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The collision of two D-dimensional, ultra-relativistic particles—described in general relativity as

Aichelburg-Sexl shock waves—is inelastic. In first-order perturbation theory, the fraction of the initial

center-of-mass energy radiated away was recently shown to be 1=2� 1=D. Here, we extend the formalism

to higher orders in perturbation theory, and derive a general expression to extract the inelasticity—valid

nonperturbatively—based on the Bondi mass-loss formula. Then, to clarify why perturbation theory

captures relevant physics of a strong-field process in this problem, we provide one variation of the problem

where the perturbative framework breaks down: the collision of ultra-relativistic charged particles. The

addition of charge, and the associated repulsive nature of the source, originates an extra radiation burst,

which we argue to be an artifact of the perturbative framework, veiling the relevant physics.

DOI: 10.1103/PhysRevD.87.084034 PACS numbers: 04.50.�h, 04.20.Cv, 04.30.Db, 04.50.Gh

I. INTRODUCTION

Recently [1,2], we have studied the collision of two
D-dimensional Aichelburg-Sexl shock waves [3], using a
method first developed (in D ¼ 4) by D’Eath and Payne
[4–6], with the goal of obtaining the radiated energy. This
method is conceptually and technically elaborate, involv-
ing both analytical and numerical studies. Remarkably, the
fraction of radiated energy—which we refer to as the
inelasticity of the collision—agrees in first-order perturba-
tion theory, within the numerical error of the method (less
than 0.1%), with the simple formula

�1st order ¼ 1

2
� 1

D
: (1.1)

Asymptotically, �1st order ! 1=2, agrees with the bound,
�AH, obtained by computing the apparent horizon (AH)
on the past light cone [7] (or on the future one [8]) for a
head-on collision of two Aichelburg-Sexl shock waves,

�AH ¼ 1� 1

2

�
D� 2

2

�D�2

�D�3

� 1
D�2

; lim
D!1�AH ¼ 1

2
; (1.2)

where�n is the volume of the unit n-sphere. Moreover, the
trend with D observed from �1st order agrees, qualitatively,
with that of �AH (cf. Fig. 3 in Ref. [2]).

An immediate question is if the appeal and simplicity of
the result (1.1) is kept in higher-order perturbation theory.
To answer it, the D-dimensional formalism developed in
Refs. [1,2] must be extended beyond linearized theory and,
in particular, so does the radiation extraction method. In
Refs. [1,2], we have approached the problem of extracting
the gravitational radiation by using the Landau-Lifshitz
pseudotensor, which was straightforward to apply for the
setup therein. Indeed, the first-order calculation amounts to
approximating the outgoing radiation by an isotropic flux,
with a value obtained as the limit of the flux at the axis

computed in linearized theory. This allowed us to obtain a
relatively simple expression from the pseudotensor, since
only the radiation in the direction of the symmetry axis had
to be computed. In higher-order perturbation theory, on the
other hand, we will have to include higher-order contribu-
tions to the news function, following Refs. [4–6], which
means that the pseudotensor components become more
complicated, making this method less manageable and
clear. We shall therefore, in this paper, discuss the
higher-order perturbative formalism with a different radia-
tion extraction method, valid for generic axially symmetric
spacetimes, based on the Bondi mass-loss formula in D
dimensions [9,10]. In particular, we shall obtain a formula
for the inelasticity that is valid to all orders [cf. Eq. (2.21)],
and which makes closer contact with the original Payne
and D’Eath computation [4–6], since it uses the natural
generalization to higherD of the Bondi news function used
by these authors. In linearized theory, of course, the result
obtained using the Bondi mass-loss formula coincides with
the pseudotensor method.
The second part of this paper is devoted to the study of

a collision of shocks obtained from infinitely boosted
charged particles. Such shocks were constructed in
Refs. [11,12] and considered in Refs. [13,14] to estimate
an upper bound on the inelasticity, motivated by TeV
gravity scenarios [15–17] (see Ref. [18], Sec. IV for a
recent review). In performing this study, our goal is to
probe the validity of a perturbative method to study a
process that, at its core, includes a nonperturbative phe-
nomenon—black hole formation. As it turns out, this
example illustrates quite well how the method ceases to
work, and creates a clear contrast with the neutral case. The
reason why the method fails in such a case is that the
repulsive nature of the charged gravitational source implies
that an important contribution to the radiation, in the
perturbative approach, is obtained from the strong-field
region. In reality, this contribution, or at least an important
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part of it, should be cloaked by a horizon, as it would be
manifest in a nonperturbative computation. Thus, in this
example, the perturbative approach entangles the physical
signal with a significative spurious signal, making the
method uninformative. By contrast, in the neutral case,
the spurious signal appears to be subleading.

This paper is organised as follows. In Sec. II we shall set
up the higher-dimensional perturbation theory for the prob-
lem at hand and derive the formula for the inelasticity,
leaving some technical details related to the transforma-
tions between the various coordinate systems involved to
Appendix A. In Sec. III we discuss the charged case.
Although we have tried to make the discussion self-
contained, the construction uses some details provided in
Refs. [1,2]. Two technical issues—the gauge fixing to de
Donder coordinates and the evaluation of the integral
solution for the perturbative metric—were organized as
Appendices B and C. We close with some final remarks
in Sec. IV.

II. HIGHER-ORDER SHOCK-WAVE
PERTURBATION THEORY

In Ref. [1] we have shown that, in a boosted frame, the
metric on the future light cone of the collision of two
higher-dimensional Aichelburg-Sexl shock waves is given
by a perturbative series,

g�� ¼ �
2

D�3½��� þ h��� ¼ �
2

D�3

�
��� þ

X1
i¼1

�
�

�

�
i
hðiÞ��

�
:

(2.1)

Here, �, � are the energy parameters of the weak/strong
shock in the boosted frame, respectively, and the back-
ground flat metric in null coordinates is

ds2 � ���dx
�dx� ¼ �2dudvþ dxidxj

¼ �2dudvþ d�2 þ �2d�2
D�3: (2.2)

d�D�3 is the line element of the unit D� 3 sphere. We
call this coordinate system Brinkmann coordinates [19],

where the retarded and advanced times ð ffiffiffi
2

p
u;

ffiffiffi
2

p
vÞ are

(t� z, tþ z) in terms of Minkowski coordinates, and fxig
are the remaining Cartesian coordinates on the plane of the
shocks, i ¼ 1 . . .D� 2, such that the transverse radius is

� ¼ ffiffiffiffiffiffiffiffi
xixi

p
. In this section we will have two further types of

coordinates: de Donder coordinates and Bondi coordinates,
both to be introduced and explained below. Since the de
Donder coordinates coincide with Brinkmann coordinates
outside the future light cone of the collision, we adopt the
same notation for Brinkmann and de Donder coordinates
(as in Ref. [1]).

The superposition of two shock waves produces bound-
ary conditions on u ¼ 0 (the location of the strong shock)
which go up to second order. Thus, in second-order per-
turbation theory, the boundary conditions are exact.

Suggestively, for D ¼ 4, the second-order result coincides
with the outcome of numerical relativity simulations [20].
This sharpens the motivation to pursue this computation
(at least) to second order.
The general perturbative method consists of the follow-

ing steps. Once we have the boundary data for the pertur-
bation h��ju¼0, we insert the ansatz (2.1) into the Einstein

equations and equate order by order. The components of
the metric perturbations do not decouple immediately, but
we can perform a gauge transformation to the so-called de
Donder coordinates so that they indeed decouple. We take
the perturbative gauge transformation in the form

x� ! x� þXþ1

i¼1

�
�

�

�
i
�ðiÞ�ðx�Þ; (2.3)

where the vector �ðiÞ�ðx�Þ is to be determined order by
order so that the de Donder gauge condition is obeyed; i.e.,
for u > 0

�hðiÞ�	;	 ¼ 0; (2.4)

(barred quantities are trace reversed). Now hðiÞ�	 are the
metric perturbations in de Donder coordinates.
Using Eqs. (2.1) and (2.4), the nth order perturbation

components obey decoupled wave equations,

hhðiÞ�� ¼ Tði�1Þ
�� ½hðj<iÞ

�	 �; (2.5)

where the source on the right-hand side is generated by the
lower-order perturbations, and can be computed explicitly
order by order.
The general integral solution of Eq. (2.5) can be written

using the Green’s function method (see Theorem 6.3.1 of
Ref. [21]),

hðiÞ�� ¼ F:P:
Z
u0>0

dDy0Gðy; y0Þ½Tði�1Þ
�� ðy0Þ

þ 2
ðu0Þ@v0hðiÞ��ðy0Þ�; (2.6)

where F:P: denotes the finite part of the integral, y ¼
fu; v; xig and we have used the fact that the source only
has support in u > 0. Because of the axial symmetry of the
problem, a basis of vectors and tensors on the transverse
plane, constructed from xi and 
ij, is

�i � xi
�
; 
ij; �ij � 
ij � ðD� 2Þ�i�j; (2.7)

where we have chosen the last tensor to be traceless. Then,
the metric perturbations in de Donder coordinates are
decomposed into seven functions of ðu; v; �Þ, here denoted
A, B, C, E, F, G, H, in the following way:
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huu � A ¼ Að1Þ þ Að2Þ þ � � � ;
hui � B�i ¼ ðBð1Þ þ Bð2Þ þ � � �Þ�i;

huv � C ¼ Cð1Þ þ Cð2Þ þ � � � ;
hvi � F�i ¼ ðFð1Þ þ Fð2Þ þ � � �Þ�i;

hvv � G ¼ Gð1Þ þGð2Þ þ � � � ;
hij � E�ij þH
ij ¼ ðEð1Þ þ � � �Þ�ij þ ðHð1Þ þ � � �Þ
ij:

(2.8)

With this setup, using the boundary condition on u ¼ 0 and
the solution (2.6), one can find the metric perturbations by
solving for these scalars after suitable contractions of
Eq. (2.6) with the tensors (2.7).

A. Extracting the gravitational radiation

As mentioned in the Introduction, we shall here con-
struct an energy extraction method which is the higher-D
generalization of the original method used by D’Eath
and Payne, based on Bondi’s news function. The
D-dimensional extension of the news function formalism
has been recently addressed in Refs. [9,10], where the
following mass-loss formula for the Bondi mass MB was
derived:

dMB

d�̂
¼ � 1

32�GD

Z
SD�2

_h½1�
Î Ĵ

_h½1�Î Ĵd�D�2: (2.9)

The dot denotes a derivative with respect to the retarded

time �̂ and the Î latin indices are raised with the metric
components gÎ Ĵ; all these quantities, together with the
metric functions appearing inside the integral, will be
defined in the following.

The geometry we are considering in de Donder coordi-
nates has the generic form

ds2 ¼ ds2Flat þ huudu
2 þ 2huidx

iduþ hvvdv
2

þ 2huvdudvþ 2hvidx
idvþ hijdx

idxj: (2.10)

We can transform it to coordinates x�
0 ¼ f�; r; ;�ig,

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
, � ¼ t� r and  is the angle with

the z axis and�i are the angles on the transverse plane, and
we have used an index with a prime to denote these new
coordinates. Then the metric reads

ds2¼ds2Flatþh��d�
2þ2h�rd�drþhrrdr

2þ2h�d�d

þhd
2þ2hrdrdþr2sin2h��d�

2
D�3; (2.11)

where the various components h�0�0 are defined in

Appendix A in terms of the seven aforementioned scalar
functions.

Next, we change to Bondi coordinates fx�̂g, related to
these intermediate coordinates through the transformation

x�
0 ¼ x�

0 ðx�̂Þ; (2.12)

such that the new gr̂ r̂ and gr̂ ̂ metric components vanish,

and the form of the metric becomes

ds2 ¼ g�̂ �̂d�̂
2 þ 2g�̂ r̂d�̂dr̂þ 2gÎ �̂dx

Îd�̂þ gÎ Ĵdx
ÎdxĴ:

(2.13)

Here xÎ ¼ f̂; �̂ig and the radial coordinate r̂ is chosen
such that ffiffiffiffiffiffiffiffiffiffi

jgÎ Ĵj
q

¼ r̂D�2�D�2: (2.14)

Once such coordinates are found, assuming that we have an
asymptotically flat spacetime with gravitational radiation,
it follows that asymptotically [9]

gÎ Ĵ
r̂2

¼ �Î Ĵ þ hÎ Ĵ ¼ �Î Ĵ þ
X
k�0

h
½kþ1�
Î Ĵ

r̂D=2þk�1
; (2.15)

where �Î Ĵ is the metric on the unit ðD� 2Þ-sphere and k
runs over all integers forD even and over semi-integers for

D odd. This defines the h
½1�
Î Ĵ

components appearing in the

mass-loss formula (2.9).
Because of the axial symmetry of our problem, one in

fact does not need to transform the angles on the transverse

plane, i.e., �i ¼ �̂i, and

hÎ Ĵdx
ÎdxĴ ¼ ĥ ̂d̂

2 þ h�̂ �̂sin
2̂�ijd�̂

id�̂j: (2.16)

From condition (2.14), we can then eliminate ĥ ̂ in terms

of h�̂ �̂ and find that asymptotically

ĥ ̂ ! �ðD� 3Þh�̂ �̂; (2.17)

so the mass-loss formula can be written as a ̂ angular
integral of the following angular power flux:

dMB

d�̂d cos ̂
¼ �ðD� 2ÞðD� 3Þ�D�3

32�GD

lim
r̂!þ1

½r̂�̂D�4
2 _h�̂ �̂�2:

(2.18)

Using the general form of our metric in de Donder coor-
dinates (2.10), we have constructed the coordinate trans-
formation (2.12) in Appendix A. One then shows that

dMB

d�̂dcos ̂
¼�ðD� 2ÞðD� 3Þ�D�3

32�GD

lim
r̂!þ1

½r̂�̂D�4
2 ð _Eþ _HÞ�2;

(2.19)

where all functions are evaluated with Bondi coordinates.
An important remark is that our derivation does not rely

on the metric being perturbative, and therefore it is valid
nonperturbatively. The assumptions are simply that (i) the
metric is expressed in de Donder coordinates as in
Eq. (2.10), (ii) the metric is axisymmetric [cf. Eq. (2.8)]
and (iii) the spacetime is asymptotically flat and contains
gravitational radiation [cf. Eq. (2.15)].
Furthermore, asymptotically the Bondi coordinates used

in Eq. (2.18) will approach de Donder coordinates, from
the construction in Appendix A. So, in general, we can
express the mass-loss formula in de Donder coordinates as

RADIATION FROM A D-DIMENSIONAL COLLISION OF . . . PHYSICAL REVIEW D 87, 084034 (2013)

084034-3



dMB

d�d cos
¼ �ðD� 2ÞðD� 3Þ�D�3

64�GD

� lim
r!þ1½r�

ðD�4Þ
2 ðE;v þH;v þ E;u þH;uÞ�2:

(2.20)

Observe that the @u terms correspond to fluxes across v ¼
constant surfaces, which are supposed to vanish on  ¼ �,
as argued in Ref. [1], for the problem of gravitational shock-
wave collisions (indeed, we have checked this numerically).

We shall now specialize the general formula (2.20) so as to
facilitate the application of this result to the perturbative
problem of shock-wave collisions. We assume that the space-
time has an Arnowitt-Deser-Misner energy scale 2�, with
which we construct a length scale LD�3 ¼ 8�GD�=�D�3.
Then, taking units with L ¼ 1, and dividing by the total
ADM energy scale, the inelasticity factor—corresponding
to the fraction of energy radiated into gravitational waves—is

�radiated ¼
Z 1

�1

d cos

2
lim
r!þ1

Z
d�Wð�; r;Þ2 �

Z 1

�1

dx

2
CðxÞ;

(2.21)

with

Wð�;r;Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD�2ÞðD�3Þ

8

s
r�

D�4
2 ðE;vþH;vþE;uþH;uÞ:

(2.22)

CðxÞ is the generalization of the Bondi news function
(integrated over �) to higher dimensions. In the appropriate
limit, this (more general) result reduces to the one obtained
in Ref. [1] using the Landau-Lifschitz method.

In the particular case of the perturbative method for
shock-wave collisions, the framework is valid for  close
to � (x��1). Then the approximation taken is usually to
expand around the axis, and extrapolate off the axis by
integrating the truncated expansion over . Besides being
axially symmetric, our system is invariant under reflections
z $ �z, so CðxÞ must be even. Then

�radiated ¼
Z 1

�1

dx

2

Xþ1

n¼0

Cnðx2 � 1Þn ¼ Xþ1

n¼0

Cnð�2Þnn!
ð2nþ 1Þ!! :

(2.23)

If the news function CðxÞ is analytic, then the expansion
close to the axis is indeed sufficient, provided that
lim n!þ1jCnþ1=Cnj � 1. Furthermore, since we have an
extra suppression factor in Eq. (2.23), we expect higher
orders to become increasingly less important. The approxi-
mation used by D’Eath and Payne [6] in D ¼ 4 corre-
sponds to an approximation Cn; n � 1, which gives (to

second order in perturbation theory) a result of � ¼
0:163. This is in agreement with the latest numerical
relativity simulations of ultra-relativistic particle or black
hole collisions at large boost [20,22], so it seems to

indicate that the angular corrections (Cn for n > 1) are
small in D ¼ 4.

III. D-DIMENSIONAL SHOCK-WAVE
COLLISIONS WITH CHARGE

In this section we shall analyze an example of shock-
wave collisions with an electric charge parameter. We will
apply the formalism developed in the previous section
while testing the assumptions of the formalism and com-
menting on its limitations. This example will make clear
that the perturbative construction is only applicable if the
bulk of the gravitational radiation is generated far away
from the strongly curved region of spacetime.

A. The D-dimensional metric

The geometry of the D-dimensional Reissner-Nordström
(RN) solution with mass M and charge Q is [23]

ds2 ¼ �VðrÞdt2 þ dr2

VðrÞ þ r2d�D�2; (3.1)

where

VðrÞ ¼ 1� 16�GDM

ðD� 2Þ�D�2

1

rD�3
þ 8�GDQ

2

ðD� 2ÞðD� 3Þ
1

r2ðD�3Þ :

(3.2)

It is intuitive, as first argued by Pirani [24], that the
gravitational field of a fast-moving mass should become
increasingly similar to that of a gravitational plane wave as
the speed is increased. For the case of an RN ‘‘particle,’’
the corresponding Aichelburg-Sexl shock wave is found by
boosting this black hole and then simultaneously taking the
limit of infinite boost � and vanishing mass and charge,
keeping fixed [11]

� ¼ �M; Q2 ¼ �Q2: (3.3)

The resulting geometry for a particle moving in the þz
direction in Brinkmann coordinates is

ds2 ¼ �2dudvþ d�2 þ �2d�2
D�3 þ

ffiffiffi
2

p
��ð�Þ
ðuÞdu2;

(3.4)

where � � 8�GD�=�D�3. The function � depends only
on � and takes the form [13,14]

�ð�; a=�Þ ¼ � 2a=�

ð2D� 7Þ�2D�7
þ

8<
:�2 ln ð�Þ; D ¼ 4;

2
ðD�4Þ�D�4 ; D > 4;

(3.5)

where

a � 8�2GDQ2

D� 3

ð2D� 5Þ!!
ð2D� 4Þ!! : (3.6)

The above coordinates are discontinuous at the shock.
Transforming to Rosen coordinates ð �u; �v; �xiÞ [25], which are
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continuous at the shock (see Ref. [1] for the explicit trans-
formation), the geometry for two oppositely directed shock
waves with equal charge parameter a in Eq. (3.5) and equal
energy � may be written everywhere as a simple superpo-
sition of the two individual geometries, except in the future
of the collision. Moreover, in a boosted frame moving with
respect to the ðu; vÞ chart with velocity 	 in the �z direc-
tion, the oppositely directed shock waves keep their form,
but acquire new energy parameters, respectively,

� ! e�� � �; � ! e��� � �; (3.7)

where e� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 	Þ=ð1� 	Þp
. In this boosted frame, the

geometry reads

ds2 ¼ �2d �ud �vþ
��

1þ � �uð �uÞffiffiffi
2

p �00
�
2

þ
�
1þ � �vð �vÞffiffiffi

2
p �00

�
2 � 1

�
d ��2

þ ��2

��
1þ � �uð �uÞffiffiffi

2
p

��
�0

�
2

þ
�
1þ � �vð �vÞffiffiffi

2
p

��
�0

�
2 � 1

�
d�2

D�3; (3.8)

which is valid everywhere except in the future light cone of
�u ¼ �v ¼ 0.

B. Setting up the perturbative computation
and the boundary conditions

To set up a perturbative computation and derive the ge-
ometry in the future light cone of the collision, we proceed as
in Ref. [1]. In the boosted frame one shock carries muchmore
energy than the other and we thus face the weak shock
(traveling in the �z direction) as a perturbation of the ge-
ometry of the strong shock (traveling in the þz direction).
The geometry of the latter is flat for �u > 0; thus, we make a
perturbative expansion of the Einstein equations around a flat
spacetime in this region. We shall make the perturbative
expansion in Brinkmann coordinates. Moreover, we choose
to work with the rescaled dimensionless coordinates

ðu; v; xiÞ ! �1=ðD�3Þðu; v; xiÞ and rescaled profile function

�ð�;a=�Þ ! ��D�4
D�3�ð�; a=�2Þ. Thus, hereafter �ð�Þ �

�ð�;a=�2Þ and all coordinates are dimensionless.
The boundary conditions for the perturbative computa-

tion are given by the geometry (3.8) in the limit u ¼ 0þ,
yielding only the first two orders in Eq. (2.1) (notice that
these boundary conditions are exact, albeit written in a
perturbative form),1

hð1Þuu ¼ ��02kðv; �Þ; hð1Þui ¼ xi
�

ffiffiffi
2

p
�0kðv; �Þ; (3.9)

hð1Þij ¼ �2
ijhðv; �Þ � 2
xixj

�2
ðkðv; �Þ � hðv; �ÞÞ; (3.10)

and

hð2Þuu ¼ �02

2
kðv; �Þ2; hð2Þui ¼ � xi

�

�0ffiffiffi
2

p kðv; �Þ2; (3.11)

hð2Þij ¼ 
ijhðv; �Þ2 �
xixj

�2
ðkðv; �Þ2 � hðv; �Þ2Þ; (3.12)

where

hðv; �Þ � ��0

2�
ð ffiffiffi

2
p

v��Þð ffiffiffi
2

p
v��Þ;

kðv; �Þ � ��00

2
ð ffiffiffi

2
p

v��Þð ffiffiffi
2

p
v��Þ:

(3.13)

The step function in the previous equations jumps at the
collision, which, in Brinkmann coordinates, occurs at u ¼
0, v ¼ �=

ffiffiffi
2

p
. As the weak-shock null generators (travel-

ing along v ¼ 0, u < 0) reach the strong shock at u ¼ 0
there is a discontinuity in Brinkmann coordinates. To
understand what occurs, we consider the trajectory of a
weak-shock null generator that, before the collision, obeys
the parametric equations

uð�Þ ¼ �; vð�Þ ¼ 0; �ð�Þ ¼ �: (3.14)

Then, after the shock, its trajectory is given by [1]

uð�Þ ¼ �; vð�Þ ¼ ð�Þ
�
�ð�Þffiffiffi

2
p þ��0ð�Þ2

4

�
;

�ð�Þ ¼ �

�
1�

ffiffiffi
2

p
�ð�Þ
�D�2

�
:

(3.15)

Indeed, the v coordinate jumps from v ¼ 0 to the surface

v ¼ �=
ffiffiffi
2

p
, i.e., the collision surface (Fig. 1). After this

jump the v coordinate of the trajectory increases, except at
points where �0ð�Þ ¼ 0. In the uncharged case there were
no extrema of this profile function. But in the charged case
there is one maximum. The ray incident at the correspond-
ing value of � will follow a path of v ¼ constant after the
collision. This is possible for a null trajectory because such
a ray is undeflected. In general the rays are deflected by an
angle � in the u� � plane, such that

tan� ¼
ffiffiffi
2

p
�D�3

�
1� a=�2

�D�3

�
: (3.16)

It follows that the weak-shock null generators become

convergent (towards the symmetry axis) for � >

ða=�2Þ1=ðD�3Þ, divergent for � < ða=�2Þ1=ðD�3Þ and there

are undeflected generators for � ¼ ða=�2Þ1=ðD�3Þ (Fig. 2).
This is qualitatively very different from the uncharged case
where all rays are convergent (see Fig. 4 in Ref. [1]); the

1The coordinate transformation from Rosen coordinates (3.8)
to Brinkmann coordinates is adapted to the strong shock. In
particular, the metric remains continuous at �v ¼ 0 after the
coordinate transformation. This behavior at �v ¼ 0 is consistent
with the propagation of the initial data from u ¼ 0, as can be
checked numerically.
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divergent behavior is caused by the repulsive gravitational
effect of the charge.
Finally, for an observation point P far from the collision

and near the axis, Fig. 2 suggests four bursts of radiation,
associated to the four optical paths that reach P . The order
in which the four rays should arrive at P defines their
numbering. The first (second) ray comes from the same
(opposite) side of the axis as P and from a low redshift
region (cf. Fig. 1). The third (fourth) ray comes from the
same (opposite) side of the axis as P and from a high
redshift region.

C. Gauge fixing at u ¼ 0 and future
development of the metric

To the future of u ¼ 0, we use the perturbative expan-
sion introduced in Sec. II in de Donder gauge. In first-order
perturbation theory, the gauge-fixing condition (2.4) does

not affect the radiative components in hð1Þij ; we refer the

interested reader to Appendix B for the details. Using the
results in Appendix B we find the initial conditions

Eð1Þð0; v;�Þ ¼
�
�0

1

�
þ 2D� 5

D� 2

�0
2

�

�
ð ffiffiffi

2
p

v��Þð ffiffiffi
2

p
v��Þ;
(3.17)

Hð1Þð0; v;�Þ ¼ ðD� 3ÞðD� 4Þ
2ðD� 2Þ

�0
2

�
ð ffiffiffi

2
p

v��Þð ffiffiffi
2

p
v��Þ;
(3.18)

where �1;2 are, respectively, the charge-(in)dependent

parts of �. To obtain the relevant scalar functions in first

order, Eð1Þ,Hð1Þ, in the future light cone of the collision, we
use the integral solution (2.6),

FIG. 1 (color online). Evolution of the weak-shock null generators (all incident arrows-blue, green, and brown) from the viewpoint
of Brinkmann coordinates in the boosted frame inD> 4. For u < 0 they are at v ¼ 0; then, the generators undergo a discontinuity in v
at u ¼ 0, which is � dependent and negative for small �. The generators then jump to the collision surface [green (pale gray) and
brown (dark gray) lines on the u ¼ 0 hypersurface]. Generically, the rays gain shear and (i) for large � [blue (gray) part of the curve]
focus along the caustic (red line at the collision axis and u > 0), while (ii) for small � [brown (dark gray) part of the curve] diverge.
Undeflected rays are drawn in green (light gray).

FIG. 2 (color online). Diagram illustrating (a section of) the
spatial trajectories of the null generators of the weak shock,
exhibiting their behavior after u ¼ 0. The introduction of a charge
leads to a divergent behavior of the rays for� < ða=�2Þ1=ðD�3Þ and
the existence of the undeflected rays [green (pale gray) lines].
Moreover, amongst the convergent rays there is one family of
maximal deflection (dashed red and blue lines). The convergent
rays will meet at the axis, forming a caustic. For points outside the
axis, far away from the collision—such as point P—the diagram
suggests four radiation peaks associated to rays 1–4. We shall see
that this interpretation matches the wave forms exhibited in
Sec. III E. An analogous figure was presented in Ref. [13].
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hð1Þ�� ¼F:P:
Z
u0>0

dDy0Gðy;y0Þ½Tð0Þ
��ðy0Þþ2
ðu0Þ@v0hð1Þ��ðy0Þ�:

(3.19)

The source that must be considered in first-order perturba-

tion theory, Tð0Þ
��, is the energy-momentum tensor associ-

ated to the Maxwell field of the background geometry. By
also taking the limit described at the beginning of Sec. III A
for the Maxwell field, one computes that the energy-
momentum tensor associated to the shock with support at
u ¼ 0 has a single nonvanishing component,

Tuu ¼ Q2�

�2D�5

ð2D� 5Þ!!
ð2D� 4Þ!!
ðuÞ: (3.20)

First observe that this energy-momentum tensor does not
have support on u > 0. Second, this energy-momentum
tensor does not source the radiative components of the

first-order perturbation hð1Þij , since only the Tuu component

is nonvanishing. Finally, this energy-momentum tensor is
completely taken into account already by the strong-shock
geometry, and hence by the initial conditions considered.
Indeed, the Einstein tensor computed from Eq. (3.4) reads

Guu ¼ ðD� 3Þa
�2D�5


ðuÞ; (3.21)

which, of course, solves the Einstein equations with the
source (3.20).

As for the weak shock, it sources an energy-momentum
tensor with support on �v ¼ 0 that, in principle, contributes
to the radiative components via the first term in Eq. (3.19). In
this paper we shall focus on the second term in Eq. (3.19),
which suffices to demonstrate the difficulties in applying the
perturbative method to shock waves with charge.

A summary of the determination of the radiative scalar

functions Eð1Þ, Hð1Þ, is described in Appendix C.

D. Integration limits

We can now discuss the domain for the time integration
in Eq. (2.21). In the uncharged case, we observed in
Ref. [1] that both the beginning of the radiation burst and
its peak, as observed at some spacetime point P in the
future of the collision, could be understood by a simple ray
analysis, similar to that displayed in Figs. 1 and 2, together
with an analysis of the intersection of the past light cone of
P with the collision surface. A similar reasoning for the
charged case can be made.

Let P have spacetime coordinates ðu; v; �Þ, or, equiv-
alently ð�; r; Þ. One now observes that an observation
point P , specified by coordinates ðr; Þ, close to the axis
and far away from the collision is struck by four rays
(Fig. 2). These arrive at retarded times �i, i ¼ 1 . . . 4,
where �i ¼ �iðr; Þ are determined by solving

r sin  ¼ s ��

�
1þ�0ð ��Þ �þ 2rsin 2 

2

2 ��

�
; (3.22)

�

�
1��02ð ��Þ

4

�
þ 2r

�
cos 2



2
��02ð ��Þ

4
sin 2 

2

�
¼ �ð ��Þ;

(3.23)

with s ¼ þ1 for �1 and �3, and s ¼ �1, for �2 and �4,
simultaneously determining the auxiliary variable ��, which
now (unlike the uncharged case) has two solutions for each
of the two values of s, reflecting the two rays coming from
each side (cf. Fig. 2).
A qualitative difference with respect to the uncharged

case is, however, that the past light cone of P will have a
nonvanishing intersection with the collision surface at all
retarded times, corresponding to points very close to the
axis. We shall now argue, however, that this contribution is
unphysical and should be neglected.2

In Rosen coordinates (cf. Sec. III), the collision occurs at
�u ¼ 0 ¼ �v. In these (continuous) coordinates, the future
light cone of the collision therefore has two branches:
�u ¼ 0, �v>0 and �u>0, �v¼0. In terms of the Brinkmann
coordinates these conditions read

u ¼ 0; v >
�ð�Þffiffiffi

2
p ; and

u > 0; v ¼ �ð ��Þffiffiffi
2

p þ u
�0ð ��Þ2

4
; where

� ¼ ��

�
1þ u�0ð ��Þffiffiffi

2
p

��

�
:

(3.24)

The second of these branches determines a surface which
intersects the worldline of P at the retarded times �i
computed from Eq. (3.23). In particular, prior to �1, the
worldline of P is not in the future light cone of the
collision. Thus, the radiation observed along the worldline
of P before �1 is not causally connected to the collision
and consequently we neglect it.

E. Numerical results

In Fig. 3, we display some wave forms for D ¼ 6, 8
obtained from the numerical integration of the contribu-
tions in Eqs. (C7)–(C10). The integration was done using
the numerical code developed in Refs. [1,2]. As expected,
we have found two radiation signals from the geometrical
optics analysis. The left-hand plots, corresponding to the
signal coming from rays 1 and 2 in Fig. 2, coincide
precisely with the wave forms computed without
charge in Refs. [1,2]. The second signal (right-hand plots),
is associated to rays 3 and 4 in Fig. 2; these are the rays
that are incident close to the axis. In a nonlinear

2Numerically, this contribution is small but nonzero, in con-
trast to the neutral case where there is no domain of integration
prior to �1.
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computation with horizon formation, a considerable
part of this signal should be caught inside the black hole
horizon, and should therefore be absent from the
viewpoint of an asymptotic observer. The evidence that
supports this statement comes from considering the
apparent horizon. Indeed, by cutting off the �0 integration
region inside the exterior apparent horizon (defined in
Ref. [13]), the second burst of radiation (between �3
and �4) vanishes.

Both rescaled signals are actually independent of
the charge parameter for large r. This should not be sur-
prising for rays that are incident far away from the center of
the collision, since for large � the charge contribution to
the gravitational field decays faster. However, the
second (anomalous) rescaled signal is also independent
of the charge parameter so it gives a constant contribution
when integrated in time, to �radiated. In particular, this
means that the result is discontinuous in the a ! 0
limit, as compared to the a ¼ 0 result. This is clearly
related to the fact that the source is always repulsive for
nonvanishing a.

We have extracted the two contributions to �radiated for
large r, and found that the contribution from the first wave

form coincides (within a numerical error of less than 1%)
with the a ¼ 0 computation. For D ¼ 6 we found 0:332	
0:004 and for D ¼ 8 we found 0:374	 0:003. If we add
the contribution from the anomalous wave-form signal, we
get, respectively, 0:695	 0:004 and 0:876	 0:002, inde-
pendently of a.
Up to now we have focused on the even D case.

For D odd, we expect the method to become even less
meaningful since the Green’s function for odd D has sup-
port not only on the past light cone, but also inside the past
light cone. Since the shock-wave profile becomes repulsive
at the center (see Fig. 1), we will get contributions to the
integrals which come from highly deflected rays that
went through the highly curved and nonlinear region of
spacetime.
We should also mention that for D ¼ 4, the integration

of the wave form does not even converge for large r to
extract a finite �radiated. These results, altogether, indicate
the breakdown of the perturbative method, and clarify its
regime of validity. To summarize, the perturbative method
should only capture the relevant physics whenever the
optical rays arriving at the observation point go through
weak-field regions only [1,2,4–6].

FIG. 3 (color online). Left panels: First wave-form signals with a time scale set by ��1 � �2 � �1, suitably rescaled. Right panels:
Second wave-form signals with a time scale set by ��2 � �4 � �3, suitably rescaled. The top panels are for D ¼ 6 and the bottom
ones D ¼ 8. The signals were generated for a ¼ 0:01, 0.1 and 1 with no variation in shape.
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IV. FINAL REMARKS

An ultra-relativistic particle collision is a highly
dynamical process and—if a black hole forms as a
result—a strong-field process as well. It is then quite
remarkable if we may use a perturbative method, such as
the one originally proposed in Refs. [4–6], to extract
relevant physics, such as the inelasticity of the process.

A good way to test the method is to generalize it. In
Refs. [1,2] we have extended it to higher dimensions,
revealing a remarkably simple pattern in first-order pertur-
bation theory. Second-order perturbation theory is then the
next goal and, in this problem, one of particular impor-
tance. On the one hand, it will test if the simple pattern
observed in Ref. [2] is a special property of linear theory.
On the other hand, the initial data is exact in second order.
Furthermore, to this order, an agreement is found (in
D ¼ 4) with numerical relativity simulations. In this paper
we have paved the road for this second-order computation
by presenting the setup for higher-order perturbation the-
ory and formulas for extracting the inelasticity, based on a
generalization of the Bondi mass formula to higher D. It
remains to compute the relevant scalar functions in second
order and to perform the numerical integrations. We shall
report on this elsewhere.

Another generalization considered in this paper was the
collision of shock waves with a charge parameter, remi-
niscent of the Reissner-Nordström black holes from which
they where obtained. These collisions have been consid-
ered before for apparent horizon computations [13,14],
from which bounds on the inelasticity of the process can
be obtained. The generic observed behavior can be de-
scribed as follows (for simplicity we consider only shock
waves with equal charge parameter). Firstly, including the
charge parameter increases the value of �AH, suggesting
that a larger fraction of the energy is radiated away.
Intuitively, this may be associated to the fact that the
charge term in the Reissner-Nordström black hole yields
a repulsive effect. Secondly, beyond a certain value of the
charge parameter no apparent horizon can be seen.
Again, this is expected from the RN solution, which has

a limit for the charge-to-mass ratio, beyond which no event
horizon exists. Thirdly, these results are independent of the
relative sign of the initial charged particles that were
infinitely boosted, in agreement with the observation that
gravity is the dominant interaction in trans-Planckian scat-
tering [26].
The observed behavior using the perturbative method to

first order shows a qualitative agreement with the first and
third observations above. But, as emphasized already, the
perturbative method lacks legitimacy in this problem, since
there is a considerable amount of radiation that originates
in the strong-field region, where we have no reason to
believe the method. Thus, a more reasonable stance is to
regard this charged example as an illustration of how the
perturbative method can fail.
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APPENDIX A: ASYMPTOTIC CONSTRUCTION
OF BONDI COORDINATES

In this Appendix we shall address various details related
to the coordinate transformations mentioned in Sec. II.
We shall keep the discussion as general as possible to
facilitate its generalization to higher orders in perturbation
theory.

The metric perturbations in the coordinates fx�0 g of
Sec. II are expressed in terms of the scalar functions
introduced therein as

h�� ¼AþG

2
þC; h�r ¼h��þG�A

2
cosþBþFffiffiffi

2
p sin;

hrr ¼ 1

2
ðAð1� cosÞ2þGð1þcosÞ2ÞþðCþH�ðD�3ÞEÞsin2þ ffiffiffi

2
p

sinðBð1�cosÞþFð1þ cosÞÞ;

h� ¼ r

�
A�G

2
sinþBþF

2
cos

�
;

h ¼ r2
��

AþG

2
�C

�
sin2þ ffiffiffi

2
p ðB�FÞsincosþðH�ðD�3ÞEÞcos2

�
;

hr ¼ r

�
1

2
ðAð1�cosÞ�Gð1þcosÞÞsinþðCþH�ðD�3ÞEÞsincosþBþFffiffiffi

2
p cosþB�Fffiffiffi

2
p ðsin2�cos2Þ

�
;

h�� ¼EþH: (A1)
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We consider a generic gauge transformation from de
Donder coordinates to Bondi coordinates,

x�
0 ¼ x�̂ þ ��̂ðx�̂Þ; (A2)

assuming only that ��̂ decays sufficiently fast with some
power of 1=r̂� 1=r, such that Bondi coordinates asymp-
totically match de Donder coordinates. By inserting this
transformation in the explicit and implicit dependence on
x�

0
in Eq. (2.10) one obtains that the new metric perturba-

tion in Bondi coordinates is asymptotically

q�̂ �̂ ¼ h�̂ �̂ þ ��̂ �̂;�̂�
�̂ þ 2��̂ð�̂��̂

;�̂Þ þ � � � ; (A3)

where the dots denote terms which decay faster asymptoti-
cally, the right-hand side terms contain the perturbative
metric and the Minkowski metric is evaluated with Bondi
coordinates, as emphasized by the barred indices. The
three conditions to satisfy are

qr̂ r̂ ¼ q̂ r̂ ¼ 0; (A4)

q̂ ̂ ¼ �ðD� 3Þq�̂ �̂; (A5)

with q�̂ �̂ defined analogously to h��. The last condition is
only valid, strictly speaking, asymptotically. Using a trans-
formation with ��̂i ¼ 0, we obtain

��̂ ¼
Z hr̂ r̂

2
þ �ð�̂; ̂Þ; (A6)

�̂ ¼
Z 1

r̂2

Z hr̂ r̂;̂
2

�
Z hr̂ ̂

r̂2
� �ð�̂; ̂Þ;̂

r̂
þ 	ð�̂; ̂Þ; (A7)

�r̂ ¼ � r̂

2ðD� 2Þ
�
ĥ ̂
r̂2

þ ðD� 3Þh�̂ �̂

� 2ððD� 3Þ cot ̂�̂ þ �̂
;̂
Þ
�
; (A8)

where �ð�̂; ̂Þ and 	ð�̂; ̂Þ are two arbitrary integration
functions and we have used the symbol

R
to denote the

primitivation with respect to r̂ (note that the metric func-
tions under the integral decay as an inverse power of r̂).
Such integrating functions are further constrained by re-
quiring that the new metric functions in Bondi coordinates
decay at large r̂, as in Eq. (2.15). The component we need is
finally

ðD� 2Þq�̂ �̂ ¼ h�̂ �̂ � ĥ ̂
r̂2

þ 2ðcot ̂� @̂Þ

�
�Z 1

r̂2

Z hr̂ r̂;̂
2

�
Z hr̂ ̂

r̂2
� �;̂

r̂
þ 	

�
:

(A9)

To have the correct asymptotic decay, the contribution
from 	 must be zero; equating the differential operator

acting on 	 to zero gives 	 ¼ að�̂Þ sin ̂. The same applies
for the � contribution in D> 4; for D ¼ 4, however, �

remains arbitrary. This is the well-known supertranslation
freedom referred to in Ref. [9]. Since we are interested in
extending the Bondi mass-loss formula to higher dimen-
sions, and neither of these arbitrary functions affect the
components entering the radiative metric components, we
set both contributions to zero in the remainder.

The final quantity that we need is _q�̂ �̂ ! _h�̂ �̂, so all

that remains is to take �̂ derivatives and use the metric
functions in Eq. (A1) evaluated in Bondi coordinates. After
doing so, the result will still depend on many of the metric
functions we have introduced in Eq. (2.8). Such functions
are constrained by the de Donder gauge conditions (2.4).
Writing down those conditions, changing to �, r,  coor-

dinates, replacing by hatted coordinates �̂, r̂, ̂, and taking
the asymptotic limit one obtains that

lim
r̂!þ1

r̂
D�2
2

�
ð1� cos ̂Þ _Aþ ffiffiffi

2
p

sin ̂ _B

þD� 2

2
ð1þ cos Þ _H

�
¼ 0;

lim
r̂!þ1

r̂
D�2
2

�
ð1þ cos ̂Þ _Gþ ffiffiffi

2
p

sin ̂ _F

þD� 2

2
ð1� cos Þ _H

�
¼ 0;

lim
r̂!þ1

r̂
D�2
2

�
ð1� cos ̂Þ _Bþ ð1þ cos ̂Þ _F

þ ffiffiffi
2

p
sin ̂ð _C� ðD� 3Þ _E�D� 4

2
_HÞ
�
¼ 0:

(A10)

Finally, one takes �̂ derivatives of Eq. (A1) evaluated with
hatted coordinates, and inserts relations (A10) to obtain

lim
r̂!þ1

r̂
D�2
2 _hr̂ r̂ ¼ lim

r̂!þ1
r̂
D�2
2 _hr̂ ̂ ¼ 0; (A11)

lim
r̂!þ1

r̂
D�2
2

_ĥ ̂
r̂2

¼ �ðD� 3Þð _Eþ _HÞ: (A12)

The final result is then

_q�̂ �̂ ! _h�̂ �̂ ¼ _Eþ _H; (A13)

which we have used in Eq. (2.19).

APPENDIX B: GAUGE TRANSFORMATION
TO THE DE DONDER GAUGE IN

THE CHARGED CASE

In this Appendix we explicitly show that the gauge
fixing discussed in Sec. III C does not affect the radiative
components of the metric. For simplicity of notation we

shall, herein, omit the superscript ð1Þ in the first-order
metric perturbations.
Using the integral solution (2.6) we can show that the de

Donder gauge is preserved in u > 0 if the following is
obeyed on u ¼ 0:
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�hN	
�;	v ¼ 0; (B1)

here N is a reminder that this is the new de Donder metric
perturbation. This condition can be written in terms of the
boundary values of the perturbations at u ¼ 0,

h��;v ¼ 1

2
h;�v þ h�v;uv þ h�u;vv � h�i;iv: (B2)

To eliminate the u derivative, we use the Einstein equations

h�v;uv¼G�vþ1

2
h�v;ii�1

4
��vhhþh

�
�ð�;vÞ�1

2
��v�

�
;�

�
(B3)

to obtain

h�½�;v� þ1

2
��vh��

;�¼G�vþ1

2
h;�v�1

4
��vhh

þhu�;vv�hi�;ivþ1

2
h�v;ii: (B4)

Moreover, the vanishing of the trace of the Einstein tensor
implies that hh ¼ �2h��

;�; hence, Eq. (B4) becomes

h�½�;v� ¼G�vþ1

2
h;�vþhu�;vv�hi�;ivþ1

2
h�v;ii: (B5)

Let us analyze the various components of this equation. For
� ¼ v, we have an identity,

0 ¼ Gvv þ 1

2
h;vv: (B6)

For � ¼ j,

h�½j;v� ¼ Gjv þ 1

2
h;jv þ huj;vv � hij;iv

¼ �ð2D� 5ÞðD� 3Þ a
�2

xj

�2D�3

ffiffiffi
2

p
ð ffiffiffi

2
p

v��Þ:

(B7)

For � ¼ u, we need to eliminate the u derivative of the
trace; we can do this by using

h;uv ¼ 1

2
h;ii � 1

2
hh ¼ 1

2
h;ii þh��

;�; (B8)

and thus � ¼ u reads

h

�
�u;v � 1

2
�i;i

�
¼Guv þ 1

4
h;ii þ huu;vv � hiu;iv

¼ ðFð�Þð ffiffiffi
2

p
v��Þ þGð�ÞÞð ffiffiffi

2
p

v��Þ;
(B9)

where

Fð�Þ ¼ � a

2�2

1

�2D�3
ð2D� 5ÞðD� 1ÞðD� 3Þ;

Gð�Þ ¼ ðD� 3Þ
�
4ðD� 2Þ
�2D�4

� 10ð2D� 5Þ a=�
2

�3D�7

þ ð19D� 51Þ a
2=�4

�4D�10

�
: (B10)

We look for a solution which has a power-series expan-
sion around u ¼ 0,

��ðu; v; xiÞ ¼ �ð0Þ
� ðv; xiÞ þ u�ð1Þ

� ðv; xiÞ þ � � � : (B11)

If �ð0Þ
� ¼ 0, h�� ¼ �2@v�

ð1Þ
� (at u ¼ 0), and we get

�ð1Þ
j;v � �ð1Þ

v;j ¼ ð2D� 5ÞðD� 3Þ a
�2

xj

�2D�3
ð ffiffiffi

2
p

v��Þ

� ð ffiffiffi
2

p
v��Þ; (B12)

�ð1Þ
u;v � 1

2
�ð1Þ
i;i ¼ �Fð�Þ

4
ffiffiffi
2

p ð ffiffiffi
2

p
v��Þ2ð ffiffiffi

2
p

v��Þ

�Gð�Þ
2

ffiffiffi
2

p ð ffiffiffi
2

p
v��Þð ffiffiffi

2
p

v��Þ: (B13)

One solution is �ð1Þ
v ¼ 0 and

�ð1Þ
i ¼ ð2D� 5ÞðD� 3Þa

2
ffiffiffi
2

p
�2

xi
�2D�5

ð ffiffiffi
2

p
v��Þ2ð ffiffiffi

2
p

v��Þ;

(B14)

�ð1Þ
u ¼ � �Fð�Þ

24
ð ffiffiffi

2
p

v��Þ3ð ffiffiffi
2

p
v��Þ

�
�Gð�Þ
8

ð ffiffiffi
2

p
v��Þ2ð ffiffiffi

2
p

v��Þ; (B15)

where

�Fð�Þ ¼Fð�Þþ ð2D� 5ÞðD� 3ÞðD� 1Þ a

�2�2D�3
(B16)

¼ a

2�2

1

�2D�3
ð2D� 5ÞðD� 1ÞðD� 3Þ; (B17)

�Gð�Þ ¼ Gð�Þ þ ð2D� 5ÞðD� 3Þ a
�2

�0

�2D�4
: (B18)

The only metric components that change under this gauge
transformation are

hNuu ¼ huu þ 2�ð1Þ
u ; hNui ¼ hui þ �ð1Þ

i ; (B19)
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and the trace remains unchanged, hN ¼ h. Thus, the com-
ponents of the trace-reversed metric perturbation are

�hNuu ¼ huu þ 2�ð1Þ
u ; �hNuv ¼ huv þ 1

2
h ¼ 1

2
h;

�hNvv ¼ hvv ¼ 0;
(B20)

�hNui ¼ hui þ �ð1Þ
i ; �hNvi ¼ hvi ¼ 0; �hNij ¼ hij � 1

2

ijh:

(B21)

Since only the transverse components will be relevant for
the computation of the radiation, we conclude that the
coordinate transformation is of no relevance for this matter.

APPENDIX C: SIMPLIFICATIONS
OF THE INTEGRAL SOLUTIONS

In this Appendix we shall obtain the first-order solution
for the scalars E, H, obeying the initial conditions pre-
sented in Sec. III C for the collision of charged shocks.
These are the necessary quantities to compute the inelas-
ticity (cf. Sec. II A).

Using Eq. (2.6) and the definitions of the scalars (2.8),
we obtain explicit integral solutions for the scalars,

Eð1Þ ¼
ffiffiffi
2

p
�D�4

ðD� 3ÞðD� 1Þð2�uÞD�2
2

Z
d�0�ð�0Þ�0D�4

�
Z 1

�1
dx

d2

dx2
½ð1� x2ÞD�1

2 �
ðD�6
2 Þðv� v?Þ; (C1)

Hð1Þ ¼ ðD� 3ÞðD� 4Þ
2ðD� 2Þ

ffiffiffi
2

p
�D�4

ð2�uÞD�2
2

Z
d�0�0

2ð�0Þ�0D�4

�
Z 1

�1
dxð1� x2ÞD�5

2 
ðD�6
2 Þðv� v?Þ; (C2)

with

�ð�0Þ ¼ �0
1ð�0Þ þ 2D� 5

D� 2
�0

2ð�0Þ;

v? � �2 � 2��0xþ �02

2u
þ�ð�0Þffiffiffi

2
p :

(C3)

Then, taking into account the scaling properties of the
derivatives of the delta function, we obtain

Eð1Þ ¼
ffiffiffi
2

p
�D�4

ðD� 3ÞðD� 1Þð2��ÞD�2
2
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dx
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2 Þðx� x?Þ; (C4)

Hð1Þ ¼ ðD� 3ÞðD� 4Þ
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where

x? � U�ð�0Þ þ �02 �UT

2��0 ; U � ffiffiffi
2

p
u;

T � ffiffiffi
2

p
v� �2=U:

(C6)

Similarly, after taking a v derivative and using the scal-
ing properties of the derivative of the delta distribution, we
obtain
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;v ¼
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Finally,

Eð1Þ
;u ¼ �D� 2
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ffiffiffi
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One important point resulting from the analysis per-
formed so far is that, as for the uncharged case, the relevant
functions for the radiation extraction (C7) and (C8) have an
argument with a (fractional) derivative of a delta function.
The vanishing of the argument of the delta function has the
same interpretation as in the uncharged case, namely the
intersection of the past light cone of the observation point
with the collision curve.
To deal with the x integration it is convenient to separate

even and oddD. In the following we shall only consider the
evenD case, since it suffices to illustrate the problems with
the method.
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1. Even D integrals
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