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We introduce a new approach to modified gravity which generalizes the recently proposed hybrid

metric-Palatini gravity. The gravitational action is taken to depend on a general function of both the metric

and Palatini curvature scalars. The dynamical equivalence with a nonminimally coupled biscalar field

gravitational theory is proved. The evolution of cosmological solutions is studied using dynamical systems

techniques.
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I. INTRODUCTION

In order to explain the present and initial accelerated
expansions of the universe, a large variety of modified
theories of gravity has been proposed in recent years.
Among them, one of the most popular is fðRÞ modified
gravity, where the gravitational action depends on a gen-
eral function of the curvature scalar R; see Ref. [1] for two
reviews. To derive the gravitational field equations from
those modified actions, two approaches are extensively
used in the literature: the metric and the Palatini variational
principles (see Ref. [2] for recent extensions of the Palatini
variational method in modify gravity). In the so-called
metric approach, one takes the metric g�� as the only

dynamical variable and considers only variations of the
action with respect to it. The so-called Palatini approach is
based on the idea of considering the connection defining
the Riemann curvature tensor to be a priori independent of
the metric. As such, one performs variations of the action
with respect to the metric and the connection indepen-
dently. Both approaches have been used extensively to
build cosmological models, many of which contain an
era of accelerated expansion.

It is well known that fðRÞ theories are dynamically
equivalent to Brans-Dicke (BD) theories. In fact, metric
fðRÞ gravity has been shown to be dynamically equivalent
to Brans-Dicke theories with vanishing BD parameter,
while Palatini fðRÞ gravity presents the same equivalence
if the BD parameter equals �3=2 (see again Ref. [1]). The
value�3=2 for the BD parameter is a peculiar one since it
implies no dynamics for the scalar field in BD theories.
Consequently, Palatini fðRÞ gravity has the same number
of dynamical degrees of freedom as general relativity; see
Ref. [3] for a very different model that also does not
introduce new dynamical degrees of freedom.

More recently, a novel approach to modified gravity has
been introduced, where a Palatini-like fðRÞ term is added
to the metric Einstein-Hilbert action [4]. In this context
cosmological and astrophysical applications together with

wormhole geometries have been studied in Ref. [5], where
it has also been shown that viable accelerating cosmologi-
cal solutions are allowed by some specific models. The
theory is dynamically equivalent to a scalar-tensor theory
with nonminimal coupling to gravity given by ð1þ�ÞR,
where R is the metric curvature scalar and � is the scalar
field. This is done in strict analogywith Palatini fðRÞ gravity
and, indeed, the BD parameter for this theory is still�3=2.
However, because of the different coupling to R compared
with BD theories, in this theory the scalar field is dynamical
and represents a new dynamical degree of freedom.
In the present paper, we analyze a natural extension of

the theory introduced in Ref. [4]. We introduce a general
function that depends on both the metric and Palatini
curvature scalars. We show that this new generalization
can be considered as dynamically equivalent to a gravita-
tional theory with two scalar fields. Only one of these
scalar fields is nonminimally coupled to R, and in general
an interaction between the two appears in the action. The
cosmological features of the theory are then studied using
dynamical system techniques.
Let us define �2 ¼ 8�G=c4 and start from the action

Sf ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðR;RÞ; (1)

which generalizes the so-called hybrid metric-Palatini
action of Ref. [4]; see also Ref. [6] for a similar study. In
action (1) R is the Ricci curvature scalar formed with the
Levi-Civita connection,

��
�� ¼ 1

2
g��ð@�g�� þ @�g�� � @�g��Þ; (2)

while R is the curvature scalar of an independent torsion-

less connection �̂�
��, in analogy with the Palatini approach.

The variation of the action (1) with respect to the indepen-

dent connection �̂�
�� leads to

r̂�

� ffiffiffiffiffiffiffi�g
p @f

@R
g��

�
¼ 0; (3)

whose solution is a Levi-Civita connection in terms of the

conformal metric h�� ¼ @f
@Rg��,
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�̂�
�� ¼ 1

2
h��ð@�h�� þ @�h�� � @�h��Þ: (4)

The variation with respect to the metric yields

@f

@R
R�� � 1

2
g��f� ðr�r� � g��hÞ @f

@R
þ @f

@R
R��

¼ 8�T��; (5)

where also the matter action has been considered in the
variation. Because of (4), R�� can be related to R�� and

terms involving (derivatives of) @f=@R as in Palatini
fðRÞ. However, the trace of (5) now relates R and its
derivatives to T and g��, meaning that it is not possible,

in general, to solve forR. However, this can be avoided by
requiring @2f=@R@R ¼ 0. In this particular case, the trace
of (5) becomes an algebraic equation in R, which can be
solved for T and (derivatives of) g��. Note that in the

following we will keep the function f completely arbitrary
as it turns out that all results we will obtain hold for any
(sufficiently smooth) function f.

II. DYNAMICALLY EQUIVALENTACTIONS
AND CONFORMALTRANSFORMATIONS

Let us start by considering the action

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

fð�;	Þ þ @fð�;	Þ
@�

ðR� �Þ

þ @fð�;	Þ
@	

ðR� 	Þ
�
; (6)

where � and 	 are two scalar fields. Variation with respect
to � and 	 gives the system

@2f

@�2
ðR� �Þ þ @2f

@�@	
ðR� 	Þ ¼ 0; (7)

@2f

@�@	
ðR� �Þ þ @2f

@	2
ðR� 	Þ ¼ 0; (8)

whose only solution is given by � ¼ R and 	 ¼ R, pro-
vided that

@2f

@�2

@2f

@	2
�

�
@2f

@�@	

�
2
: (9)

This condition follows simply from requiring that this
matrix-type equation is nondegenerate. It is interesting to
note that the matrix involved is in fact the Hessian of f.
Since our theory is based on an action principle, a non-
degenerate Hessian in this context means nothing but that
solutions of the field equations derived from the action are
indeed stationary points of the action.

It is now clear that substituting this solution back into
action (6) immediately produces action (1). The two
actions are thus dynamically equivalent. Constraint (9)
excludes from our analysis the cases when the function f

is linear in either � (i.e. R) or 	 (i.e.R). However, the first
case is nothing but the hybrid metric-Palatini theory
studied in Refs. [4,5], while the second is equivalent to
usual metric fðRÞ theories. Moreover, constraint (9) also
excludes some particular models such as f ¼ exp ðRþRÞ
or f ¼ ffiffiffiffiffiffiffiffiffi

RR
p

. We have thus to reduce the results of this
section to the models satisfying (9).
Let us define two new scalar fields as


 ¼ @fð�;	Þ
@�

and � ¼ � @fð�;	Þ
@	

: (10)

The minus sign in the definition of � is required in order
not to allow for a negative kinetic energy of the field.
Action (6) can be rewritten as

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½
R� �R� Vð
; �Þ�; (11)

where the interaction potential is defined as

Vð
; �Þ ¼ �fð�ð
Þ; 	ð�ÞÞ þ 
�ð
Þ � �	ð�Þ: (12)

Due to solution (4) (which can also be obtained varying

action (11) with respect to �̂�
��), we can expandR and find

(up to boundary terms)

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

ð
� �ÞR� 3

2�
ð@�Þ2 � Vð
; �Þ

�
:

(13)

We can shift 
 by � defining a new scalar field as
� ¼ 
� �. In this way the action becomes

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�R� 3

2�
ð@�Þ2 �Wð�; �Þ

�
: (14)

It is possible to think of action (14) as a Brans-Dicke theory
with vanishing BD parameter and a potential interacting
with another minimally coupled scalar field.
At this point we can perform a conformal transformation

in order to switch from the Jordan to the Einstein frame.
The transformation

g�� � ~g�� ¼ �g�� (15)

allows us then, up to surface terms, to rewrite action (14) as

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�~g
p �

~R� 3

2�2
ð@�Þ2

� 3

2��
ð@�Þ2 �Wð�; �Þ

�2

�
: (16)

Finally, we redefine the two scalar fields as

~� ¼
ffiffiffi
3

2

s
ln�

�
and ~� ¼ 2

ffiffiffi
2

p
�

ffiffiffi
�

p
; (17)

and the action becomes
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S ¼
Z

d4x
ffiffiffiffiffiffiffi�~g

p �
1

2�2
~R� 1

2
ð~r ~�Þ2

� 1

2
e�

ffiffi
2

p
� ~�=

ffiffi
3

p
ð~r ~�Þ2 � ~Wð ~�; ~�Þ

�
; (18)

where the new potential is defined as

~Wð ~�; ~�Þ ¼ 1

2�2
e�2

ffiffi
2

p
� ~�=

ffiffi
3

p
Wðe

ffiffi
2

p
� ~�=

ffiffi
3

p
; �2 ~�2=8Þ: (19)

Action (18) is well known within the context of the so-
called Brans-Dicke or two-field inflation [7–9], where the
scalar field � represents the Brans-Dicke field, while �
denotes the inflaton. Usually these studies start from a
more general action than (14), where a kinetic term for �
is also considered, but do not allow for a coupling between
the two scalar fields in the potential [7]. A more general
coupling between the scalar � and R was considered in
Ref. [8]. In the Einstein frame this leads to a general

function of ~� in the exponential coupling to the kinetic

term of ~�. In general, we can address action (18) as a
specific model of Brans-Dicke inflation with vanishing
BD parameter. This means that from hybrid metric-
Palatini gravity we have a natural explanation for introduc-
ing both the inflaton and the Brans-Dicke scalar fields.
We refer to Ref. [9] for recent developments in the context
of two-field inflation.

In the next section we will analyze the general cosmo-
logical dynamics of the theory in the Einstein frame.

III. COSMOLOGICAL DYNAMICS
IN THE EINSTEIN FRAME

For the sake of simplicity, from now on we will omit the
tildes in action (18). In other words, in what follows we
will denote with g��, �, � and W the quantities in the

Einstein frame. The field equations can be obtained by
varying action (18) with respect to the dynamical variables
g��, � and �. The gravitational field equations in the

Einstein frame are thus given by

G�� ¼ �2ðTð�Þ
�� þ e���

ffiffiffiffiffiffi
2=3

p
Tð�Þ
�� � g��WÞ; (20)

where we define

Tð�Þ
�� ¼ r��r��� 1

2
g��ðr�Þ2; (21)

Tð�Þ
�� ¼ r��r��� 1

2
g��ðr�Þ2: (22)

For the moment we assume that every other form of matter
is negligible in comparison to the two scalar fields. The
equations for the two scalar fields are given by

h�þ �ffiffiffi
6

p e���
ffiffiffiffiffiffi
2=3

p
ðr�Þ2 �W� ¼ 0; (23)

h�þ �
ffiffiffi
2

p
ffiffiffi
3

p r��r��� e��
ffiffiffiffiffiffi
2=3

p
W� ¼ 0; (24)

where W� and W� are the derivatives of the potential with

respect to � and �.
We consider a cosmological Friedmann-Leimatre-

Robertson-Walker metric

ds2 ¼ �dt2 þ aðtÞ2
�

dr2

1� kr2
þ r2d�2

�
; (25)

where aðtÞ is the scale factor. From the gravitational field
equations (20), we obtain the following cosmological
equations:

3
k

a2
þ 3H2 ¼ �2

2
e�

ffiffiffiffiffiffi
2=3

p
�� _�2 þ �2

2
_�2 þ �2W; (26)

k

a2
þ 2 _Hþ 3H2 ¼ ��2

2
e�

ffiffiffiffiffiffi
2=3

p
�� _�2 � �2

2
_�2 þ �2W:

(27)

The scalar fields equations (23) and (24) give the following
evolution equations:

€�þ 3H _�þ �ffiffiffi
6

p e�
ffiffiffiffiffiffi
2=3

p
�� _�2 þW� ¼ 0; (28)

€�þ 3H _�� �
ffiffiffi
2

p
ffiffiffi
3

p _� _�þe
ffiffiffiffiffiffi
2=3

p
��W� ¼ 0: (29)

In what follows we will consider only spatially flat
(k ¼ 0) cosmological models. In order to recast the cos-
mological equations (26)–(29) into a dynamical system,
we will make use of the following dimensionless variable:

x2 ¼ �2 _�2

6H2
; y2 ¼ �2W

3H2
; s2 ¼ �2 _�2

6H2
e�

ffiffiffiffiffiffi
2=3

p
��:

(30)

The definitions of the x and y variables have been exten-
sively considered to study the cosmological dynamics in
both uncoupled and coupled dark energy–dark matter mod-
els [10]. With (30) the Friedmann constraint (26) reads

x2 þ y2 ¼ 1� s2; (31)

impliying that

0 � x2 þ y2 � 1; (32)

since 0 � s2 � 1. Moreover, because of the positiveness of
the potential energy, we must have y � 0, which implies
that x and y can only take values within half a unit disc.
In order to complete the autonomous system of equa-

tions coming from the cosmological equations (27)–(29),
we must specify the potential W. In the following we will
consider three possible cases for W and will analyze the
resulting phase spaces.
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A. Model 1: W ¼ W0e
����=

ffiffi
6

p

First wewill consider the usual quintessence exponential
potential given by

W ¼ W0e
����=

ffiffi
6

p
; (33)

where W0 and � are both positive constants. In this model
the only interaction between� and � is given by the kinetic
coupling because the potential W depends on � only. The
scalar field � plays the role of the usual quintessence dark
energy field, while we can consider � as representing dark
matter. Both dark matter and dark energy have thus a
geometrical origin in this model, and no particles have to
be opportunely introduced.

In terms of the variables (30), Eq. (27) becomes

_H

H2
¼ 3ðy2 � 1Þ; (34)

which always gives a scaling solution for aðtÞ in terms of
the value of y. If y ¼ 1 we have _H ¼ 0, and the universe

undergoes an exponential expansion, while if y >
ffiffiffiffiffiffiffiffi
2=3

p
the

universe undergoes a scaling accelerated expansion. From
(34) we can read off the effective equation of state parame-
ter of the total energy content of the universe as

weff ¼ 1� 2y2: (35)

The autonomous system of equation is in this case two
dimensional, and it is given by Eqs. (28) and (29) as

x0 ¼ x2 � 3xy2 þ 1

2
ð�þ 2Þy2 � 1; (36)

y0 ¼ � 1

2
yð�xþ 6y2 � 6Þ; (37)

where a prime denotes differentiation with respect to
N ¼ lna. There are up to four critical points for this
system. The points and their properties are shown in
Table I. There are three possible qualitative behaviors of
the phase space, depending on the following three ranges

for �: 0< � � ffiffiffiffiffiffi
37

p � 1,
ffiffiffiffiffiffi
37

p � 1 � � � 6 and � > 6.
From Table I we see that in order to have a stable

accelerated attractor, we must have � < 2
ffiffiffi
3

p
, so the most

interesting solutions will belong to the first range whose
phase space is shown in Fig. 1. Points A� and Aþ are,

respectively, a saddle and unstable point and represent
early time solutions with a stiff fluid effective equation of
state. Every solution evolves eventually, reaching point C,
which always lies on the unit circle and acts as a global

attractor. If � < 2
ffiffiffi
3

p
, point C belongs to the region above

the dashed/red line where the universe is accelerating. If

instead 2
ffiffiffi
3

p � � � ffiffiffiffiffiffi
37

p � 1, point C will be below the
dashed/red line and the universe will end in a decelerating
solution. However, we can still have a period of accelerated
expansion because, for a wide range of initial conditions,
the evolution still passes through the accelerated region for

some time as is shown in Fig. 2. If � ¼ 3
ffiffiffi
2

p
the global

attractor will represent a matter-dominated universe with
vanishing effective equation of state parameter, while for

� ¼ 2
ffiffiffi
6

p
the final state will be a radiationlike dominated

universe, which suggests that this model could be of inter-
est in early time inflationary dynamics.

The phase space for the range
ffiffiffiffiffiffi
37

p � 1 � � � 6 has
been drawn in Fig. 3. Point B is now the global attractor
and always represents a decelerating solution since it can
only appear below the dashed/red line. Point C is now a
saddle point, which attracts all the trajectories before they
turn to point B. Again, depending on the initial conditions,
the universe can still undergo a phase of accelerated
expansion since several trajectories pass through the accel-
erated region above the dashed/red line.
The last range for which the dynamics of model 1 is

different is given for � > 6. Its phase space is depicted in

TABLE I. Critical points and their properties for model 1.

Point x y Existence weff Acceleration Stability

A� �1 0 8 � 1 No Saddle

Aþ 1 0 8 � 1 No Unstable if � � 6
Saddle if � > 6

B 6
�þ2

ffiffi
2

pffiffiffiffiffiffiffi
�þ2

p � � ffiffiffiffiffiffi
37

p � 1 ��2
�þ2 No Saddle if � ¼ ffiffiffiffiffiffi

37
p � 1

Stable spiral if � >
ffiffiffiffiffiffi
37

p � 1
C �

6

ffiffiffiffiffiffiffiffiffiffiffi
36��2

p
6 � � 6 �2

18 � 1 � < 2
ffiffiffi
3

p
Stable if � <

ffiffiffiffiffiffi
37

p � 1
Saddle if

ffiffiffiffiffiffi
37

p � 1 � � � 6

FIG. 1 (color online). Phase space for model 1 with � ¼ 1.
The global attractor represents an accelerating solution because
it lies in the region above the dashed/red line.
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Fig. 4. Point Aþ is now a saddle point and attracts all the
trajectories along the y direction. The global attractor is
still point B and the cosmological evolution can experience
more than one eras of accelerated expansion before ending
eventually in the final decelerating solution.

In conclusion we have seen that in model 1 the universe
can undergo phases of accelerated expansion for all the

possible ranges of �. If � < 2
ffiffiffi
3

p
the cosmic evolution will

end in an accelerated state, while for all the other values
of �, it eventually reaches a stable decelerating solution.

B. Model 2: W ¼ �ð��Þ�e����=
ffiffi
6

p

In this section we will consider the potential given by

Wð�; �Þ ¼ �ð��Þ�e����=
ffiffi
6

p
; (38)

where � and � are two dimensionless positive parameters.
This potential allows for a direct coupling between the
two scalar fields � and �. Unfortunately, we cannot recast
the cosmological evolution equations (27)–(29) into a
two- dimensional dynamical system. However, defining
in addition to (30) the new variable

z ¼ H0

HþH0

; (39)

we can obtain a three-dimensional system. The new vari-
able z has been chosen in such a way to maintain the phase
space compact [11]. It takes values between 0 and 1,
meaning that the phase space is now represented by a
half cylinder with radius and height equal to one.
Equations (27) can still be rewritten as (34), implying
that at every point of the phase space, the effective equation
of state is again given by (35). The accelerated region is

now the part of the half cylinder corresponding to y >ffiffiffiffiffiffiffiffi
2=3

p
for all the possible values of z.

The cosmological equations (27)–(29) give the follow-
ing three-dimensional dynamical system

x0 ¼ y2

2
ð�þ 2� 6xÞ þ x2 � 1; (40)

y0 ¼ y

�
3� 3y2 � �

2
xþ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 � y2

q �
z

yð1� zÞ
�
2=�

�
;

(41)

z0 ¼ 3ðy2 � 1Þðz� 1Þz; (42)

where again a prime denotes a derivative with respect to
N ¼ ln a, and we have to redefine the parameter � as

	 ¼ �ffiffiffi
2

p 3
��2
2� �1=�

�
�

H0

�
2=�

: (43)

In the above system of equations, the term with 	 in (41)
becomes singular as y ! 0 or z ! 1, and one must be rather
careful when investigating the equations for those values.
The critical points are given in Table II and, according to the
value of �, there can be up to seven critical points. However,
when considering the critical points with z ¼ 1, we have
assumed that the term proportional to 	 approaches zero
when z ! 1. This issue is very difficult to settle analytically;
however, the numerical solutions and the resulting phase
space confirm that this assumption is valid.

Again the three ranges � <
ffiffiffiffiffiffi
37

p � 1,
ffiffiffiffiffiffi
37

p � 1 � � � 6
and � > 6 give the three qualitatively different behaviors
of the phase space. The four points A� and B� always

FIG. 3 (color online). Phase space for model 1 with � ¼ 5:9.
The global attractor is now point B, while C is a saddle point.

FIG. 2 (color online). Phase space for model 1 with � ¼ 4.
The global attractor does not represent an accelerating solution
because it lies in the region below the dashed/red line.

FIG. 4 (color online). Phase space for model 1 with � ¼ 8.
The global attractor is point B, while Aþ is now a saddle point.
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represent universes evolving with a stiff matter effective
equation of state. However, they are expected to be relevant
only at early time and not to be stable solutions.

The phase space for the first range is shown in Fig. 5.
Points Aþ and D0 act as saddle points attracting the early
time solutions before these turn towards greater values of z.
The trajectories always evolve towards point D1, which
represents the global attractor. A few more remarks are
required about this point. First, one of the eigenvalues
approaches �1 as z ! 1. The term responsible for this

is 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 � y2

p ð z
yð1�zÞÞ2=�, which we assumed to ap-

proach zero. The linear stability matrix (Jacobian) contains
the inverse of this term which in turn can yield an eigen-
value which formally is �1 (see Table III). This explains
why this point acts as the global attractor to the system.
There is a � range where one of the eigenvalues of D1 is
positive, and this point will still attract all trajectories.
While there is a direction in which the point repels trajec-
tories, the nonlinearities of the system will move any
trajectory away from this exact direction and the attractive
behavior in the other directions will dominate. This behav-
ior can be seen quite clearly in the phase space plots.

If � < 2
ffiffiffi
3

p
, this characterizes an accelerating scaling

solution, while if � > 2
ffiffiffi
3

p
, the universes undergo decela-

ration. Again, this represents the cosmologically interest-
ing case, where the global attractor of the phase space
could represent an accelerating universe.

The phase space for the second qualitative rangeffiffiffiffiffiffi
37

p � 1 � � � 6 is depicted in Fig. 6. Points Aþ, C0

and D0 represent saddle points which attract the early

time solutions. PointD1 still represents the global attractor
but does not characterize an accelerating solution, being
always outside the accelerated region.
We have identified another interesting point, C1 with

coordinates x ¼ 6
�þ2 , y ¼

ffiffi
2

pffiffiffiffiffiffiffi
�þ2

p , z ¼ 1, which is not a

critical point to the dynamical system. However, when
evaluating Eqs. (40) and (42), we note that both right-
hand sides vanish. The remaining Eq. (41) at this point is

y0C1
¼ 	

2

�
�

2
þ 1

�
1=��3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 2�� 36
p �

z

1� z

�
2=�

¼ 	Cð�Þ
�

z

1� z

�
2=�

; (44)

where Cð�Þ is a constant depending on �. We can now
understand the phase space at this point; see Fig. 7. If 	 is
chosen to be small, then the solution behaves as if C1 were
a critical point. The smaller the value of 	, the better C1

acts as an attracting point. However, when z gets suffi-
ciently close to 1, the trajectories will get repelled from this
point eventually. If � > 6, none of the critical points is
stable, and the solution will keep evolving without a
determined late time behavior. As can be seen in Fig. 7,
all trajectories reach the z ! 1 surface and then stay there.

C. Model 3: W ¼ W0e
����=

ffiffi
6

p
þmatter

In this final section we reconsider model 1 with the
potential (33) and add a standard matter perfect fluid
energy-momentum tensor to the gravitational field
equations (20),

TABLE II. Critical points and their properties for model 2.

Point x y z Existence weff Acceleration

A� �1 0 0 8 � 1 No

Aþ 1 0 0 8 � 1 No

B� �1 0 1 8 � 1 No

Bþ 1 0 1 8 � 1 No

C0
6

�þ2

ffiffi
2

pffiffiffiffiffiffiffi
�þ2

p 0 � � ffiffiffiffiffiffi
37

p � 1 ��2
�þ2 No

D0
�
6

ffiffiffiffiffiffiffiffiffiffiffi
36��2

p
6

0 � � 6 �2

18 � 1 � < 2
ffiffiffi
3

p

D1
�
6

ffiffiffiffiffiffiffiffiffiffiffi
36��2

p
6

1 � � 6 �2

18 � 1 � < 2
ffiffiffi
3

p

TABLE III. Critical points and their stability properties for model 2.

Point Eigenvalues Stability

A� 3, �2, 3þ �=2 Saddle point

Aþ 3, 2, 3� �=2 Saddle point

B� �3, �2, 3þ �=2 Saddle point

Bþ �3, 2, 3� �=2 Saddle point

C0 3�=ð2þ �Þ, ð�3� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81þ 32�� 4�2 � �3

p Þ=ð2þ �Þ Saddle point

D0 �2=12, �3þ �2=12, �6þ �=3þ �2=12 Saddle point

D1 ��2=12, �9=2þ �=6þ �2=8, �1 Stable if � < 2ð ffiffiffiffiffiffi
82

p � 1Þ=3
‘Saddle’ if ð2 ffiffiffiffiffiffi

82
p � 2Þ=3< �
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G�� ¼ �2ðTð�Þ
�� þ e���

ffiffiffiffiffiffi
2=3

p
Tð�Þ
�� � g��W þ TðMÞ

�� Þ; (45)

where

TðMÞ
�� ¼ pg�� þ ðpþ �ÞU�U�; (46)

with U� the comoving four-velocity of the fluid, � its
energy density and p its pressure. We will consider a linear
equation of state given by

p ¼ w� (47)

and assume that standard matter is covariantly conserved,

r�TðMÞ
�� ¼ 0: (48)

We will also consider only the physical range 0 � z �
1=3, meaning that we cannot have cosmic acceleration
from matter alone. In this model, dark matter is included
in the standard matter sector, while both the scalar fields �
and � act as dark energy. Note that we are adding a matter
action to (18) and thus assuming that the matter fields
couple with the Einstein frame metric ~g��. This procedure

is different to adding a matter action directly to (1) but has
largely been considered in literature without entering into
deep philosophical issues (see Ref. [12] for a discussion).
The new cosmological field equations derived from (45),

with k ¼ 0, read

3H2 ¼ �2�þ �2

2
e�

ffiffiffiffiffiffi
2=3

p
�� _�2 þ �2

2
_�2 þ �2W; (49)

2 _H þ 3H2 ¼ ��2p� �2

2
e�

ffiffiffiffiffiffi
2=3

p
�� _�2 � �2

2
_�2 þ �2W;

(50)

while the two evolution equations for the scalar fields
still coincide with (28) and (29). These equations can be
recast in a three-dimensional autonomous system of equa-
tions defining, in addition to (30), the new adimensional
variable,

z2 ¼ �2�

3H2
: (51)

The Friedmann constraint (49) reduces to

x2 þ y2 þ z2 ¼ 1� s2; (52)

implying that the phase space is now the quarter of a unit
sphere because, thanks to (52) and the positiveness of �
and W, we must have y � 0, z � 0 and

0 � x2 þ y2 þ z2 � 1: (53)

FIG. 7 (color online). Phase space for model 2 with � ¼ 8 and
	 ¼ 0:01.

FIG. 5 (color online). Phase space for model 2 with � ¼ 1 and
	 ¼ 0:01. The global attractor is point D1, representing an
accelerating solution whenever � < 2

ffiffiffi
3

p
because it lies in the

region marked by the dashed/red line.

FIG. 6 (color online). Phase space for model 2 with � ¼ 5:9
and 	 ¼ 0:01. The global attractor is still point D1 but now
the trajectories are first attracted by point C1, which is not a
critical point.
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Equation (50) becomes

_H

H2
¼ 3

2
½�2þ 2y2 þ ð1� wÞz2�; (54)

from which we can read off the new effective equation of
state parameter,

weff ¼ 1� 2y2 þ ðw� 1Þz2: (55)

The three-dimensional dynamical system is given by
equations (48)–(50) as

x0 ¼ � 3

2
x½2y2 � ðw� 1Þz2� þ 1

2
ð�þ 2Þy2 þ x2 þ z2 � 1;

(56)

y0 ¼ � 1

2
y½�3ðw� 1Þz2 þ �xþ 6y2 � 6�; (57)

z0 ¼ 3

2
z½ðw� 1Þðz2 � 1Þ � 2y2�; (58)

and the critical points together with their properties are
listed in Table IV. If we compare this with Table I, we see
that we now have two more critical points (D and E)
corresponding to a universe evolving in accordance with
the matter equation of state parameter. PointD corresponds
to a universe completely dominated by the matter sector
with no dark energy affecting the evolution. Point E
presents instead both matter and dark energy, but the total
outcome on the universe’s evolution is still completely
equivalent to a matter-dominated universe. The other
points, belonging to the z ¼ 0 plane, have the same prop-
erties of model 1, with point C being the cosmic acceler-

ated stable attractor solution for � < 2
ffiffiffi
3

p
. We now have

four qualitative behaviors for the dynamics of the phase

space, depending again on the possible values of �: � <

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðwþ 1Þp

, 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðwþ 1Þp � � <

ffiffiffiffiffiffi
37

p � 1,
ffiffiffiffiffiffi
37

p � 1 �
� � 6 and � > 6. Note that because 0 � z � 1=3, we al-

ways have 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðwþ 1Þp

<
ffiffiffiffiffiffi
37

p � 1.
The first range is again the more interesting, since

we can have a late time attractor where the universe is

accelerating its expansion. The dynamics of the phase
space is depicted in Fig. 8. The late time attractor is point

C, which results in an accelerating solution whenever � <

2
ffiffiffi
3

p
. Point D represents a saddle point where the universe

is completely dominated by the matter sector and expands
according to radiation/dust solutions. It is then clear that
every trajectory passing nearby point D and eventually
ending in point C describes a possible physical universe.
In fact, all these solutions will allow the universe to
undergo the standard radiation and matter eras before the
transition to the dark energy accelerating solution.
As an example we can look at the dashed/red solution in

Fig. 8 and see how the effective equation of state parameter
evolves. This is plotted in Fig. 9. We see that the universe
immediately reaches a matter-dominated expansion and
keeps this evolution for some time unperturbed. Of course,
if the matter equation of state parameter w changed during
this period, from radiation to dust in a physical situation,
weff also would change according to w. This means that
during this period the universe has the time to undergo
the standard cosmological eras in agreement with the

TABLE IV. Critical points and their properties for model 3.

Point x y z Existence weff Acceleration Stability

A� �1 0 0 8 � 1 No Saddle

Aþ 1 0 0 8 � 1 No Unstable if � � 6
Saddle if � > 6

B 6
�þ2

ffiffi
2

pffiffiffiffiffiffiffi
�þ2

p 0 � � ffiffiffiffiffiffi
37

p � 1 ��2
�þ2 No Saddle

C �
6

ffiffiffiffiffiffiffiffiffiffiffi
36��2

p
6

0 � � 6 �2

18 � 1 � < 2
ffiffiffi
3

p
Stable if � < 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðwþ 1Þp

Saddle otherwise

D 0 0 1 8 � w No Saddle

E 3ðwþ1Þ
�

3
ffiffiffiffiffiffiffiffiffi
1�w2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�18ðwþ1Þ

p
�

� � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðwþ 1Þp

w No Stable if 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðwþ 1Þp � �

Saddle otherwise

FIG. 8 (color online). Phase space for model 3 with � ¼ 1 and
w ¼ 0. The global attractor is point C, which represents an
accelerating solution when � < 2

ffiffiffi
3

p
, while point D is a

matter-dominated saddle point.
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observations. Depending on the initial conditions,
this stage can last for the time needed to produce the
nucleosynthesis and create the cosmological structures.
Eventually, we will have the transition to the accelerated
phase, which represents the final phase of the universe
where the effective equation of state parameter assumes
the value �2=18� 1. The situation is completely equiva-
lent to quintessence plus dark matter, with � playing the
role of the dark energy scalar field. In fact the trajectories
confined to the border of the sphere, such as the dashed/red
one in Fig. 8, must have s ¼ 0, meaning that � does not
influence the dynamics of this solution.

We can now look at the second range 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðwþ 1Þp �

� <
ffiffiffiffiffiffi
37

p � 1, whose phase space is drawn in Fig. 10. The
global attractor is now point E, where the universe expands
according to the matter equation of state. Depending on the

initial conditions, the trajectories can either pass nearby
saddle point D, where we also have weff ¼ w, or pass
through the region surrounding the point (0, 1, 0), where
the universe accelerates its expansion and eventually ap-
proaches saddle point C before ending in point E. This
shows how this model can be useful in early inflationary
dynamics, since we can have an accelerated period before
the universe starts to be radiation/dust dominated.
This feature is presented also in the third possible range,ffiffiffiffiffiffi
37

p � 1 � � � 6, as Fig. 11 shows. For this reason and
because the phase space properties are more evident, we
chose to show the dynamics in the w ¼ 1=3 case. We still
have point E as the global attractor, but now, besides point
C, point B also acts as a saddle point influencing trajecto-
ries starting from the z ¼ 0 plane. The dynamics is similar
to the second � range, with several solutions experiencing

FIG. 9 (color online). Evolution of the effective equation of
state parameter for the dashed/red trajectories in Fig. 8. After
reaching a long-lasting matter-dominated evolution according to
observations, the universe eventually ends in an accelerated
expansion, representing the final cosmological stage.

FIG. 10 (color online). Phase space for model 3 with � ¼ 5
and w ¼ 0. The global attractor is now point E, where the
universe evolves according to the matter equation of state.

FIG. 11 (color online). Phase space for model 3 with � ¼ 5:9
and w ¼ 1=3. The global attractor is still point E, but now the
trajectories starting from the z ¼ 0 plane are first attracted by
saddle point B.

FIG. 12 (color online). Phase space for model 3 with � ¼ 8
and w ¼ 1=3. The global attractor is point E, but now Aþ is a
saddle point attracting the z ¼ 0 trajectories.
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an accelerated phase before ending in the matter-
dominated final evolution.

Finally the phase space for the last range, � > 6, is
presented in Fig. 12. Point C is now gone and point Aþ
plays its role attracting the z ¼ 0 trajectories. The dynam-
ics is again similar to the previous ranges, with point E
being the global attractor and solutions having a possible
era of cosmic-accelerated expansion depending on the
initial conditions.

IV. CONCLUSIONS

In this paper we have studied a natural generalization of
the so-called hybrid metric-Palatini gravity introduced in
Ref. [4]. A completely arbitrary function of both the metric
and Palatini curvature scalars was considered as the
Lagrangian density in the action. Using dynamically
equivalent actions and conformal transformation tech-
niques, we have shown that this new theory can be recast
into general relativity plus two scalar fields coupled with
each other. Therefore, using this approach one arrives
naturally at theories where the different matter components
couple to each other. It should be emphasized that there are
no theoretical restrictions when it comes to coupling differ-
ent matter components; all that is required by general
relativity and its generalization is that the total energy-
momentum tensor is conserved.

We analyzed the possible applications to cosmology
considering a FLRW universe and employing dynamical
system methods. Three specific models specified by their
potentials were studied in detail, and in each case a late
time cosmological accelerated solution has been found.
Depending on the model parameters, these can represent
global attractor solutions. We also encountered a rather
peculiar parameter choice (Fig. 7), where the dynamical
system has no global attractor and the cosmological solu-
tion would never stop evolving.
The first model has a potential without coupling the two

scalar fields and shows several similarities with usual
quintessence models. The second model considers a direct
coupling between the two scalars in the potential, and it is
characterized by more mathematical complexity. Its evo-
lution is easily understood. Finally, in the third and most
interesting model, we add standard (dark) matter to the
theory and show that the universe can undergo an
‘‘extended period’’ of matter domination followed by an
accelerating dark-energy-dominated era. This would in
principle allow for structure formation in this model. It
would be interesting to study such models in more detail,
studying not only the background evolution but also the
evolution of perturbation on this background and, in par-
ticular, structure formation. This would eventually allow us
to compare such models with experimental data.
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