words, we can always
write that @, = % a,, modulo 7r/2, which is sufficient for
unambiguously computing A@EBNR for all subdominant
multipoles. This absence of phase-shift ambiguity in
A@EOBNR ‘makes it all the more remarkable that, in the
(2, 1) case, the phase difference A@SCPBNR plotted in
Fig. 12 (for g = 2) and Fig. 13 (for ¢ = 6) stays very
small up to merger.

Let us finally comment on Fig. 14, were we show the
phase difference one gets for the € = 3, m = 2 multipole,
for the two representative cases ¢ = 1 (top panel) and
q = 6 (bottom panel). The figure, again, illustrates a rather
good consistency between EOB and NR up to merger. The
differences after merger are mostly due to our simplified
description of the ringdown [see Appendix A of Ref. [28]
for a detailed analysis of the structure of the (3, 2) ring-
down waveform].

We leave to future work a more detailed analysis of the
subdominant multipoles, and the investigation of possible
ways of improving their EOB representation, in case
the slight dephasing exhibited in Figs. 12 and 13 for the
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FIG. 14 (color online). Subdominant multipole £ = 3, m = 2:
phase difference for ¢ = 1 (top panel) and ¢ = 6 (bottom panel).

The vertical dashed lines mark the re08, crossing time.

(€, m) = (2, 1) multipole happens to significantly degrade
the faithfulness of the complete EOB waveform (summed
over all multipoles).

VI. STRUCTURE OF THE EOB-NR RADIAL
POTENTIAL A(u) AND ITS CONNECTION
WITH OTHER RESULTS

One of the most important nonperturbative dynamical
knowledge acquired in this work by comparing EOB pre-
dictions to the Caltech-Cornell-CITA simulations concerns
the function A(u;v). We recall that A(u; v) is the main
radial potential of the EOB Hamiltonian and represents
the time-time component of the effective EOB metric:
Au; v) = —g&H(R). In the test-mass limit, » — 0, the
effective metric is the Schwarzschild metric, so that
lim, 0A(u;v) =1 —2u=1-2GM/(Rc?). We saw
above that NR data selected, in the strong-field domain,
an A function given by Eq. (10) with a$ = 23.5 and
al(v) = [—110.5 + 129(1 — 4»)]5(—~ 1.5 X 107%; »). Let
us now discuss some properties of this NR-informed
EOB potential (or simply EOB-NR potential) and its
connection with other relevant results.

A. Global shape of AECBNR(y: 1) as a function of u and
comparison with previous purely analytical estimates

As a first orientation, we contrast in Fig. 15 various
estimates of the function A(u; ») in the equal-mass case,
i.e., v = 0.25. Our NR-informed estimate [SPN-log-Padé
resummed and with a$ = 23.5 and a§(v) = [—110.5 +
129(1 — 4»)]5(—1.5 X 107; v)] is shown as a thick solid
line (red online), i.e., the second line from the top. The
dashed bottom line represents the 1PN-accurate estimate
of A, which happens to coincide with the simple
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FIG. 15 (color online). Contrasting various estimates of the
A(u; v) function. In the equal-mass case, » = 0.25. The plot
shows the 1PN, 2PN and 3PN Taylor-expanded versions of
A(u;0.25), its 3PN-accurate Padé resummed form as well as
the EOB-NR one [SPN accurate with logarithmic terms and
a$ = 23.5, a§(0.25) = —101.876, as per Eq. (74)].

Schwarzschild-metric result AS™ () = 1 — 2u. [Indeed,
in Eq. (7) there are no terms of order u? corresponding to
the 1PN level.] The thicker dashed line just above this 1PN
estimate represents the Taylor-expanded 2PN estimate, i.e.,
Eq. (7) taken up to the term O(u?) included. The upper
dashed line represents the Taylor-expanded 3PN estimate
of A(u;v), as given by Eq. (7) up to the term O(u*)
included. Finally, the thin solid line (black online) just
below the NR-completed 5PN-log Padé curve is the
Padé-resummed estimate of the analytically known 3PN
result, which was proposed by Damour, Jaranowski and
Schaefer [3] in 2000, i.e., 5 years before NR simulations
started yielding information about the strong-field dynam-
ics of binary black holes. It is remarkable that the latter
simple 3PN-Padé estimate is rather close to the best current
NR-informed estimate: (i) it is numerically quite close to it
if one considers values u =< 0.3 which are already beyond
the last stable orbit and therefore are crossed during the
plunge; and (ii) even in the very strong-field domain 0.3 =<
u < 0.6 (where the merger occurs) the 3PN-Padé estimate
is a much better approximation to AFOBNR (3 ) than any of
its standard PN approximants. This closeness explains the
success of the simple Padéed 3PN A function in agreeing
with several recent NR studies of dynamical aspects of
close black-hole binaries [26,34] and confirms the effec-
tiveness of using Padé approximants to improve the strong-
field behavior of Taylor approximants.

B. Detailed study of the v dependence of AFOBNR(y; p)

The comparison of the previous subsection has indicated
that an accurate description of the gravitational wave
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emission of coalescing binary black holes requires a very
precise determination of the shape of A(u; v) in the very
strong-field domain u = 0.3 (i.e., R < 3GM/c?). Let us
zoom on the detailed shape of the A function in the strong-
field domain by focusing on the properties of the associated
a function, defined by writing

Alu;v) =1 —2u + va(u; v). a7
The Taylor expansion of this small-a function starts as

94 41
alu;v) =2 + (— — —77'2>u4 + 0w’ Inu). (78)
3 32
Note that the » dependence of a(u; v) is only contained in
the O(u® In 1) remainder term. In order to zoom on the v
dependence of a(u; v) it is then useful, following Ref. [49],
to normalize the a function by its LO PN behavior,
a®™ (u; v) = 2u3, ie., to consider the d(u;v) function
defined as
a(u;v) _ Alu;v) — (1 — 2u)

2u3 2vu’ ' (79

a(u;v) =

In the upper panel of Fig. 16, we plot the values of the
EOB-NR a(u; v) functions for the values of » correspond-
ing to the five mass ratios we used in our EOB/NR com-
parisons above, namely g = 1, 2, 3, 4, 6, as well as the
EOB-NR predicted a curves corresponding to g = 10, to
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FIG. 16 (color online). Top panel: Behavior of the EOB-NR
a(u) function defined in Eq. (79) with a§ = 23.5 and a§(v) =
[—110.5 + 129(1 — 4»)]5(—1.5 X 1073; »). The red line shows
the » = 0 function as obtained from the fit of GSF data [49].
Bottom panel: The difference AFOBNR(y; ) — ASMW(y) with
ASW(y) =1 — 2u. For each value of », the marker indicates
the EOB-defined adiabatic light-ring location.
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TABLE VIII. EOB-defined adiabatic light-ring (LR) and LSO
locations for a§ = 23.5 and af =[—110.5 + 129(1 — 4»)]X
5(—1.5 X 1073; »).

q v LR ULR r'Lso ULso
1 0.25 1.8067 0.5535 4.5108 0.2217
2 0.2 1.9324 0.5175 4.6964 0.2129
3 0.1875 2.1119 0.4735 4.9226 0.2031
4 0.1600 2.5223 0.4440 5.0962 0.1962
6 0.1224 2.4366 0.4104 5.3235 0.1878
10 0.0826 2.6240 0.3811 5.5529 0.1801
00 0 3.0000 0.3 6.000 0.16

g = 100 and also to ¢ = o, i.e.,tothe v = ¢/(qg + 1)>* —
0 limit of aF°BNR(y; ). The (red online) round markers on
the curves indicate the EOB-defined, light-ring locations,
i.e., the solutions of the equation (#?A(u)) =0 (see
Table VIII for the precise numbers). In addition, we have
also indicated the recently derived (GSF-computed)
“exact” value of the limit lim ,_d(u; v) [49] (using their
best analytical fit). In the bottom panel of Fig. 16 we plot
the corresponding values of the products va®OBNR(y; v) =
2vudGFOBNR(y; 1), ie., the corresponding differences
of AFOBNR(y- 1) away from its test-mass limit, i.e.,
ABOBNR(3- 3y — AShW(3) where AS™W(y) =1 —2u =
lim ,_oAFOBNR(y; 1), This shows again how the physics
of the GW emission by coalescing black-hole binaries
depends on fine features in the A potential. Note how, as
v decreases, a(u; v) monotonically increases, in a way
which is qualitatively compatible with the shape of the
limiting GSF result d(u;0) = lim ,_,a(u; v). [The latter
limiting GSF shape has a singularity at u = 1/3, which is
probably smoothed out by higher-order corrections in v
around v = 0. See Ref. [49] for a detailed discussion of the
origin of this singularity, and its probable fictitious char-
acter.] Though the » — 0 limit of a¥°BNR(y; v) (which is a
polynomial in u, with logarithmic coefficients) does not
coincide with the exact O(v) GSF result, it stays quite
close to it up to u =< 0.2. It is interesting in this respect
to point out that the » — 0 limit of our NR fitted ag(v),
given by Eq. (54), is a¢(0) = +18.4979 = +18.5. This
is completely different from the true Taylor value
agTaylor(O) = —131.72(1) [39]. However, it has the same
sign and order of magnitude as the effective value obtained
above, in Eq. (12), by requiring compatibility with the
GSF determination of LSO precession for v — 0. This
shows a reasonable compatibility between two effective
determinations of a¢(0) in the strong-field regime.

Note also, on the bottom panel, how the behavior of the
corresponding contribution to the A potential, i.e., the
product va(u;v), seems to tend continuously (though
maybe not uniformly) towards zero as ¥ — 0. This bottom
panel suggests that the ¢ = 10 case should be thought of as
belonging to the class of the normal comparable-mass
cases ¢ = O(1). One needs g’s of order at least (O(100)
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to belong to the class of extreme-mass-ratio binaries. The
EOB-NR potential derived here has anyway been tuned to
the physics of comparable-mass binaries with 1 = g = 6.
As we knew (from Ref. [49]) that the » — 0 limit of the
(exact) A potential was (probably) mildly singular, and as
we are mainly interested in describing the physics of
comparable-mass systems, we did not attempt to incorpo-
rate in the A function too much of the information con-
tained in its ¥ — 0, GSF limit. In our work above, we only
incorporated some information about the v — 0 limit of
the 4PN coefficient lim ,_ya$(»). But, as we shall discuss
next, this was mainly done as a practical way of reducing
the number of unknowns to be fitted to NR data.

C. On the “equivalence classes” of the A (u) potential

References [6,22] found, for the ¢ = 1 case, that there
was a strong degeneracy between the two parameters enter-
ing a SPN-accurate Padé representation of the A function,
say a$ and ag. This was confirmed for other values of g in
Ref. [28]. This finding leads to the idea that the good values
of a§ and ag can be organized in equivalence classes of
quasi-interchangeable values of the pairs (a$, ag). An ex-
plicit way of constructing these equivalence classes was
indicated in Ref. [36]: it consists in defining the equiva-
lence class of some given pair (ag(o), ag(o)) as the set of
pairs (as, ag) such that the u derivative A'(u; v; a$, a§) of
the A function, evaluated at some fiducial strong-field
point, say u;, (the value u; =~ 0.215 was suggested there),
takes the same value at (a5, aS) and at (a5, a?). In
equations

Al(uy; v;as, af) = A'(uy; v; ag(o), ag(o)) (80)
or, equivalently,
d(uy; v as, a) = a'(uy; v;al”, al®).  (81)

When working, as we do here, with the normalized func-
tion a(u; v), we could alternatively define these equiva-
lence classes as level sets [in the space of pairs (a$, af)] of
a'(up; vy as, af), or even, simply, of a(u,;v;as, af).
Evidently, all those possible “definitions” lead (when
one changes the fiducial value u;, and/or the considered
function a’, &', a, etc.) to different equivalence classes.
However, because of the properties of the A function, one
checks that, as long as one bases one’s definition on the
value of A or some related function in the strong-field
region, this leads, to a good approximation, to a numeri-
cally rather well-defined equivalence class of (a$, ag)
pairs. This is illustrated in Fig. 17. This figure shows (for
the case g = 1) that our NR-tuned preferred values
(ag(o), ag(o)) = (23.5, —101.876) define a va(u) function
which can be very nearly reproduced by using other pairs
of (a$, ag) values, namely (0, 220), (5, 125), or (10, 40).
The upper panel shows together, versus u, the functions
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FIG. 17 (color online). Elements of the equivalence class of
a(ag, af) functions for g = 1. The bottom panel shows the
fractional difference with our favorite choice a§ = 23.5,
ag(0.25) = —101.876.

va(u; v;as, a§), for g =1, ie., v =0.25, and for the
four different pairs of parameters values (a§, af) =
(23.5, —101.876), (10, 40), (5, 125), (0, 220). The upper
panel illustrates that these five different functions are
indistinguishable by eye. The bottom panel of the figure
zooms on the differences away from our standard choice
(@s?, ac") = (23.5, —101.876); i.e., it plots vAa(u;v;
as, af) = Au; v; as, ai) — A(u; v;23.5, —101.876).  For
any choice of the parameters, these differences are of the
order 10™%. Note that we have not used, here, any precise,
level-set type, criterion for selecting the pairs equivalent to
our preferred value, but we have selected them by simple
trial and error, until we could reduce the (maximum)
difference to the smallest level we could find. This smallest
level was O(10™*). The reason why such a level of devia-
tion is small enough for our purpose can be seen by turning
back to our analysis above, when we were fixing the
fiducial value a§ = 23.5, and then tuning the value of ag
for the EOB phasing to best agree with the NR one. In that
case, as is clear from the number of digits we were giving
in Table VII above for ag (before fitting them), we found
that the *““‘good” values of ag were determined, roughly,
within an uncertainty a¢ = O(1). Such an uncertainty on
the good value of ag¢ (for the fixed a§ = 23.5) entails a
corresponding uncertainty on the value of the function
Alus as, af) of order 6A(u;as, af) ~ 0A(u; as, ag)/dag.
The latter quantity is found to increase with u, and to reach
a value of order 0.8 X 10™* when u takes the light-ring
value u;g = 0.55 (for ¢ = 1). In conclusion, a possible
variation in the A(u) function of L., norm ~107*, for
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0 = u = uypR, is a reasonable way of defining the equiva-
lence class of A(u), and Fig. 17 shows that one can indeed,
starting from the (analytically fitted) values (ag(o), ag(o) ) =
(23.5, —101.876), find a (relatively thin) strip of values
of (a$ a§) along which the S5PN-Padéd function
AFOBNR (3 q¢, a¢; v) stays within such an equivalence class.
Though here we focus only on the ¢ = 1 case, similar
classes of equivalence of a functions exist for any mass ratio.
In summary, this exercise confirms that we were justified in
a priori fixing the value of a$. Finally, the important fact is
that NR data allow one to directly determine the A(u;v)
function itself, essentially independently of the chosen
“representative” (a$, ag) within some equivalence strip in
the (aS, ag) plane. This determination of the AFOBNR(y; )
function is exemplified on Fig. 16 (keeping in mind the
invisible deviations plotted in the upper panel of Fig. 17).

D. Comparison between the present determination
of AFOBNR (3. 3) (SPN with logs) with previous
estimates (SPN without logs)

The present work is the first EOB work to include
logarithmic terms in a comparison with NR data. Let us
now compare our final NR-aided determination of such an
A function (with logarithmic terms) to the 5SPN-accurate A
functions (without logarithmic terms) used in previous EOB
works [6,12,22,27-29]. In particular, Ref. [22], using a 5SPN-
accurate A(as, ag; v) function (without logs), exploited a
previous version of the ¢ = 1 Caltech-Cornell-CITA nu-
merical waveform to find a bananalike region of good values
in the (a$, af) plane such that the phase difference between
EOB and NR waveform through inspiral, plunge and merger
was <<0.02 rad. The values a5 = —6.37 and ag = 50 lie in
the middle of this good region and have been used exten-
sively in subsequent EOB work [26,27,31,43]. (By contrast
Ref. [22] actually used the values a$ = 0 and ag = —20
which lie on the boundary of the good region.) The analog,
banana-shaped equivalence classes in the (a$, a¢) plane
corresponding to other values of g were then first investi-
gated in Ref. [28]. (The latter reference basically used the
same conceptual structure as Ref. [22] with some technical
differences.) Reference [28] found a very good agreement
between EOB and NR waveforms with an A function
defined by the following choices:

as(v) = —5.828 — 143.5v + 44712, ag = 184. (82)

More recently, Barausse and Buonanno [12] introduced a
differently resummed A function, which is 3PN accurate and
does not contain the 4PN and 5PN logarithmic contributions
used in the present work. Their resummation does not rely
on a Padé approximant, but imposes by hand the presence of
a horizon, by factoring out of A(x) a binomial of the form
1 —2(1 — K(»)v)u + a*>(1 — K(v)v)’u®. [Here, a is a
Kerr-like spin parameter, which vanishes in the nonspinning
case considered here.] The flexibility parameter K(»), which
effectively parametrizes 4PN and higher contributions, was
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—_¢=1 (EOBNRlog)
¢ =6 (EOBNRIog)
--—-¢=1 (EOBNR, Pan et al.)
7F ¢ =6 (EOBNR, Pan et al.)
¢ =1 (EOBNR, DN2009)
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FIG. 18 (color online). Comparing a functions for different,
5PN-accurate, EOB-NR-completed models. The markers indi-
cate the location of the EOB-defined adiabatic light ring for each
curve. See text for explanations.

then calibrated in Ref. [29] against Caltech-Cornell-CITA
nonspinning waveforms (for g = 1, 2, 3, 4, 6), with the
result

K(v) = 1.447 — 1.715v — 3.24612. (83)

In Fig. 18 we consider the two mass ratios ¢ = 1 and g =
6 and for each mass ratio we compare four different a(u)
curves, namely: (i) the log-containing S5PN-accurate one
determined in this work [“EOBNRIog” with a§ = +23.5,
and af(v) = [—110.5 + 129(1 — 4)]5(—= 1.5 X 107>, »)];
(ii) the logless S5PN-accurate one of Ref. [22] (with af =
—6.3 and ag = 50); (iii) the logless SPN-accurate one of
Ref. [28]—see Eq. (82); and (iv) the (logless) 3PN-accurate
Barausse-Buonanno (BB) [12] one, B8 (), for the value of
the adjustable parameter, K(»), cited above [29].

The figure shows that while the first three different
analytical descriptions seem to be visually close for the
equal-mass case g = 1, they exhibit visible differences in
the ¢ = 6 case. However, we have seen above that only
differences of order 10~* in the A function can be consid-
ered as being negligibly small. When computing the dif-
ferences AAX(u; v) = AX — AEOBNRIog for the two labels
X = DN2009, Ref. [22] and X = Pan et al., Ref. [28], one
finds that, for ¢ = 1, AAX () is a monotonically decreasing
function of u which reaches values of order =~ —0.004 for
X = DN2009 and = —0.0025 for X = Pan et al. when u =
0.5, i.e., close to the corresponding adiabatic light-ring
position. Such differences are therefore quite significant
on the 10™* scale of the equivalence classes of A functions
exhibited in Fig. 17. In the ¢ = 6 case the correspond-
ing differences taken at u = 0.4, close to the adiabatic
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light-ring position, are = —0.006 for X = DN2009 and =
+0.003 for X = Pan et al. Again these differences are
quite significant. Note however that for # = 0.3 the logless
model of Ref. [28], Eq. (82) (which had been tuned to the
same g = 6 NR data as ours), stays quite close to our
present log-containing model (AA = 2 X 107%).

Let us finally discuss the comparison with the
(logless) Barausse-Buonanno aPB(u) function calibrated
by Taracchini et al. [29] (orange line online, solid for
q=1, dashed for ¢ = 6). Figure 18 shows that up to its
own light ring (marked by an orange circle on the curves)
this function stays rather close to our EOBNRIlog one with
a$ = +23.5, and a¢(v)=[—110.5+129(1 —4»)]5(—1.5X
1073;»). The differences are however so large that aBP
cannot be considered to be part of the equivalence class of
EOBNRIog in the sense discussed above. More precisely,
we find that the difference between the respective A poten-
tials varies, roughly, between +0.01 for ¢ = 1 and between
+0.005 for g = 6. This is 2 orders of magnitudes larger
than the 10~ level that we used above to define the equiva-
lence class (see Fig. 17 and corresponding text). Despite
this, one finds that the adiabatic LSO orbital frequencies
predicted by the two potentials are very close. For g = 1, we

ve QpooNRIE = 0,0993 and BB, = 0.1010 (i.e., a ~2%
dlfference), and for ¢ = 6 we obtain Qf gy ¢ = 0.0801
and QPB) = 0.0797. In addition, we see on the figure that
the difference aBB(u) — aFOBNRIL(y) oscillates in sign
around zero, so that the phasing defined by a®B(u) can be
expected to agree, on average, with that defined by
aFOBNRlog (1) We have performed a quantitative check of
this expectation by considering the phasing during the qua-
siadiabatic inspiral, which is rather directly related to the
conservative part of the dynamics and thereby to the A(u)
function. More precisely, we computed, for each A(u) po-
tential, the adiabatic phasing along the sequence of EOB
circular orbits. This phasing is best measured by the (adia-
batic) Qdiabatic(y)) = —5/(24v)x"19_jo(f(x))~! function.
Here, o = 2() is the adiabatic GW frequency, x = Q2/3,
f is the resummed, Newton-normalized, energy flux as
introduced in Eq. (37) above, and j is the angular momen-
tum along the sequence of EOB circular orbits defined by
Eq. (51) for a given A potential. We then focus on the
difference AQ,(w) = QEOBNRI2 () — OBB(g).

Inspection of the AQ,,(w) function more or less confirms
the conclusion drawn from the comparison between the a(u)
functions in Fig. 18. More precisely, we find that forg = 1 it
basically averages around zero up to the LSO, varying
between *0.5 in a frequency range Aw = (0.03,0.2); on
the contrary, for ¢ = 6 the same function is negative and
monotonically decreasing over the frequency interval
Aw = (0.03,0.16), reaching the value ~— 4.4 at w =
0.16. As explained in Sec. IIl above where the Q,(w)
function was introduced, the usefulness of this phasing
diagnostic is that its integral over In w directly gives the
GW phase as a function of frequency. Correspondingly the
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integral A¢ = [(t¥ AQ,dIn(w) yields the relative de-
phasing (here estimated in the adiabatic approximation)
between the waveforms corresponding to the choice of
two different A potentials, which is accumulated between
the initial frequency w = 0.03 and the average LSO fre-
quencies, say @yso = 0.2 for ¢ = 1, and @1 5o = 0.16 for
q = 6. We obtained A¢ = 0.62 rad for ¢ = 1 and A¢p =
2.66 rad for ¢ = 6. This result shows that the difference
between the BB and EOBNRIog A functions entails, when
considered by itself, a corresponding difference in the phas-
ing (up to the LSO) that can be as large as ~3 rad depending
on the mass ratio considered. However, the model of
Ref. [29], that is based on the ABPB function, succeeded
(like our EOBNRIog model) in getting an agreement with
the NR waveform at the level of a % of a radian. This means
that the A-dependent intrinsic difference in the (adiabatic)
phasing that we are pointing out here can be (and has been)
effectively compensated by other adjustable elements enter-
ing the model of Ref. [29] (notably parameters entering the
radiation reaction, such as the argument of the pg,’s,
the number of multipoles in the flux, a different NQC basis,

the tuning of p)(»), etc.).
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The conclusions of this comparative analysis of various
EOB A(u) functions are two sided. On the one hand, if we
insist on trying to determine the A function with the utmost
accuracy needed to stay within an all-purpose equivalence
class of A functions, our results above show that the intro-
duction of logarithmic contributions in the A function cannot
be reabsorbed by tuning logless versions of the EOB A
potential. As we know, from analytical PN work, that these
logarithmic contributions do exist, we conclude that it is
necessary to include them, and therefore to prefer the type
of improved EOB model presented in this work to previous
logless versions of the EOB Hamiltonian. On the other hand,
if we are ready to neglect the need of reaching an ideal all-
purpose accuracy in the determination of the A function, the
overall conclusion of the comparison done in Fig. 18 is that
accurate NR data (here the Caltech-Cornell-CITA ones) do
constrain so much the value of the EOB A(u) potential (at
least up to u ~ 0.5) that various ways of parametrizing the
shape of the A(u) potentials lead to final results that are rather
close to each other. This comforts us in showing how the EOB
formalism is able to extract from NR data reliable information
about the strong-field dynamics of binary black holes.

TABLE IX. Fits of Zerilli-normalized multipolar quantities (amplitude, frequencies and

[NR

derivatives) extracted at 13..(») as function of ». Each quantity is fitted to a quadratic polynomial
of the form f,,(v) = c§"v? + c{mv + ¢§". For the amplitude and its derivatives the full
leading-order v-dependence [vcgy(v), see Eq. (22)] is factorized before fitting.

tm cg’” cf”’ cf)’”
21 1.8020 X 107! —5.3482 X 1072 9.4465 X 1072
Apm 22 3.6836 X 10! 23213 X 1072 2.9281 X 107!
Ve (V) 32 2.3484 x 107! —5.1891 X 1072 1.5969 X 1072
33 1.5774 X 107! 7.1170 X 1073 5.1385 X 1072
21 1.3075 X 1072 —5.3660 X 1073 2.7088 X 1073
Ao, 22 6.2259 X 1073 2.8059 X 1073 —1.5658 X 1073
veese(v) 32 2.7001 X 1072 —6.8708 X 1073 5.0927 X 10~*
33 1.2320 X 1072 7.6133 X 107%  1.5238 X 107*
21 5.2570 X 1074 —4.9124 X 107* —1.1183 X 107*
gy 22 1.4031 X 1073 —1.0071 X 1073 —7.4628 X 10™*
veese(v) 32 4.9252 X 1073 —1.2516 X 1073 —3.1190 X 107°
33 —3.5470 X 10~* 8.2613 X 10> —1.3908 X 10~*
21 —7.1306 X 1073 1.8015 X 107! 1.9488 x 10!
3 22 3.1848 X 107! 2.2996 X 107! 2.8788 X 107!
tm 32 —2.3137 5.3441 X 107! 3.5026 x 107!
33 3.7872 X 107! 4.1589 X 107! 4.4262 X 107!
21 —5.4429 X 1072 2.3401 X 1072 8.6489 X 1073
) 22 2.6909 X 1072 1.3939 X 1072 6.3061 X 1073
@im 32 —3.3131 X 107! 5.7770 X 1072 1.3219 X 1072
33 1.9620 X 1072 2.6984 X 1072 1.0610 X 1072
21 3.1509 X 1072 —5.7895 X 1073 9.1507 X 10~*
) 22 2.2304 X 1073 3.2830 X 1074 9.6664 X 1073
D¢ 32 —1.5297 X 1072 2.7862 X 107 7.3264 X 1074
33 1.6612 X 1072 —2.0232 X 1073 3.0898 X 10~
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VII. EXTENSION OF THE MODEL BY ANALYTIC
CONTINUATION IN »

In the present work, we have used a discrete sample of
numerical simulations to complete an EOB model, notably
through the use of suitable, NR-fitted NQC corrections. In
order to be able to compute the predictions of such a NR-
completed EOB model for arbitrary values of v, we need to
fix a procedure for computing the six NQC parameters,
(at™(v), b"(v)), as continuous functions of v. [The re-
maining defining elements of the EOB model, notably ag
and ag, were already given as functions of ».]

One can think of two different ways of continuously
extending the definition of the present EOB model to any
value of »: first, one can interpolate the discrete sample of
(at™, bf™) values of the NQC parameters that we obtained
(from the five numerical simulations with ¢ = 1, 2, 3, 4, 6)
by fitting them to, say, quadratic polynomials in v; second,
one can instead fit the original NR-extracted numerical
values of (A, Ay Appr @ty @ gy @) 1o quadratic pol-
ynomials in », and then, for any given v, determine
(at™(v), b"(v)) with the iterative procedure described
above. We have explored in detail both procedures. The
first one, i.e., fitting the end parameters (a!™, b{") needed
to compute an EOB waveform (and explicitly given in
Table V for all ¢’s), is clearly a faster way to compute,
for any v, a corresponding EOB waveform. Indeed, this
approach does not require any iteration procedure.

We found that the fitted (a!™(v), b!"(v))’s give very
accurate results for the multipoles we have at hand, i.e.,
=m=2,¢{=2,m=1,{=m=3and € =3, m=2.
This allows us to construct EOB waveforms that are as
accurate as the ones obtained by determining (a!™, b™) by
the iterative procedure, discussed above, that uses the
actual NR data. The coefficients of these quadratic fits
are listed in Table X.

By contrast, the determination of (a!™, b%™) from qua-
dratic fits of NR data (given in Table IX) is equally accurate
for £ = m = 2 waveforms, but leads to slightly less accu-
rate results for the subdominant multipoles. More precisely,
this procedure introduces some visible, though small, dif-
ferences between the EOB and NR waveform modulus
around the peaks of the ({ =2, m =1 and € = m = 3)
waveforms. Note that, contrarily to the fits of the (a;, b;)
mentioned above (which relied only onthe ¢ = 1, 2, 3,4, 6
data), we have done quadratic fits of (Ag,, Aem Aeps
@y Dy D¢) to six numerical results, namely the
Caltech-Comnell-CITA ¢g = (1,2, 3, 4, 6) data together with
the g = oo data of Ref. [43]. Given these fits, one then needs
to solve for the NQC parameters. Actually, such a procedure
is simplified by the fact that, as we said, the quadratic fits for
the a?*(v)’s (which are the only NQC parameters which
need to be reinserted in the flux) can be used from the start,
so that, contrary to the general case, one can get the needed
values of the other NQC parameters in one go, without
having to iterate the procedure.

€m
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FIG. 19 (color online). Testing two possible fitting strategies to
continuously extend the discrete sample of NQC parameters
(af’”, bf"’) to any value of »: comparison (for ¢ = 2) between
£ =2 and £ = 3 modulus and frequency.

Figure 19 illustrates the performances of the two differ-
ent fitting procedures. The figure refers to mass ratio ¢ = 2
only (equivalent results are found for the other mass ratios,
with improvements for larger values of ¢) and shows the
following triple comparison for € = m = 2 (top panel) and
€ =72, m=1 (medium panel), and £ = m = 3 (bottom
panel) between (i) the NR waveform frequency and
modulus; (ii) the EOB waveform frequency and modulus
obtained using the fits (a!”'(v), b!"(v)); and (iii) the EOB
waveform frequency and modulus obtained by fitting the
numerical data extracted at )&, determining the NQC
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TABLE X. Fits of the NQC parameters (a!”, b'™) considered in this work as function of v.
Each quantity is fitted to a quadratic polynomial of the form f,,(v) = c{"v? + c¢{"v + cfm.

tm cim clm cém
21 0.9150 —0.6522 0.0340
P 22 2.1601 —1.0937 0.0793
ay"™(v)
! 32 31.671 —10.310 0.6844
33 2.6793 —1.2792 0.1456
21 1.9035 4.9785 —0.7106
alm(v) 22 —10.807 7.1420 0.7035
2 32 —132.73 55.153 —3.0449
33 —12.932 10.634 0.4704
21 2.6950 —3.1603 0.8650
alm(v) 22 —2.7666 —0.1769 0.1012
3 32 —19.734 1.8299 0.3031
33 —0.8932 —2.9229 0.5078
21 —2.2480 0.5304 0.2466
¢ 22 —0.8568 —0.2417 0.1929
blm(V)
32 —1.3497 —1.8083 0.5735
33 —1.6468 —0.1611 0.3464
21 51.726 —21.689 3.1616
¢ 22 9.6382 —7.6453 0.3732
b m(v)
2 32 —4.4860 —7.7968 3.2538
33 6.9597 —7.5958 0.0709
21 —112.81 30.559 —0.0026
o 22 —80.991 17.075 ~1.7974
b3"(v) 32 32489 ~38.133 6.1648
33 —213.46 52.819 —3.4718
parameters in the usual way, but using the a?? fits of (v) an additional 3.5PN contribution to the phase of the

Table X to account for NQC corrections in the radiation
reaction.

In conclusion, the prescription of using the
(a™(v), bi™(v)) fits of Table X a priori looks as the best
(and simplest) choice to obtain the NQC parameters inter-
polating between the discrete sample of NR-computed ¢
values. Since the NR data we have at hand are limited to
the € = 3 multipole, we cannot check the reliability of the
procedure also for higher values of €. We leave such an
investigation to future work.

VIII. CONCLUSIONS

We have improved the EOB description of nonspinning
coalescing black-hole binaries by incorporating several
recent analytical advances, namely:

(i) 4PN and 5PN logarithmic contributions to the con-

servative dynamics [36-39];
(ii) the O(v) 4PN nonlogarithmic contribution to the
conservative dynamics [37,39-41];
(iii) resummed horizon-absorption contributions to an-
gular momentum loss [42,43];
(iv) the radial component of the radiation-reaction
force implied by consistency with the azimuthal
one [44];

(factorized [5,8,9]) quadrupolar waveform [45].

Moreover, we have introduced new features in the EOB
formalism, namely:

(a)
(b)

(©

(d)

084035-33

a Padé resummation of the additional tail phases d,,
of the factorized EOB waveform;

a new way of matching the EOB waveform to the
NR one by mapping the EOB time when the orbital

frequency reaches a maximum 508 | to a specifi-

peak
cally chosen (v-dependent) NR time 3R (») around
merger, Eq. (55). More precisely, we impose [by
using six NQC parameters] a C? contact between the
amplitudes and the frequencies of the NR and EOB
waveforms at the NR instant N&.(v) which corre-
sponds to 70 -

We have extracted new information from the NR
data, namely:

We showed how to extract from NR (curvature) phas-
ing data the function QYR (w) = w?/@ which is an
intrinsic measure of the phase evolution. We have given
an explicit representation of the function QYR (w;q),
for ¢ = (1,2, 3,4, 6), in terms of some fitting coeffi-
cients [see Egs. (61) and (64) and Table III].

We extracted data on the NR amplitude and fre-

quency, together with their first two derivatives, at
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the specific »-dependent NR time f2X.(»), which is

located a little bit after the maximum of the quad-
rupolar waveform amplitude. We gave fitting for-
mulas for the v dependence of those quantities for
several multipoles; see Table I1X.
Using such nonperturbative information from NR data,
we showed how to complete the EOB model by
(1) Constraining the value of the main EOB radial
potential, i.e., the A(u; ») function; and
(2) Determining the coefficients entering the NQC cor-
rection factor Eq. (27).
Among these results, we think that the new expression of
the NR-tuned A function, containing logarithms, is more
refined and more accurate than its previous determinations
[22,28,29]. Let us recall that, as in previous work, the A
function is parametrized in terms of coefficients, here
called (as, af), entering a certain Padé approximant,
APYe(y; p;ag, af), Eq. (10). Then NR data were used to
constrain these parameters. We have delineated the reason
why the two parameters (as, af) entering the Padé defini-
tion of AP (u; v; ag, af) are degenerate by giving a defi-
nition of equivalence classes of the pairs (a5, ag) in terms
of some L, norm of the A(u) function. We have deter-
mined a good NR-tuned A function by assuming a fixed
value of a§ (a§ = 23.5 as suggested by recent GSF results
[39,49]), and by then tuning the remaining parameter
a¢(v). We found that a¢(») can be simply represented by
the mostly linear function of v
oy 3 15X 10‘5>1/2
as(v) = [~110.5 + 14701 4V)](1 )

(84)

where the last, nonlinear'* factor is relevant only in the
range 0.2 < v = 0.25 (ie, 1 =g =<?2). We think that
the resulting function of u and v, AFOBNR(y;p)=
APe(y; 1;23.5, al(v)), yields an accurate representation
of the A(u; v) function itself, independently of the way it
was obtained. Moreover, we find remarkable that the good
value of A(u; v) could be obtained already by considering
only the inspiral phasing (before the LSO crossing) and
was then checked to yield (together with the NR-
determined NQC corrections) an excellent phasing agree-
ment up to merger.

We have presented our improved EOB model in a self-
contained manner so as to allow interested readers to
generate for themselves all our EOB results. We intend
to make available soon a public version of our EOB codes.
In view of the new physics that we have included in our
EOB model, and of its excellent performance (obtained
without introducing any ad hoc parameters) against the

'*Additional NR simulations in the mass-ratio range l = g =<2
will be needed to probe/improve the nonlinear behavior of the
a¢(v) function there.
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very accurate Caltech-Cornell-CITA data, we recommend
to use this new EOB model (or small variations thereof) in
future EOB works (in particular in extensions to spinning
and/or tidally interacting systems).
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APPENDIX A: ON THE COMPUTATION OF #

In the definition of the NQC correction n,, Eq. (28b), we
used for the second time derivative of the relative separa-
tion r the quantity (#)©), which is the value of # along the
conservative dynamics, i.e., neglecting the contributions
proportional to F. This choice is made for efficiency’s
sake because it is faster to compute (¥)? along the dynam-
ics. In spite of the neglect of F in its computation, (¥)©
does represent an allowed NQC correction because it
vanishes (together with 7 and the exact value of #) in the
circular limit (see below).

For completeness, let us discuss here how to compute a
more exact value of # along the dynamics and how the
result differs from (¥). Let us first recall that along the
EOB equations of motion 7 is, at any moment, a function of
the phase space variables: i = i(r(2), p,(1), p, (1))
Therefore, its total time derivative is the sum of three
partial contributions

L or ar ar
F=—r+—p, +—
- op,

Do (AD)

Using the other EOB equations of motion, this equation
reads explicitly

ar ar (Ar —aHEOB)—Fi?KP’ (A2)
* a7, ap P
where aHEOB/Br* = (A/B)l/28HEOB/6r
By definition, the circular dynamics limit corresponds to
setting 7 =0 = p, and dHgog/dr = 0. One then sees
that, along the circular dynamics, one has also F,

pr, =0, and [using 7= C(r, p,.py)p,] 97/dp, =
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p,. = 0. As a consequence, both i and (#)?, defined by
setting to zero the contributions proportional to F, i.e.,
(;:)(0) = ﬂ - _Bi” 9Hon ,

A3
ar ap, Or, (A3)

vanish in the circular dynamics approximation. This shows
that we can use either the exact 7 or its “geodesic” ap-
proximation (#)© to define the second element of the
“NQC basis,” n, = #/(rQ?).

When using the definition n, = (¥)©/(rQ?), Eq. (A3)
allows one to compute immediately n, along the exact
dynamics. By contrast, if one wished to use the definition
n, = #/(rQ?), a complication arises. Indeed, as contribu-
tions proportional to j:,* and j:<p appear on the RHS of
Eq. (A2), and as these contain the squared modulus of
the NQC factor (i.e., for each multipole, a factor |1 +

jaf’”n j|2) we see that n} « ¥ now appears on both sides
of Eq. (A2).

Schematically, defining ¢ = (r, p,., p,), Eq. (A2) has
the structure

P = al€) + BT, (& 7) + c(OF (&),

which only gives an implicit equation for determining the
exact # along the dynamics. We can however get an explicit
expression for # by an iterative procedure. Inserting #© as
lowest order approximation on the RHS of Eq. (A4) defines
an improved value, say (#)") for #, namely

PO = a@) + bEF . (& 7) + (&) F (& 7). (AS)

By iterating the procedure once more, we then get

(A4)

2x 10
: i
¥
o _ T
s Iy
, T (]
h TTRLs {
i~ ~Js il
L) N i
\\/\/\ ’II‘
—— Finite-differencing AN !
—6F N
Bootstrap N
- = 50 S/
gl L L I
0.1 T T ;
Bootstrap '
- 5(0)
0.0t r ot
1
I
!
o or '
S A h S SIS '
‘‘‘‘‘‘‘‘‘‘‘‘‘ j
-0.05F == i
N S - _,/, |
-0.1 :
! ! ! ! ! ! ! ! ! ! -
4500 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640

t/M

FIG. 20 (color online). Top: Computation of # with finite
differencing and analytical iterations, and comparison with
()©. Bottom: Effect on the NQC basis vector n,. The figure
refers to ¢ =1 with the choices a§ = 23.5 and a{(0.25) =
—101.876. See text for discussion.
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PO = a() + DT, (£, 7D) + (O F (£ 7). (A6)

The result (A6) leads to a sufficiently accurate computation
of # up to merger, as illustrated in the top panel of Fig. 20.
However, the recursive presence of the flux in this iteration
substantially increases (by approximately a factor 4) the
computational time needed to produce an EOB waveform.
This is why we prefer to use n, = #?/(rQ?). Anyway, as
Fig. 20 shows, n, and n), are numerically quite similar. In
view of the arguments above their differences are essen-
tially absorbed in a redefinition of the coefficients a;.

APPENDIX B: NQC FACTOR DETERMINED
USING NR DATA AT 3R

In the text, we argued that it was advantageous to
determine NQC corrections by matching the EOB wave-

form (considered at t%%eBak) to the NR waveform considered

at the time Y% Let us illustrate here (see Fig. 21) in the
case g = 6 the slightly different (but significantly wors-
ened) EOB waveform obtained when one instead matches

the £ = m = 2 EOB waveform (considered at time tl&%,?)eBa.k)

to the NR waveform considered at the time 4%, (as was
done in early EOB works). Figure 21 uses as before six
NQC corrections and the value a§(6/49) = —44.67.
However, the NR extraction point, which is also used as
NQC determination point, is now £~ ..,

The fits of the vector of NR quantities (ANR, ANR,
MR &R »NR) now measured at the location of the maxi-
mum of each multipole are given in Table XI and include,
as before, the test-mass information. We checked that these
fits are compatible with the fits given in Table II of
Ref. [28].

0.45 ‘ ‘ g -
—— Muwsy (NR) } "
- = ]\10.)22 (EOB) ! ,/
041 — |Wy|/v (NR) |
——-|\I/%Q|/l/ (EOB) 1 /
035 |~ — ~thook v
I
2
03 AN
7 [
l’ 7 |
0.25 - qg==6 =/ }
e S/ |
0.2 foarem—" / I
|
015 | }
|
|
0.1 |
1
0.05 - |
|
|

0 s s s s s ‘
4800 4820 4840 4860 4880 4900 4920 4940 4960
u/M

FIG. 21 (color online). Mass ratio ¢ = 6: EOB waveform

(frequency and modulus) obtained by determining NQC correc-

tions from NR data extracted at )~ ., instead of 75§
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TABLE XI.

PHYSICAL REVIEW D 87, 084035 (2013)

Fits of Zerilli-normalized multipolar quantities of the numerical waveforms (modulus,

frequency and their derivatives) measured at the peak of each multipole (‘““maxima’) as function of ».
Each quantity is fitted to a quadratic polynomial of the form f,,(v) = cg’" v+ cf”’ v+ cg’”. For the
modulus and its derivatives the leading order v-dependence [Eq. (22)] is factorized before fitting.

tm Cgm cf’” cg’”
21 2.9410 X 107! —1.0286 X 107! 1.0691 X 107!
A 22 3.8132 X 107! 1.3011 X 1072 2.9467 X 107!
veese(v) 32 3.9814 X 107! —9.2149 X 1072 1.8310 X 1072
33 2.0896 X 107! 47198 X 1073 5.1463 X 1072
21 —5.2646 X 1073 6.1932 X 1074 —5.4059 X 1074
i, 22 1.5609 X 1074 —1.4628 X 1073 —4.8017 X 10~*
veese(v) 32 1.8500 X 10~* 22093 X 1074 —1.4184 X 107*
33 —3.4677 X 1073 —6.6072 X 107 —1.6713 X 1074
21 5.8728 X 107! —8.3459 X 1072 2.9074 X 107!
22 4.1410 X 107! 2.4377 X 107! 2.7221 X 107!
@em 32 3.6315 —9.5776 X 107! 4.5459 x 107!
33 1.0192 5.4557 X 107! 4.5319 X 107!
21 —2.2041 X 107! 1.0228 X 10! 6.2835 X 107*
) 22 2.8060 X 1072 1.4581 X 1072 5.8725 X 1073
@em 32 —2.8225 X 107! 3.7702 X 1072 1.6036 X 1072
33 2.5253 X 1072 2.7690 X 1072 1.0871 X 1072
21 7.8607 X 1073 1.5684 X 1072 —3.5511 X 1073
) 22 2.3604 X 1073 7.2810 X 1073 2.2436 X 10~4
Dem 32 —8.7028 X 1072 1.7233 X 1072 8.6570 X 1075
33 —1.1065 X 1072 —2.3899 X 10° 2.1351 X 1074

When comparing Fig. 21 with the bottom left panel of
Fig. 11, we see that, though the effect of having replaced
I DY Lhn a1 small, it leads to visible differences. In
particular, one sees that the frequency evolution near merger
was more accurately captured in Fig. 11 than in Fig. 21.

APPENDIX C: EFFECT OF INCLUDING NQC
CORRECTIONS TO HIGHER MULTIPOLES
IN THE RADIATION REACTION

In this Appendix we explore the effect of including the
NQC correction factor in the higher multipole contributions
to radiation reaction, specifically in some of the main sub-
dominant multipoles, ﬁg’ch, ﬁgch and ﬁQIZQC. [By contrast in
the main text we NQC corrected only ﬁIZ\IzQC in the radiation
reaction.] Note that with our choice x = v? of the argument
in pg,,(x) we need larger NQC modulus correction factors
than Ref. [28] which used x = Q2/3. Indeed as during the
plunge %/3 is larger than v2 and as the function p,, (x) is a
decreasing function of its argument, one has, along the EOB
dynamics, (pg,,(v2))¢ > (pg,,(Q%?))". Therefore the inclu-
sion of NQC corrections for higher multipoles is a priori
more significant within our EOB setup than within the one
of Ref. [28]. We focus on the mass ratio g = 6 only, because
subdominant multipoles do not significantly contribute
when g ~ 1. Figure 22 compares the phase difference and
the fractional amplitude difference for two EOB models:

one with the standard hy-only NQC flux correction
(magenta online), and another one which includes in addi-
tion the three subleading NQC factors ﬁngc, ﬁggQC and
ﬁgleC. The effect of this inclusion is totally negligible, so
that it is justified to include only the € = m = 2 NQC

correction to the radiation reaction.

0.08 — ;

A as)

0.06 - - - AAVOBNR /ANR (p — 9 3)
- AR Zn — )

- - AABORNT AN (¢ = )

-0.02
-0.04
-0.06

-0.08

-0.12

4800 4850 4900 4950
u/M

FIG. 22 (color online). Negligible effect on the phasing (and
modulus), forg = 6, of including€=2,m=1and ¢ = 3,(m=2,3)
NQC corrections to the energy flux beyond the € = m = 2 one.
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APPENDIX D: EXPLICIT EXPRESSION are given at the 372 PN approximation; i.e., the 3PN-
OF p¢,,(x) AND &,,(y) accurate, v # 0 results of Ref. [5] are hybridized with

In this Appendix we list the explicit expressions of the the SPN-accurate, v = 0, terms obtaineq in Ref. [52]. Let
us recall that we used here the following values of the

residual amplitude pg,(x) and phase &,(y) corrections

that we have implemented in our EOB code. They rely on ~ arguments of these functions: x — vg
the results of Refs. [5,52]. We give explicit expressions (HgogQ)?/3.

for all multipoles up to € = 8 included. Such expressions

|

in pg,(x) and y —

(551/ _ 43) (19 58312 _33025» 20 555)

. —_— _l’_ -
Pl ) =1+ e = o " 42336 21168 10584
1062074553 629206112 417y 48993925y 428 1556919113
( — + — eulerlog,(x) + 7)
39118464 3259872 | 192 9779616 105 122245200
.\ (9202 culetlog, (x) — 387216563 023) (439 877 tetlogs () — 16094530514677) o)
u X u X
2205 &2 160 190 110 080 55566 £ 533967033 600
-1+ (23,, 59) . (6171/2 10993 47009) .\ (7 613184941 107 o )>
X, V)= - —_————— — —— X
P2 84 56 4704 14112 56448 2607897600 105 &1
6313 1168 617 463 883 63735873771463 5029963
+ lerl + (- + lerl 5 (D2
(5880 eulerlog, (%) = 59303737 344) ( 16569 158860800 5927040 Ogl(x))x D2)

2v 7 149 1861y 6719 3203101567 26
3 g)x < 330 990 3960) * ( 227026800 7
57566572157 903 823148417327 87347
8562153 600) <_ 30566 888352000 13860

puxv) =1+ ( eulerlog3(x))

13
+ <? eulerlog;(x) — eulerlog3(x))x5, (D3)

32002 — 1115v + 328 4 3085640v* — 20338960 — 4725605% + 8050045y — 1444528 2

v)=1
p(x; ) 270Gy — 1) 1603 800(1 — 30)2
5849948554 104 10607269449358 17056
_— —_ + 4
( 940355325 63 emeﬂogz(x)) ( 3072140846775 | 8505 culerlos (x))x ’ (D4)

) =1 +< 2w 13) (_ 82912 1685y 101) (11706720301 26 rerton( )) \
P31t v o 18" 1782 1782 7128 6129723600 63 OB I
.\ (169 2606097992 581) (430 750057673539 1313

—27 eulerl + B
567 cverloa1 () + e 4T 091 200 297 110154781440 224532

eulerlog, (x))xS, (D5)

262512 — 5870w + 1614
13203y — 1)
| 12525637950* — 6733 1460000 — 313857376 + 2338945 704w — 511573 572
317 116800(1 — 3v)2
culerlog, (x))x3 N (845 198 culerlog,(x) — 172066910 136 202 271)
190575 19426955708 160 000

palx;v) =1

2

<16 600939332793 12568
1098 809712 000 3465

(D6)
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160> — 547v + 222 6894273

pilxv) =1 1762r — 1)~ 7047 a0 "
1571 1664224207 351 2465107 182496333 174381 )
(_ 770 CUlerlogs () e 018800 ) (_ 460490801971200 | 67760 eulerl°g3(x)>x
28512 — 35300 + 1146
palxv) =1 132037 — 1)

4 —379526 805v* — 3047981 1602° + 1204 388 69612 + 295 834 536 — 114 859 044 2
317116 800(1 — 3v)?
eulerlogz(x))x3 N <300 061 eulerlog, (x) — 12864 377174 485 679)
381150 19426955 708 160 000

848238724511 3142
( (D7)

219761942400 3465

28812 — 1385v + 602 7775491
X — X
528Q2v — 1) 21141120
1571 1227423222031 29584392078751453 67553
(— eulerlog; (x) + —) (—
6930 1758095539200 37299754959667200 261360

2

P41(x; v)=1

eulerlog, (x))x4, (D8)

512v% — 1298w + 487 3353747

_ 2
3902y — 1)~ 2129400

pss(x;v) =1

.\ ( 1546 ton (o) + 190606537999247) . ( 1213641959949291437 | 376451 )) \
- u X - u X) |X
429 £ 11957879934000 118143853747920000 ' 83655 £

(D9)

n) =14 3332007 — 12761007 + 96019y — 17448 16213384 ,

jv) = -
P34 13650(52 — 5v + 1) 15526875
24736 6704294638171892
- Jerl D10
( 10725 CUlerlog(x) + o 6558890625 ) (D10)
)1 1761* — 8500 +375 410833 , (_4638 culerlog (1) + 7618462680967)
Psatks ¥ 3902y — 1)~ 709800 3575 SHENOBS Y T 1378653326000
77082121019870543 2319

- Jerl 4 DIl
( 39381284582640000 ~ 1859 <" °g3(x))x (DID)

r) =14 2198013 — 10493002 + 84679y — 15828 7187914

X, v) = X = X

P52t ¥ 13650502 — 50 + 1) 15526875
1539689950126502 6184 X
( 653946558890625 10725 emeﬂogz<x)>x ’ (D12)
() — 812 — 626v +319 31877 +<_ 1546 e (1) + 7685351978519)
Psitxs ¥ 3902y — 1)~ 3042007 10725 SO T 1957879934000
821807362819271 22417
- lerl 4 DI3
( 10740350340720000 190125 © <" Ogl(x))x (DI3)
=14 2731° — 86107 + 602v — 106 1025435 ( 3604 om0 + 610931247213169)
)= B _
Pes' s 84(512 — 50 + 1) * T 659736 ¢ 1001 OB T 3601493028200

(D14)
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o 22007 — 91012 + 838y — 185 59574065 , ( D505 o) + 67397117912549267)
) — N
pesits 1440302 — 41 + 1) T 54286848 9009 85 T 5708416452820992
(D15)
)= 1 1337° — 58107 + 4620 — 86 476887 , ( 1416 o) + 180067034480351)
1) = -
Pos 84(512 — 50 + 1) T 659736 9009 84 24467662018800
(D16)
)= 1 1567 = 75002 + 7420 — 169 152153941 , ( 01 erlogs () + 116042497264681103)
X, v) = — X - u X
Pes 144312 — 4y + 1) 271434240 1001 g3 28992082264104960
(D17)
491° — 41312 +378» — 74 817991 3604 812992177581
sv) =1 - 2 +< lerl —) ’, (D18
Pe(x: ) 84(50% — 50 + 1) 3298680 go09 CUlerlont) + g rgsmoe) . P1Y
)= 1 12493 — 67002 + 694y — 161 79192261 +< 01 ertog () + 6277796663889319)
X, V)= - X - X
Ports 144312 — 4v + 1) 271434240 9009 81 T 58992082264104960
(D19)
3) =1 13800° — 49637 + 4246 — 906 32358125 , (_ L1948 e () 4 66555794049401803)
P73 71431 —4v + 1) 20986602 3315 & 3856993267327200
(D20)
61040% — 293513 + 3782822 — 161850 + 2144 195441224
=1+ _ 2 D21
pr6(x; ¥) 1666(70° — 1412 + 7w — 1) 171390583 (D21)
h = 1 80407 — 35231% + 33820 — 762 17354227 , (_ 59740 oge(x) 192862646381533)
P15t ¥ 714G12 — 4v + 1) 20986602 32487 SO T 5039961527584
(D22)
=14 410762* — 2179595 + 2988727 — 131805v + 17756 2995755988 O23)
X, v) = — X
P 14994713 — 1412 + Tv — 1) 4627545741
)= 1 4200° — 256312 + 2806v — 666 7804375 +( 398 o () 1321461327981547)
Prst ¥ T14(G12 — 4v + 1) 20986602 54145 &3 T 408554807480800
(D24)
=14 32760 — 1902395 + 27392477 — 123489y + 16832 1625746984 , 25)
X, v) =
P72 14994(713 — 1412 + Tv — 1) T 46275457417
h e 1 2280 — 20837% +2518v — 618 1055091 +< L9480 142228318411021)
X, v) = - u X
P 714312 — 4v + 1) 6995534 162435 &1 550999038189600
(D26)
12243v* — 534451° + 64659% — 26778y + 3482
pss(x; ) = 1 v v v v x — 1.5337092502821381x%,  (D27)
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3892004 — 2075500° + 30949822 — 154099y + 23478
v) =1+ — 1.175404252991305x2, D28
P37 7) 18240(42° — 1012 + 60 — 1) o *, (D28

26531 — 1305513 + 1726912 — 7498 + 1002
polr;v) = 1+ 2227 Lt z x = 0.9061610303170207%  (D29)
912(7v° — 14> +T7v — 1)

60562% — 345983 + 5464212 — 28055 + 4350
v) =1+ — 0.72207899906702072, D30
Pss(x;7) 3648(40° — 1022 + 6v — 1) x x (D30)

4 ~ 28 426271 — 19434y + 2
pealev) =1 + 89901 — 2896507 + 426270" — 19434 + 2666 ) 1205015006815
2736(70° — 1402 + Tv — 1)

2452004 — 149950 + 24901852 — 131059» + 20598
peslew) =1+ 7227 y e v x — 0.4196774909106648x2,
1824042 — 1027 + 6 — 1)

(D31)

306314 — 228450° + 3711902 — 17598 + 2462
poluy) =1+ 22 - st v x — 0.22617964410294742, (D32)
2736(71° — 1402 + Tv — 1)

, 2164004 — 1384300° + 23692202 — 126451 + 20022
psi(x;v) = v v - v x — 0.26842133517043704x%.  (D33)
18240413 — 1042 + 61 — 1)

The “eulerlog” functions eulerlog,,(x) are defined as

eulerlog ,,(x) = yg + log2 + 5 log x + log m, (D34)

where vy is Euler’s constant, y; = 0.577215... and log (x) the natural logarithm function.

Let us now give the explicit expression of the residual phase corrections &y, that are implemented in the code. For d,,,,
833 and 83, we list here explicitly both their Taylor-expanded forms (labeled with a “Taylor’ superscript) and their Padé-
resummed ones. The 6, for higher multipoles can be given only in Taylor-expanded form and thus the label “Taylor” is
omitted. The terms in boldface are the highest-order known PN terms for » = 0. They are omitted when v # 0, and in
particular in the computation of the Padé approximants, but they are kept in the computation of the » = 0 EOB waveform.
The Taylor-expanded &, read

e e M L (D35)
8y = 12?1+—3§Z) . %”y T (% - %)WZ, B3
85" = ;(3) yVe - 1170V e+ ; ™ (ig ™ 28217080207 +) 7 (B39
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Op3 = % 2+ %Wﬁ (D41)

b = 175((11+—63Vu)) " 24212: ™y + (% L %)y” 2 (D42)
4 = %ywz + % 7Ty3, (D43)

96875 + 857528y . s

131250(1 — 22) °

Among these, we used 635, 84, and 655 in their Taylor-expanded form indicated above. By contrast, for d,,, d,;, 633 and

03; we used (denoting vy, =

\/y) the following Padé-resummed expressions (see Sec. II B 1 for further details):

7 ,808920v7v, + 1373887721)2 + 3522(136080 + (154975 — 1359276v)v 2)

o D45
2= 3 y 808920vmv, 1373887T2v§ + 3522(136080 + (154975 + 404041/)11%) ( )
2 5 69020v + 59927v,
5 = 2} - (D46)
3 759927, + 2456v(28 + 493vvy)
13 3 1 +947707v /(5662791/)
633 — 1N } 2 (D47)
10 71+ 947707Tvy/(5662791/) + 80897 vv; /3159
13 e 4641v + 16907v,
03 = (D48)

30 y4641v + 16907v, + 18207v
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