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We investigate properties of generalized time-dependent q-deformed coherent states for a noncommu-

tative harmonic oscillator. The states are shown to satisfy a generalized version of Heisenberg’s

uncertainty relations. For the initial value in time the states are demonstrated to be squeezed, i.e., the

inequalities are saturated, whereas when time evolves the uncertainty product oscillates away from this

value albeit still respecting the relations. For the canonical variables on a noncommutative space we verify

explicitly that Ehrenfest’s theorem holds at all times. We conjecture that the model exhibits revival times

to infinite order. Explicit sample computations for the fractional revival times and superrevival times are

presented.
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I. INTRODUCTION

The algebras satisfied by the canonical variables result-
ing from q-deformed oscillator algebras have been shown
to be related to noncommutative spacetime structures lead-
ing to minimal lengths and minimal momenta as a result of
a generalized version of Heisenberg’s uncertainty relations
[1–4]. An important question to address in this context is
whether explicit states satisfying these relations actually
exist and how they can be constructed. Recently two of the
present authors [5] have investigated this problem for a
nontrivial limit of the q-deformed oscillator algebra. Using
generalized coherent states, so-called Klauder-coherent
states [6–9], it was shown in Ref. [5] for a noncommutative
harmonic oscillator to first order perturbation theory in the
deformation parameter that these states not only satisfy the
generalized uncertainty relations, but even saturate them
at all times. The main purpose of this paper is to extend
this type of analysis to the case for generic deformation
parameter q.

II. GENERALIZED TIME-DEPENDENT
q-DEFORMED COHERENT STATES

Following Refs. [10–14], up to minor differences in the
conventions, we consider a one dimensional q-deformed
oscillator algebra for the creation and annihilation opera-
tors Ay and A in the form

AAy � q2AyA ¼ 1; for q � 1: (2.1)

Defining a q-deformed version of the Fock space involving
q-deformed integers ½n�q as

jniq :¼ ðAyÞnffiffiffiffiffiffiffiffiffiffiffi
½n�q!

q j0i; ½n�q :¼ 1� q2n

1� q2
;

½n�q! :¼
Yn
k¼1

½k�q; Aj0i ¼ 0; h0j0i ¼ 1;

(2.2)

it follows immediately that the operators Ay and A act
indeed as raising and lowering operators, respectively,

Ayjniq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½nþ 1�q

q
jnþ 1iq and

Ajniq ¼
ffiffiffiffiffiffiffiffiffi
½n�q

q
jn� 1iq:

(2.3)

Furthermore, one deduces from (2.1) and (2.2) that the
states jniq form an orthonormal basis, i.e., qhnjmiq ¼
�n;m. As was first argued in Ref. [10], the q-deformed

Hilbert space H q is then spanned by the vectors

jc i :¼ P1
n¼0 cnjniq with cn 2 C, such that hc jc i ¼P1

n¼0 jcnj2 <1.

Using these states we can construct the Klauder-
coherent states introduced in Refs. [6–9]. In general, these
states are defined for a Hermitian Hamiltonian H with
discrete bounded below and nondegenerate eigenspectrum
and orthonormal eigenstates j�ni as a two parameter set

jJ; �i ¼ 1

N ðJÞ
X1
n¼0

Jn=2 exp ð�i�enÞffiffiffiffiffiffi
�n

p j�ni;

J 2 Rþ
0 ; � 2 R: (2.4)

The probability distribution and normalization constant,

�n :¼
Yn
k¼0

ek and N 2ðJÞ :¼ X1
k¼0

Jk

�k

; (2.5)

are expressed in terms of the scaled energy eigenvalues en
resulting from Hj�ni ¼ ℏ!enj�ni. The key properties of
these states are their continuity in the two variables ðJ; �Þ,
the fact that they provide a resolution of the identity and
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that they are temporarily stable satisfying the action
angle identity hJ; �jHjJ; �i ¼ ℏ!J. The time evolution
is governed by a shift in the parameter �, i.e.,
exp ð�iHt=ℏÞjJ; �i ¼ jJ; �þ t!i.

As a concrete system let us now consider the non-
commutative harmonic oscillator Hamiltonian H ¼
ℏ!ðAyAþ 1Þ, where the operators Ay and A obey (2.1).
With the rescaled eigenvalues en ¼ ½n�q and eigenstates

j�ni ¼ jniq for this Hamiltonian, we obtain the probability

distribution �n ¼ ½n�q!. We use standard conventions

½0�q! ¼ 1. Furthermore, the normalization condition

hJ; �jJ; �i ¼ 1 yields the q-deformed exponential EqðJÞ
as the normalization constant

EqðJÞ :¼
X1
n¼0

Jn

½n�q! ¼ N 2ðJÞ: (2.6)

Thus our normalized coherent state,

jJ; �iq :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
EqðJÞ

q X1
n¼0

Jn=2 exp ð�i�enÞffiffiffiffiffiffiffiffiffiffiffi
½n�q!

q jniq; (2.7)

coincides with the coherent state jzi, as defined already in
Ref. [10], for the specific choice jz2; 0iq and z 2 R, that is
for t ¼ 0. Let us now investigate some properties of these
states and in particular investigate to which kind of expec-
tation values they lead for observables and compare with
the results for the nontrivial q ! 1 limit studied in Ref. [5].
In the latter case these states were found to be squeezed
states up to first order in perturbation theory in � when

parametrizing the deformation parameter as q ¼ e2�
2
6
�,

where �6 is explained in Ref. [4]. Most importantly we
wish to investigate whether these states respect the gener-
alized uncertainty relations.

III. GENERALIZED HEISENBERG’S
UNCERTAINTY RELATIONS

To verify the uncertainty relations projected onto these
states we commence by recalling [1,4,15] that the ana-
logues of the canonical variables expressed in terms of
the q-deformed oscillator algebra generators

X ¼ �ðAy þ AÞ and P ¼ i�ðAy � AÞ; (3.1)

with �¼1=2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þq2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðm!Þp

and �¼1=2
ffiffiffiffiffiffiffiffiffiffiffiffi
1þq2

p ffiffiffiffiffiffiffiffiffiffiffi
ℏm!

p
,

satisfy the deformed canonical commutation relations

½X; P� ¼ iℏþ i
q2 � 1

q2 þ 1

�
m!X2 þ 1

m!
P2

�
: (3.2)

The interesting feature about this version of a noncommu-
tative spacetime is that it leads to a minimal length as well
as a minimal momentum. Let us first analyze the general-
ized version of Heisenberg’s uncertainty relation for a
simultaneous measurement of the two observables X and

P projected onto the normalized coherent states jJ; �iq as

defined in Eq. (2.7)

�X�PjjJ;�iq �
1

2
jðqhJ; �j½X;P�jJ; �iqÞ	j: (3.3)

The uncertainty for X is computed as �X2 ¼
ðqhJ; �jX2jJ; �iqÞ	 � ðqhJ; �jXjJ; �iqÞ2	 and analogously

for P with X ! P. The 	 indicates that we might have to
change to a nontrivial metric when X and/or P are non-
Hermitian following the prescriptions provided in the
recent literature on non-Hermitian systems [16–20] or
more specifically for this particular setting in Ref. [5].
Notice that when we assume that the conjugation of A

and Ay yield Ay and A, respectively, the operators X and P
can be seen as Hermitian. In that case the metric 	 is taken
to be the standard one, possibly with some change to
ensure proper self-adjointness and the convergence of the
inner products. Indeed, in Refs. [12,21] such a representa-
tion on a unit circle acting on Rogers-Szëgo polynomials
[22] was derived,

A ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ðe�i �x � e�i �x=2e2� �pÞ and

Ay ¼ �iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ðei �x � e2� �pei �x=2Þ:
(3.4)

Here we used the dimensionless quantities �x ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m!=ℏ

p
and �p ¼ p=

ffiffiffiffiffiffiffiffiffiffiffi
m!ℏ

p
with x, p being the standard canonical

coordinates satisfying ½x; p� ¼ iℏ and parametrize the
deformation parameter q ¼ e�. Evidently Ay is the con-
jugate of A for q < 1 and consequently with (3.1) follows
that also the canonical variables satisfying (3.2) are
Hermitian in this representation, i.e., Xy ¼ X, Py ¼ P.
We notice further that for the representation (3.4) the
PT symmetry of the standard canonical variables PT :
x ! �x, p ! p, i ! �i is inherited by canonical varia-
bles on the noncommutative space PT : X ! �X, P ! P,
i ! �i.
There exist also alternative representations [23]

A ¼ 1

1� q2
Dq and Ay ¼ ð1� xÞ � xð1� q2ÞDq;

(3.5)

in terms of Jackson derivatives DqfðxÞ :¼½fðxÞ�fðq2xÞ�=
½xð1�q2Þ� introduced in Ref. [24]. The operators in (3.5)
commute to (2.1) when acting on eigenvectors constructed
from normalized Rogers-Szëgo polynomials. It is less
obvious to see whether this representation can be made
Hermitian. For our purposes it is important that at least one
such representation exists, and we may compute expecta-
tion values on the q-deformed Fock space with the standard
metric.
To verify the inequality (3.3) for the states (2.7) we

compute first the expectation values for the creation and
annihilation operators
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qhJ; �jAjJ; �iq ¼ J1=2
FqðJ;��Þ
EqðJÞ and

qhJ; �jAyjJ; �iq ¼ J1=2
FqðJ; �Þ
EqðJÞ ;

(3.6)

where we introduced the function

FqðJ; �Þ :¼
X1
n¼0

Jnei�q
2n

½n�q! ¼ X1
n¼0

in

n!
Eqðq2nJÞ�n: (3.7)

Notice that this function reduces to the q-deformed expo-
nential FqðJ; 0Þ ¼ EqðJÞ and also the duality in the deriva-
tives with respect to the two parameters. The standard
derivative with respect to � corresponds to a q deformation
in the parameter J,

�i
@

@�
FqðJ; �Þ ¼ Fqðq2J; �Þ; (3.8)

and in turn the Jackson derivative acting on J is identical to
a deformation in the second parameter

DqFqðJ;�Þ¼
FqðJ;�Þ�Fqðq2J;�Þ

Jð1�q2Þ ¼FqðJ;q2�Þ: (3.9)

These identities are easily derived from the defining rela-
tions for Fq and will be made use of below. Using the

representations for X and P in terms of the creation and

annihilation operators (3.1), it follows directly with the
help of (3.6) that

qhJ; �jXjJ; �iq ¼ �J1=2

EqðJÞ ½FqðJ; �Þ þ FqðJ;��Þ�; (3.10)

qhJ; �jPjJ; �iq ¼ i�J1=2

EqðJÞ ½FqðJ; �Þ � FqðJ;��Þ�: (3.11)

To compute the expectation values for X2 and P2, we use
once again (3.1) to express them in terms of the Ay and A.
Thus we evaluate

qhJ; �jAyAyjJ; �iq ¼ J
FqðJ; �ð1þ q2ÞÞ

EqðJÞ ; (3.12)

qhJ; �jAAjJ; �iq ¼ J
FqðJ;��ð1þ q2ÞÞ

EqðJÞ ; (3.13)

qhJ; �jAyAjJ; �iq ¼ J; (3.14)

qhJ; �jAAyjJ; �iq ¼ 1þ q2J; (3.15)

and with X2 ¼ �2ðAyAy þ AyAþ AAy þ AAÞ and P2 ¼
��2ðAyAy � AyA� AAy þ AAÞ we assemble this to

qhJ; �jX2jJ; �iq ¼ �2

�
J
FqðJ; �ð1þ q2ÞÞ þ FqðJ;��ð1þ q2ÞÞ

EqðJÞ þ 1þ J þ q2J

�
; (3.16)

qhJ; �jP2jJ; �iq ¼ ��2

�
J
FqðJ; �ð1þ q2ÞÞ þ FqðJ;��ð1þ q2ÞÞ

EqðJÞ � 1� J � q2J

�
: (3.17)

From these expressions we find that the right hand side of
the generalized Heisenberg’s inequality (3.3) is always a
constant value independent of �, i.e., time,

1

2

��������qhJ; �jℏþ q2 � 1

q2 þ 1

�
m!X2 þ 1

m!
P2

�
jJ; �iq

��������
¼ ℏ

4
ð1þ q2Þj1þ ðq2 � 1ÞJj: (3.18)

The square of the left hand side of (3.3) can be written as

�X2�P2jjJ;0iq ¼ �2�2½1þ ð1þ q2ÞJ þGq �G2
cð�Þ�

� ½1þ ð1þ q2ÞJ �Gq �G2
sð�Þ�;

(3.19)

where we introduced the functions

Gcð�Þ :¼ 2
ffiffiffi
J

p
EqðJÞ

X1
n¼0

Jn

½n�q! cos ð�q
2nÞ;

Gsð�Þ :¼ 2i
ffiffiffi
J

p
EqðJÞ

X1
n¼0

Jn

½n�q! sin ð�q
2nÞ;

(3.20)

and Gq :¼
ffiffiffi
J

p
Gcð�þ �q2Þ. Noting that lim �!0Gq ¼ 2J,

lim �!0Gcð�Þ ¼ 2
ffiffiffi
J

p
and lim �!0Gsð�Þ ¼ 0, it is easy to

see that for � ¼ 0 the expression (3.19) becomes the
square of (3.18), such that the minimal uncertainty product
for the observables X and P is saturated. From the
expressions in (3.20) we deduce that the range for these
functions is �2J � Gq � 2J, 0 � G2

cð�Þ � 4J and
�4J � G2

sð�Þ � 0. Recognizing next that the inequality
holds when each of the brackets in (3.19) is greater than
1þ ðq2 � 1ÞJ, this requires that 2J � G2

cð�Þ �Gq and at
the same time 2J � G2

sð�Þ þGq. This means 4J �
G2

cð�Þ þG2
sð�Þ, which by the previous estimates is indeed
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the case. Overall this implies that for � � 0 the uncertainty
relation (3.3) is always respected.

Next we verify Ehrenfest’s theorem. For the time evo-
lution of the operator X we compute directly

iℏ
d

dt q
hJ;!tjXjJ;!tiq

¼ �!ℏ�J1=2

EqðJÞ ½Fqðq2J;!tÞ � Fqðq2J;�!tÞ�; (3.21)

and compare it to

qhJ;!tj½X;H�jJ;!tiq ¼ �!ℏ�J1=2

EqðJÞ
X

s¼�!t

s

!t
FqðJ; sÞ

þ s

!t
Jðq2 � 1ÞFqðJ; q2sÞ;

(3.22)

with H ¼ AyA, which is easily computed from the expec-
tation values

qhJ;�jAyAyAjJ;�iq¼J3=2
FqðJ;q2�Þ
EqðJÞ ; (3.23)

qhJ;�jAyAAyjJ;�iq¼J1=2
FqðJ;�Þ
EqðJÞ þq2J3=2

FqðJ;q2�Þ
EqðJÞ ;

(3.24)

qhJ; �jAyAAjJ; �iq ¼ J3=2
FqðJ;�q2�Þ

EqðJÞ ; (3.25)

qhJ;�jAAyAjJ;�iq¼J1=2
FqðJ;��Þ
EqðJÞ þq2J3=2

FqðJ;�q2�Þ
EqðJÞ :

(3.26)

The equality of (3.21) and (3.22) follows from the identities
(3.8) and (3.9). Similarly we verified the validity of
Ehrenfest’s theorem also for the operator P.

IV. REVIVAL TIMES

As previously argued [5,9,25], revival time structures
are very interesting and important quantities of time-
dependent states as in principle they are measurable quan-
tities; see for instance Ref. [26]. The structure is directly
linked to the dependence of the energy eigenvalues En on
the quantum number n, i.e., the existence of the kth
derivative dkE �n=d �n

k with respect to some average value
�n at which the wave packet c ¼ P

cn�n is well localized.
For the case at hand these derivatives exist to all orders,
such that we expect infinitely many revival times to exist.
At the smallest scale one obtains the classical period

Tcl ¼ 2
ℏ=jE0
�nj, thereafter at larger scale the fractional

revivals for the revival time Trev ¼ 4
ℏ=jE00
�nj, then the

superrevival time Tsuprev ¼ 12
ℏ=jE000
�n j, etc. For the case

at hand the peak of the wave packet is computed to
�n :¼ hni ¼ Jd lnN 2ðJÞ=dJ. Noting that dkEn=dn

k ¼
ℏ!2kq2nln kq=ðq2 � 1Þ we obtain the times

Tcl ¼ 


!

��������
q2 � 1

q2 �n ln q

��������;

Trev ¼ 


!

��������
q2 � 1

q2 �nln 2q

��������; and

Tsuprev ¼ 3


2!

��������
q2 � 1

q2 �nln 3q

��������:
(4.1)

In Fig. 1 we present the autocorrelation function AðtÞ :¼
jhJ; 0; �jJ; t!;�ij2 as a function of time at different scales.
In panel 1(a) the revival after the classical period is clearly
visible. The parameters have been chosen in a way that
Trev=Tcl � 200, such that at the revival time scale the
revivals due to the classical periods have died out and
only the revivals due to Trev are exhibited as clearly visible
in the computation presented in panel 1(b). With
Tsuprev=Trev � 300 this type of behavior is repeated at the

superrevival time scale as seen in panel 1(c). Because of
the aforementioned dependence of the energy eigenvalues
on n, we conjecture here that this behavior is repeated
order by order. However, the verification of this feature
poses a more and more challenging numerical problem,
which we leave for future investigations.

0

FIG. 1 (color online). Autocorrelation function as a function of time at different scales for ℏ ¼ 1, ! ¼ 1, q ¼ e�0:005, J ¼ 6 and
�n ¼ 6:1875. (a) Classical period at Tcl ¼ 6:65, (b) fractional revival times for Trev ¼ 1330:19 and (c) fractional superrevival times for
Tsuprev ¼ 3999056.
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V. CONCLUSIONS

By extending the analysis of Ref. [5], from a perturba-
tive treatment to the generic case for q < 1, we have
computed time-dependent q-deformed coherent states for
a harmonic oscillator on a noncommutative space. We
demonstrated that all key requirements for coherent states
are satisfied. A direct comparison with the results obtained
in Ref. [5] is not possible as the analysis in there relates to a
nontrivial limit q ! 1, which is not directly obtainable
from the setting presented here; see Refs. [1,4]. However,
qualitatively we found a somewhat different behavior with
regard to the key question addressed in this manuscript.
Whereas the perturbative treatment in Ref. [5] indicated a
saturation for the generalized version of Heisenberg’s un-
certainty relation at all times, the generic q-deformed
states exhibit this feature only for t ¼ 0, but do respect
the inequality thereafter. We have also presented explicit
computations for the verification of Ehrenfest’s theorem
for the coordinate and momentum operator at all times. By
computing the autocorrelation functions we have shown

that besides a fractional revival time structure this system
also exhibits a superrevival structure at a much larger time
scale.
Clearly there are various open problems left for future

investigations, such as the study of different types of
models on the type of noncommutative spaces investigated
here. Especially an extension to higher dimensional mod-
els would be very interesting. It would also be interesting
to study representations for which the operators X and P
are non-Hermitian, as for instance in (3.5), in analogy to
the analysis presented in Ref. [5]. More computational
power should also allow us to confirm our conjecture about
the existence of revival time structure at much larger time
scales, such as supersuperrevival time structures.
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