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Ernst’s solution-generating technique is adapted to Einstein-Maxwell theory conformally (and mini-

mally) coupled to a scalar field. This integrable system enjoys an SU(2,1) symmetry which enables one to

move, by Kinnersley transformations, through the axisymmetric and stationary solution space, building an

infinite tower of physically inequivalent solutions. As a specific application, metrics associated to scalar

hairy black holes—such as the ones discovered by Bocharova, Bronnikov, Melnikov, and Bekenstein—are

embedded in the external magnetic field of the Melvin universe.
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I. INTRODUCTION

Exact solutions in the realm of general relativity are of
immense interest and utility but—because of the nonlinear
behavior of the theory—they are not easy to discover.
For this scope some very powerful solution-generating
techniques were built in the last decades, relying basically
on the integrability properties of the system. The most
famous branches in this field are the Ernst [1] and the
Belinsky-Zakharov [2] approaches for stationary axisym-
metrical spacetimes in the Einstein-Maxwell theory of
gravity. These techniques are not only a useful tool for
constructing nontrivial solutions—such as black holes in
magnetic universes [3,4] or rotating multi-black hole solu-
tions—but also were fundamental in the proof, by Helers
and Ernst, of the Gerosh conjecture which states that, in
principle, all electro-vacuum stationary, axisymmetric,
spinning mass solutions could be generated by one par-
ticular solution (e.g., Minkowski spacetime) by means of
an infinite sequence of transformations of a certain group
[5,6]. All these approaches are strongly theory dependent
and it is difficult to apply them even for small modifica-
tions of the theory’s action. For instance, just the addition
of the cosmological constant makes this method hard to
generalize, as can be seen in Ref. [7] (in this case the
problem is related to a reduction of symmetry of the
moduli space, which makes the system not explicitly inte-
grable anymore). Here we are interested in extending
Ernst’s technique for Einstein-Maxwell theory to the pres-
ence of a minimally and conformally coupled scalar field.
In this case the integrability property is preserved so the
Ernst approach can be directly extended, as can be seen in
Secs. II and III. Besides the fact that the literature for
gravitational systems coupled with a scalar field is wide
from both a theoretical and a phenomenological point of
view, actual astrophysical support for this kind of matter is
not proven. Cosmologists use scalar fields in some models
of inflation or employ them to describe dynamical models
for dark matter or dark energy. Neither are fundamental

scalar fields known in nature, apart from some recent
footprint of the Higgs field found at CERN, which is any-
way of a different kind than the ones considered here.
Nevertheless, the theoretical interest for those conformally
coupled scalar fields has arisen, at least since the 1970s
when Bekenstein made use of it to find the first counter-
example to the Wheeler’s famous ‘‘Black holes have not
hairs’’ conjecture. For an historical perspective see
Ref. [8]. In fact, this matter is at least viable from a
theoretical point of view in the sense that it does not violate
most of the energy conditions, so if it is not endorsed at the
moment by observation, it is at least plausible, possibly just
at an effective level.
The black hole solution for general relativity confor-

mally coupled with a scalar filed was first found by
Bocharova, Bronnikov, and Melnikov in Ref. [9] and then
independently studied by Bekenstein in Refs. [10,11]
(henceforth we will call this metric BBMB). It is a static
solution of Einstein-Maxwell theory, whose stationary ro-
tating generalization is not known. The formalism devel-
oped in this paper could be of some utility in this direction
or in other generalizations of the BBMB black hole as well,
for instance embedding it in an external magnetic field, as
was done by Ernst in Ref. [3] for the Schwarzschild and
Reissner-Nordstrom black holes by means of a Harrison
transformation. This point is addressed in Sec. III. Black
holes embedded in an external magnetic source, such as
that of the Melvin universe, are of some astrophysical
interest because—especially at the center of galaxies—
currents in the accretion disk around a black hole can likely
generate such kinds of magnetic fields.

II. ERNST’S SOLUTION-GENERATING
TECHNIQUE FOR EINSTEIN-MAXWELL
THEORY WITH A MINIMALLY COUPLED

SCALAR FIELD

A. Equations of motion

Consider the action for general relativity coupled to the
Maxwell electromagnetic field and to a minimally coupled
scalar field �,*marco.astorino@gmail.com
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The gravitational, electromagnetic, and scalar field
equations are obtained by extremizing with respect to the
metric g��, the electromagnetic potential A�, and the

scalar field �, respectively,
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@�ð ffiffiffiffiffiffiffi�g
p

F��Þ ¼ 0; (2.3)

h� ¼ 0: (2.4)

We are interested in stationary and axisymmetric
spacetimes characterized by two commuting killing vec-
tors @t, @’ that, for this minimal coupling, are given—in

the most general way1—by the Lewis-Weyl-Papapetrou
metric,

ds2 ¼ fðdt�!d’Þ2 � f�1½r2d’2 þ e2�ðdr2 þ dz2Þ�;
(2.5)

where all the functions f, !, � depend on just the coor-
dinates ðr; zÞ, and � ¼ 8�G. The most generic electromag-
netic potential and scalar field compatible with this
symmetry can be written as A ¼ Atðr; zÞdtþ A’ðr; zÞd’
and �ðr; zÞ, respectively.

In terms of the form of the metric (2.5) the principal
gravitational field equations (GE�

�) are
2

GE’
t:

~r �
�
r�2f2 ~r!� 4

G

�0

r�2fAtð ~rA’ þ! ~rAtÞ
�
¼ 0;

(2.6)

GEt
’ �GE’

’: fr2f

¼ ð ~rfÞ2 � r�2f4ð ~r!Þ2

þ 2
G

�0

f½ð ~rAtÞ2 þ r�2f2ð ~rA’ þ! ~rAtÞ2�; (2.7)

while the Maxwell (ME�) and scalar (SE) field equations
become:

MEt: ~r � ½f�1 ~rAt � r�2f!ð ~rA’ þ! ~rAtÞ� ¼ 0; (2.8)

ME’: ~r � ½r�2fð ~rA’ þ! ~rAtÞ� ¼ 0; (2.9)

SE: r2� ¼ 0: (2.10)

The differential vectorial operators appearing here are
the standard flat ones in polar cylindrical coordinates. As
can be seen, the scalar field remains decoupled from the
gravitational (GE) and electromagnetic (ME) equations
and the � does not appear, so it can be obtained by quad-
rature after having detected the other functions. This set of
equations, (2.6), (2.7), (2.8), (2.9), and (2.10), can be re-
duced to two complex equations and one real equation as
follows:

ðReE þ j�j2Þr2E ¼ ð ~rE þ 2�� ~r�Þ � ~rE; (2.11)

ðReE þ j�j2Þr2� ¼ ð ~rE þ 2�� ~r�Þ � ~r�; (2.12)

r2� ¼ 0; (2.13)

We take advantage of the system’s integrability and
introduce two complex ðE;�Þ fields, such that

� :¼ At þ i ~A’; E :¼ f� j���j þ ih; (2.14)

where ~A’ and h are defined as

~r ~A’ :¼ �fr�1 ~e’ � ð ~rA’ þ! ~rAtÞ; (2.15)

~rh :¼ �f2r�1 ~e’ � ~r!� 2 Imð�� ~r�Þ: (2.16)

Remarkably enough these equations of motion (2.11),
(2.12), and (2.13) can be derived by an effective action
principle,

S½E;�;��

¼
Z

rdrdzd’

�ð ~rE þ 2�� ~r�Þ � ð ~rE� þ 2� ~r��Þ
ðE þ E� þ 2���Þ2

� 2 ~r� � ~r��

E þ E� þ 2��� �
�

2
~r� � ~r�

�
: (2.17)

The homothetic symmetries of the action (2.17) are
those that leave the equations of motion (2.11), (2.12), and
(2.13) invariant. They form an SUð2; 1Þ � Uð1Þ group
of nine real parameters, represented by these finite
transformations:
(I) E ! E0 ¼ ���E; �!�0 ¼ ��; �!�0 ¼�;
(II) E ! E0 ¼ Eþ ib; �!�0 ¼�; �!�0 ¼�;

1As explained in Ref. [12], Sec. 3.4.
2To match the standard Ernst notation, G=�0 can be normal-

ized to 1 without loss of generality. Any sign discrepancy with
respect to Ref. [13] are due to several renowned typos of the
latter, as admitted in Ref. [14].
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(III) E! E0 ¼ E=ð1þ icEÞ; �!�0 ¼�=ð1þ icEÞ;
�!�0 ¼�;

(IV) E! E0 ¼ E�2	���		�; �!�0 ¼�þ	;
�!�0 ¼�;

(V) E! E0 ¼ E
1�2
���

�E ; �!�0 ¼ �þ
E

1�2
���

�E ;

�!�0 ¼�;
(VI) E ! E0 ¼ E; �!�0 ¼�; �!�0 ¼�þ d;

where b, c, d 2 R and 
, �, 	 2 C. More generally,
instead of the last term in the action (2.17), it is possible
to have a sigma model for a collection of scalar fields �A:
�
2GAB

~r�A � ~r�B, as is done without the electromagnetic

field in Refs. [12,15]. In this case the symmetry group is, at
least, SUð2; 1Þ � G, where G is the homothetic symmetry
group of the scalar matter. The case wewill consider here is
just the simplest: GAB ¼ 1.

ðIÞ–ðVÞ are the standard SU(2,1) Kinnersley symmetries,
while ðVIÞ is just a trivial shift of U(1). Some of these
transformations physically represent gauge transforma-
tions—that is, they can be reabsorbed by some diffeomor-
phism of the resulting metric—while some of them give
inequivalent spacetimes that are in fact able to change the
charges, the asymptotic behavior, the electromagnetic field
content, etc. So the effective group of transformations is
actually smaller than SU(2,1).

In principle, we suspect that any axisymmetric metric
of the Einstein-Maxwell theory minimally coupled with a
scalar field could be obtained, from a fixed seed, by
means of the subsequent transformations ðIÞ � ðVIÞ.
The case with a vanishing scalar field was proven by
Hauser and Ernst in Ref. [6]. In practice it is not easy to
find this sequence, and moreover not all transformations
preserve the asymptotic behavior of the previous solu-
tion. In particular, in the next section, we will mostly be
interested in the Harrison transformation ðVÞ, which is
well known to enable one to embed one’s favorite
asymptotically flat spacetimes in a magnetic universe.
Ernst was able to embed a Schwarzschild black hole
and the whole Kerr-Newman family of black holes into
the Melvin magnetic universe [3,4]. Note that, after
being immersed in the external magnetic field, these
black hole solutions are no longer of type D in the
Petrov classification.

B. Magnetizing the Fisher, Janis, Robinson,
and Winicour solution

Here we take advantage of the formalism of Sec. II A to
embed the solution of Fisher and Janis, Robinson,
Winicour (henceforth FJRW) [16,17] in a external mag-
netic field. That metric describes a static, asymptotically
flat solution for Einstein gravity minimally coupled with a
scalar field. Since it is plagued by some nonphysical fea-
tures, it is not considered of physical interest, but our
strategy is to use it as an intermediate step towards the
more physical BBMB black hole family. The metric and
the associated scalar field read

ds2 ¼ �
�
1� 2m

R

�
A
d�2 þ dR2

ð1� 2m
R ÞA

þ
�
1� 2m

R

�
1�A

R2ðd�2 þ sin 2�d2Þ; (2.18)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

2�

s
log

�
1� 2m

R

�
; (2.19)

where the real parameter A 2 ½0; 1�. For A 2 ½0; 1Þ the
surface R ¼ 2m has the Ricci squared curvature invariant
R��R

�� unbounded, so it is a naked singularity, while for

A ¼ 1 it is evident that we have the Schwarzschild black
hole. Another interesting value is A ¼ 1=2 because—
though it is a nonphysical solution in this minimal
frame—it can be used, via the Bekenstein technique
(which basically consists of a conformal rescaling), to
obtain the BBMB black hole in the conformal frame. For
this reason, henceforward in this section the parameter A
will be fixed to 1=2. The case with generic A for
the magnetized FJRW can be extracted (as in the next
section) by setting e0 ¼ 0 (or equivalently b ¼ 0) in the
metric (2.40).
Now we want to embed this solution, which will be

considered as our seed metric, in the Melvin magnetic
universe. In the absence of the scalar field the standard
procedure consists of using the Harrison transformation
ðVÞ, so we will do the same. For this purpose, it is more
conventional (with respect to the standard literature
[3,4]) to use another form of the Weyl-Lewis-
Papapetrou metric (2.5) obtained by a double Wick
rotation ðt; ’Þ ! ði; i�Þ,
ds2 ¼ �fðd�!d�Þ2 þ f�1½r2d�2 � e2�ðdr2 þ dz2Þ�:

(2.20)

Note that after the Wick rotation the electromagnetic

complex potential (2.14) becomes � ¼ A þ i ~A�. By

comparing Eqs. (2.18) and (2.20) we get the complex
seed potential associated with the killing vector @,

�0 ¼ 0; E0 ¼ f0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 � 2mR3

p
sin 2�: (2.21)

Then we apply the Harrison transformation to get

� ¼ B

2

E0

�
; E ¼ E0

�
; (2.22)

where we have defined3


 ¼ B

2
;

� ¼ 1� 

�E0 ¼ 1þ B2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 � 2mR3

p
sin 2�:

3In Ernst’s notation 
 ¼ � B0

2 [3], which also implies a switch
of the first minus sign in Eq. (2.39).
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So the magnetized Janis-Robinson-Winicour spacetime
becomes

ds2 ¼�2

0
@�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

R

s
d�2 þ dR2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
R

q þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 � 2mR3

p
d�2

1
A

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 � 2mR3

p
sin 2�

�2
d2: (2.23)

The scalar field remains unchanged as in Eq. (2.19), while
the magnetic field is given by

A ¼ � ¼ �B

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 � 2mR3

p
sin 2�

1þ B2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 � 2mR3

p
sin 2�

: (2.24)

This solution still contains nonphysical features—such
as naked singularities—as with the nonmagnetic one, so
it will only be considered a mathematical step towards a
less pathological spacetime that will be analyzed in
Sec. III A.

C. Magnetizing the Penney solution

In Ref. [18] Penney found, for the Einstein-Maxwell
theory minimally coupled to a scalar field, a generalization
of the FJRW metric in the presence of a non-null electric
field. For our purposes it is best expressed as follows:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

2�

s
log

�
R� a

R� b

�
; (2.25)

A� ¼ ðb� aÞðR� aÞA
bðR� aÞA � aðR� bÞA

ffiffiffiffiffiffiffiffiffiffiffi
b

a

�0

G

s
; (2.26)

ds2 ¼ �e�
d�2 þ e
dR2 þ e	ðd�2 þ sin 2�d2Þ;
(2.27)

where

e 
 ¼ ½bðR� aÞA � aðR� bÞA�2
ðb� aÞ2½ðR� aÞðR� bÞ�A ; (2.28)

e 	 ¼ e
ðR� aÞðR� bÞ: (2.29)

The real parameters a and b are related to the standard
electric charge parameter e0 and mass parameter m in this
way as 2m ¼ aþ b and ab ¼ e20G=A

2�0 (again, the ratio

G=�0 may be thought to be normalized to 1, without loss

of generality, to match the standard Ernst notation). A is a
constant parameter belonging to the real interval [0,1], as
in Sec. II B. When b ¼ 0 the FJRW solution (2.18) and
(2.19) is retrieved. When A 2 ½0; 1Þ the Penney solution
displays naked singularities, but for A ¼ 1 it is physically
meaningful; in fact, it collapses into the Reissner-
Nordstrom solution. When A ¼ 1=2 it can be shifted into
the conformal frame by a conformal transformation, giving
the charged BBMB metric. For this reason, Eq. (2.27)
represents a good seed to obtain a magnetized charged
black hole in the conformal frame, as will be done in
Sec. III B.
Comparing the Penney metric (2.27) to the Weyl-Lewis-

Papapetrou metric (2.20), and according to the definitions
(2.14), we can extract

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� aÞðR� bÞ

p
sin �; (2.30)

f0 ¼ �e	sin 2�; (2.31)

� 0 ¼ ~A�0 ¼ �iA
ffiffiffiffiffiffi
ab

p
cos �; (2.32)

E 0 ¼ �e	sin 2�� e20cos
2�: (2.33)

Now it is possible to apply the Harrison transformation
ðVÞ (with 
 ¼ B=2) to magnetize the solution (2.25),
(2.26), and (2.27),

E ¼ E0

1� B�0 � B2

4 E0

¼ �e	sin 2�� e20cos
2�

1þ iBe0 cos�þ B2

4 ðe	sin 2�þ e20cos
2�Þ ; (2.34)

� ¼ �0 þ B
2 E0

1� B�0 � B2

4 E0

¼ �ie0 cos�� B
2 ðe	sin 2�þ e20cos

2�Þ
1þ iBe0 cos�þ B2

4 ðe	sin 2�þ e20cos
2�Þ ; (2.35)

This represents the Penney solution embedded in an
external magnetic field, written in terms of the Ernst
complex potentials. In case one wants to express it in terms
of the more familiar metric, electromagnetic, and scalar
field, it is sufficient to apply the definitions (2.14), (2.15),
and (2.16),

A ¼ Reð�Þ ¼ � B
2 ðe	sin 2�þ e20 cos �Þ � B2

8 ðe	sin 2�þ e20 cos�Þ2 � Be20cos
2�

½1þ B2

4 ðe	sin 2�þ e20cos
2�Þ�2 þ B2e20cos

2�
; (2.36)

~A � ¼ Imð�Þ ¼ �e0 cos �
1� B2

4 ðe	sin 2�þ e20 cos �Þ
½1þ B2

4 ðe	sin 2�þ e20cos
2�Þ�2 þ B2e20cos

2�
; (2.37)
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f ¼ ReðEÞ þ���

¼ �e	sin 2�

½1þ B2

4 ðe	sin 2�þ e20cos
2�Þ�2 þ B2e20cos

2�
:

(2.38)

The last unknown metric function ! can be found, for
this particular Harrison transformation ðVÞ, thanks to the
relation

r! ¼ ��� ~r!0 � r

f0
ð�� ~r��� ~r��Þ; (2.39)

where in this case !0 ¼ 0 because the seed (2.26), (2.27),
(2.28), and (2.29) we have begun with is static, and where

�ðR;�Þ ¼ 1þ iBe0 cos�þ B2

4 ðe	sin 2�þ e20cos
2�Þ. Thus,

Eq. (2.39) gives

@R! ¼ �e0
B3

2
ð1þ cos 2�Þ � e0

B

2
ð4� B2e20cos

2�Þe�	;

@�! ¼ e0
B3

2
ðR� aÞðR� bÞ d	ðRÞ

dR
sin � cos�:

The latter equation can be integrated up to an arbitrary
function FðRÞ, which can be found from the first,

!ðR; �Þ ¼ e0B
3

4
sin 2�

�
2A

bðR� aÞAðR� bÞ � aðR� bÞAðR� aÞ
bðR� aÞA � aðR� bÞA þ ð1� AÞð2R� a� bÞ

�
þ FðRÞ;

FðRÞ ¼ �B3e0Rþ ð4Be0 � B3e30Þ
1

2Aa

ða� bÞðR� aÞA
bðR� aÞA � aðR� bÞA þ F0:

The magnetized Penney metric thus takes the final
form

ds2 ¼ j�ðR; �Þj2½�e�
ðRÞd�2 þ e
ðRÞdR2 þ e	ðRÞd�2�

þ e	ðRÞsin 2�

j�ðR; �Þj2 ½d�!ðR; �Þdt�2: (2.40)

The electric potential component A� follows from the
double-Wick-rotated Eq. (2.15),

r ~A� :¼ �fr�1 ~e � ð ~rA� þ! ~rAÞ; (2.41)

which can be reduced to

@RðA�þ!AÞ ¼ j�j2
e	 sin�

@� ~A�þA@R!;

@�ðA�þ!AÞ ¼� j�j2
e	 sin�

ðR�aÞðR�bÞ@R ~A�þA@�!:

Finally, the electric potential becomes

A�ðR; �Þ ¼ � 3

8
e0B

2sin 2�

�
2A

bðR� aÞAðR� bÞ � aðR� bÞAðR� aÞ
bðR� aÞA � aðR� bÞA þ ð1� AÞð2R� a� bÞ

�

þ 3

2
B2e0Rþ

�
3

4
e0B

2Ab� e0
aA

� ða� bÞðR� aÞA
bðR� aÞA � aðR� bÞA �!A þ const: (2.42)

In the next section we will combine these outcomes with
the Bekenstein technique, in the presence of a conformal
scalar field, to embed scalar hairy black holes of the BBMB
type in an external magnetic field background.

III. EINSTEIN-MAXWELL THEORY WITH A
CONFORMALLY COUPLED SCALAR FIELD

A. BBMB black hole in the Melvin magnetic universe

When the scalar filed is conformally coupled to the
Einstein-Maxwell theory the action becomes4

Î½ĝ��; Â�; �̂� ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�ĝ
p �

R̂� F̂��F̂
��

� �

�
r��̂r��̂þ R̂

6
�̂2

��
: (3.1)

We will denote all the quantities in this conformal frame

with a hat: ĝ��; Â�; �̂; . . . .

It was discovered by Bekenstein in Ref. [10] that a
solution ðg��; A�;�Þ of Einstein-Maxwell gravity mini-

mally coupled to a scalar field can be mapped to a solution

ðĝ��; Â�; �̂Þ of the Einstein-Maxwell theory with a con-

formally coupled scalar field (3.1) by the following set of
transformations:

� ! �̂ ¼
ffiffiffiffi
6

�

s
tanh

� ffiffiffiffi
�

6

r
�

�
; (3.2)

A� ! Â� ¼ A�; (3.3)

g�� ! ĝ�� ¼
�
1� �

6
�̂2

��1
g��: (3.4)

Actually, the original BBMB solution can be obtained
by this technique from the A ¼ 1=2 Fisher, Janis,
Robinson, and Winicour one, Eq. (2.18). So here we
play the same game, starting with the magnetized FJRW

4An extra conformally invariant potential term, such as 
�̂4,
might be included in the action (3.1), but we prefer to not consider
it here because it would imply a potential term in the minimally
coupled system (2.1), which spoils the integrability, and because
is not necessary in the BBMB solutions that we will treat.
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solution [Eqs. (2.23), (2.24), and (2.19)] and applying the
transformations (3.2), (3.3), and (3.4) to pass to the con-
formal frame. After a coordinate transformation in the
radial coordinate R ! �=ð1� m

2�Þ, we obtain

�̂ ¼
ffiffiffiffi
6

�

s �
1� 2�

m

��1
; (3.5)

A ¼ � 2B

�
�3 ��m

ð2��mÞ2 sin
2�; (3.6)

d̂s2 ¼ �2

�
�
�
1� m

2�

�
2
d�2 þ d�2

ð1� m
2�Þ2

þ �2d�2
�

þ �2sin 2�

�2
d2; (3.7)

where

�ð�; �Þ ¼ 1þ B2�3 ��m

ð2��mÞ2 sin
2�: (3.8)

This solution represents a BBMB black hole embedded
in the Melvin magnetic universe. In fact, as can be easily
seen from the limit of the mass parameter m ! 0, the
Melvin universe is exactly recovered,

A ¼ �B2

2

�2sin 2�

1þ B2

4 �2sin 2�
; � ¼ 0; (3.9)

ds2 ¼
�
1þ B2

4
�2sin 2�

�
2½�d�2 þ d�2 þ �2d�2�

þ �2sin 2�

ð1þ B2

4 �2sin 2�Þ2 d
2: (3.10)

The magnetic universe found by Melvin is a static, non-
singular, cylindrical symmetric spacetime in which there
exists an axial magnetic field aligned with the z axis. It
describes a universe containing a parallel bundle of elec-
tromagnetic flux held together by its own gravitational
field. Actually, this magnetic universe also mimics the
asymptotic behavior (for large �) of the metric (3.7).

The limit of a vanishing external magnetic field (B ! 0)
of the solution (3.5), (3.6), and (3.7) gives, as expected, the
BBMB black hole,

�̂ ¼
ffiffiffiffi
6

�

s �
1� 2�

m

��1
; (3.11)

d̂s2 ¼�
�
1� m

2�

�
2
d�2þ d�2

ð1� m
2�Þ2

þ�2ðd�2þ sin2�d2Þ:

(3.12)

The global causal structure of of the magnetized black
holes is generally very close to their nonmagnetized
relatives, since any slice of constant  gives a three-

dimensional spacetime whose metric coincides with the
nonmagnetized metric multiplied by a conformal factor
that does not deform the casual structure. So the magne-
tized solutions share the same radial null geodesics, event
horizons, and trapped surfaces with standard black holes
(i.e., B ¼ 0). In this particular case of BBMB black holes
the analysis might be more subtle because the conformal
factor �ð�; �Þ appears to be divergent on the surface � ¼
m=2, in this set of coordinates. Anyway, the electric po-
tential A remains finite everywhere. The curvature invar-

iants, such as R��R�� or R����R����, show divergences

for � ¼ 0—which is usual for BBMB black holes—but
also on the poles (� ¼ 0, �) of the surface � ¼ m=2.5 This
surface constitutes the event horizon of the BBMB black
hole, where it is also well known that the scalar field of that
solution is divergent.6 So it seems that embedding the
BBMB black hole in an external magnetic field emphasizes
its singular behavior. For these reasons one has to be very
careful before considering the metric of the magnetized
BBMB black hole (3.7) as a truly black hole spacetime, as
it discloses naked singularities. However, the analysis of
the spacetime’s causal structure is beyond the scope of this
work and will be done elsewhere.
The introduction of the cosmological term in the action

usually helps to regularize these divergences because they
can be hidden behind the horizon, as it occurs in the
Martinez-Troncoso-Zanelli black hole [19] where the scalar
field is regular on (and outside) the horizon. Moreover, the
cosmological constant improves the astrophysical likelihood,
but unfortunately a generating technique in the presence of a
cosmological constant (nor even a Harrison transformation)
is not available at the moment. As an alternative to the
cosmological constant, it may be sufficient to consider the
acceleration in order to regularize the solution. The mathe-
matical reasoning behind this is due to the same asymptotic
quadratic power scaling in the radial coordinate of the metric
between the acceleration and the cosmological constant
terms. In fact, as was observed in Ref. [20], the accelerating
BBMB black hole has a more well-behaved scalar field on
the horizon, because instead of being singular on the whole
surface horizon, it is divergent on just one point—the pole
(� ¼ m=2, � ¼ �). Moreover, the introduction of an exter-
nal electromagnetic field into these accelerating BBMB
black holes (as was recently found in Refs. [20,21]) will
allow one to remove both of the conical singularities typical
on the poles of this accelerating solution, as was first dis-
covered by Ernst himself in Ref. [22] for the Cmetric. These

5At least reaching the poles along some particular directions.
6As widely discussed by de Witt and Bekenstein in Ref. [11],

‘‘the infinity in the scalar field is not physically pathological
because it is not associated to an infinite potential barrier for test
scalar charges, it does not cause the termination of any trajectory
of these test particles at finite proper time and it is not connected
with unbounded tidal accelerations between neighboring
trajectories.’’
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metrics, regularized by external magnetic fields, are of par-
ticular interest because they describe the creation of black
hole pairs [23,24]. The solution-generating technique devel-
oped in this paper is able to generate such solutions in the
presence of a conformally coupled scalar field [25].

We just want to comment on some features that are
common with the nonmagnetized black hole. For instance,
the surface gravity k—defined by k2 ¼ � 1

2r���r���,

where �� is the Killing vector @t—remains null (for � ¼
m=2), as in the case of the BBMB metric. This is typical
behavior for a double degenerate horizon, such as extremal
black holes.

Also, the topology of constant radial slices remains
the same as in the nonmagnetized case; in fact, consider
the surface S described by the two-dimensional metric
�g�� obtained by fixing � ¼ �� ¼ const and t ¼ const in

Eq. (3.7). Its Euler characteristic is

�ðSÞ ¼ 1

4�

Z
S

ffiffiffi
�g

p
�Rd� d ¼ 2;

So, since �ðSÞ ¼ 2� 2g, the genus of the surface S is 0,
which corresponds to a spherical topology, S2. The areaA
of constant radial (and time) slices is remarkably un-
changed by the presence of the external magnetic field,

A ¼
Z 2�

0
d

Z �

0
d�

ffiffiffiffiffiffiffi
g��

p ffiffiffiffiffiffiffiffiffi
g

p ¼ 4� ��2:

Of course the geometry of constant radial slices is not
spherical anymore, but rather is stretched along the direc-
tion of the external magnetic field.

Furthermore note that, even though the BBMB metric
precisely coincides with that of the extremal Reissner-
Nordstrom, the resulting magnetized BBMB (3.7) differs
from the magnetized Reissner-Nordstrom (which is not
even static), since the generating technique is strongly theory
dependent.

B. Charged BBMB black hole in the Melvin
magnetic universe

The magnetized Penney solution (2.40) for the minimal
scalar coupling, found in Sec. IIC, can be uplifted as a
solution of the Einstein-Maxwell with a conformally coupled
scalar field by the set of transformations (3.2), (3.3), and (3.4),

�̂ ¼
ffiffiffiffi
6

�

s 2
64ðR�a

R�bÞ
ffiffiffiffiffiffiffi
1�A2

3

p
� 1

ðR�a
R�bÞ

ffiffiffiffiffiffiffi
1�A2

3

p
þ 1

3
75; (3.13)

d̂s2¼1

4

��
R�a

R�b

� ffiffiffiffiffiffiffi
1�A2

3

p
þ
�
R�a

R�b

�� ffiffiffiffiffiffiffi
1�A2

3

p
þ2

�
ds2ðmagn�PenneyÞ:

(3.14)

The electromagnetic potential A� remains unchanged—as in

Eqs. (2.36) and (2.42)—because of the conformal invariance
of the Maxwell coupling in four dimensions.
As summarized in the Table I (where some other notable

spacetimes are also listed), this solution contains both the
Ernst metrics family, such as the magnetized Reissner-
Nordstrom black hole (A ¼ 1) and the magnetized and
charged BBMB metric for A ¼ 1=2.
In order to analyze this point, A will henceforth be fixed to

1=2. Moreover, we perform a change of the radial coordinate,

R ! 4�2 � ab

4�� a� b
: (3.15)

We prefer to express theA ¼ 1=2 solution just in terms of the
mass and charge parameters, m and e0, instead of the less
physical a and b. They are related (setting the coupling
constant ratio G=�0 ¼ 1) as 2m ¼ aþ b and e0 ¼ abA.
So Eqs. (3.13) and (3.14) take form

�̂ ¼
ffiffiffiffi
6

�

s 0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 4e20

q
2��m

1
A; (3.16)

d̂s2 ¼ j�j2
�
�
�
1� m

2�

�
2
d�2 þ d�2

ð1� m
2�Þ2

þ �2d�2
�

þ �2sin 2�

j�j2 ðd�!dtÞ2; (3.17)

where

e	ð�Þ ¼ 4�2ð�2 �m�þ e20Þ
ð2��mÞ2 ; (3.18)

�ð�; �Þ ¼ 1þ iBe0 cos �þ B2

4
½e	sin 2�þ e20cos

2��;
(3.19)

TABLE I. Some specializations of the metric (3.14) for some
values of its parameters.

Spacetimes A B e0 m

Magnetized charged BBMB 1=2
p p p

Charged BBMB 1=2 0
p p

BBMB black hole 1=2 0 0
p

Magnetized Reissner-Nordstrom 1
p p p

Reissner-Nordstrom 1 0
p p

Magnetised Schwarzschild 1
p

0
p

Schwarzschild 1 0 0
p

Melvin magnetic universe 8 p
0 0

Minkowski 8 0 0 0

EMBEDDING HAIRY BLACK HOLES IN A MAGNETIC . . . PHYSICAL REVIEW D 87, 084029 (2013)

084029-7



!ð�; �Þ ¼ B3

4
e0sin

2�

�
2�� 2mþ 2e20

�
þm2 � 4e20

2��m

�
� B3e0

2�2 � 2e20
2��m

þ 1

2�
ð4Be0 � B3e30Þ;

Að�; �Þ ¼ �
B
2 ðe	sin 2�þ e20cos

2�Þ½1þ B2

4 ðe	sin 2�þ e20cos
2�Þ� þ Be20cos

2�

j�j2 ;

A�ð�; �Þ ¼ � 3

8
B2sin 2�

�
2�� 2mþ 2e20

�
þm2 � 4e20

2��m

�
þ 3e0B

2ð�2 � e20Þ
2��m

þ 3e30B
2

4�
� e0

�
: (3.20)

This solution describes a charged BBMB black hole em-
bedded in an axial external magnetic field. The same
considerations of the previous section regarding the ap-
pearance of curvature singularities on the poles of the
surface � ¼ m=2 have to be taken into account with cau-
tion. The immersion into a background magnetic field is,
therefore, not so physically smooth as for more standard
back holes—such as the Kerr-Newman family—although
it is mathematically similar.

The fact that the seed black hole is charged and im-
mersed into an external magnetic field leads to frame-

dragging effects, due to the ~E� ~B circulating momentum
flux in the stress-energy tensor, which serves as a source
for a twist potential. Thus, although the seed metric is
static, the Harrison-transformed one is stationary. The
angular momentum is proportional to the intrinsic electric
charge of the black hole e0 and the external magnetic field
B, so the rotation can be detained by switching off either
the black hole electric charge e0 or the external magnetic
field B. In the first case, we will retrieve the static un-
charged magnetized BBMB metric of Sec. III A, while in
the latter case we retrieve the standard charged BBMB
black hole. This is a property shared by the magnetised
Reissner-Nordstrom too.

Another property in common with the magnetized
Reissner-Nordstrom black hole is, after the process of
magnetization, the appearance of a conical singularity on
the polar axis (which can be interpreted as a string with
positive energy density and negative tension associated
with some additional and singular stress-energy tensor on
the right-hand side of Einstein’s equations). This can be
seen by expanding the g�� and g components of the

metric (3.17) in powers of � for a small circle around � ¼ 0
and � ¼ �. Eventually, it is possible to avoid this extra
feature and obtain a regular spacetime by simply rescaling
the angular coordinate V � ¼ =F, where

F ¼ 1þ 3

2
B2e20 þ

B4e40
16

: (3.21)

This value is exactly in agreement with the result of
Ref. [26] for the Reissner-Nordstrom black hole.
This feature is not present (i.e., F ¼ 1) when the intrinsic
electric charge of the black hole e0 is null, as in the
metric (3.7).

Note that, while the static magnetized BBMB metric
(3.7) approaches the Melvin magnetic universe asymptoti-

cally, the stationary solution (3.17) does not reach the
Melvin universe globally (i.e., for all �) because the elec-
tric field on the symmetry axis is not null for � ! 1, as
occurs in the magnetic universe. This is a common fact for
magnetized charged black holes, as pointed out in
Ref. [26]. The generalization to the dyonic black hole
(that is, using as a seed a metric with an intrinsic magnetic
potential in addition to the electric one) is trivial because of
the electromagnetic duality of the Maxwell field in four
dimensions. In this section we proposed just a couple of
examples, but we note that by applying the transformations
ðIÞ–ðVIÞ one can generate an infinite tower of physically
inequivalent solutions, which is exactly what happens for
the Einstein-Maxwell theory.

IV. COMMENTS AND CONCLUSIONS

In this paper we have applied Ernst’s solution-generating
technique to Einstein gravity coupled with Maxwell elec-
tromagnetism and a minimally coupled scalar field. We
have found that, for axisymmetric and stationary space-
times, the SU(2,1) symmetry group behind the Kinnersley
transformation is preserved and can be used to generate an
infinite tower of solutions. A couple of examples are pro-
vided and worked out to show how the machinery works. In
particular, the Fisher, Janis, Robinson, andWinicour metric
and the Penney metrics are embedded in an external mag-
netic field thanks to a Harrison transformation.
These magnetized naked singularities, by means of a

conformal transformation, were then mapped to uncharged
and charged BBMB black holes embedded in an external
Melvin magnetic universe for the Einstein-Maxwell theory
of gravitation with a conformally coupled scalar field. The
‘‘intrinsic’’ charged metric is stationary rotating, while the
uncharged metric remains static after the Harrison trans-
formation. The external magnetic field seems to sharpen
the singular behavior of the standard BBMB black holes,
because singularities not covered by event horizons
come out.
Therefore, Ernst’s solution-generating technique can

also be stretched in the presence of a conformally coupled
scalar field, acting on the seed metric through a sequence
of three steps: (i) a conformal transformation f that brings
the seed metric to the minimally coupled (MC) system,
(ii) any (let us say n) sequence of generalized Kinnersley
g1 � g2 � � � � � gn transformations can be performed
on the MC system, and finally (iii) coming back to the

MARCO ASTORINO PHYSICAL REVIEW D 87, 084029 (2013)

084029-8



conformally coupled (CC) system with a conformal trans-
formation f�1, as is represented in following figure:

We suspect that, similarly to what occurs in the case with
a vanishing scalar field (Gerosh theorem), for the scalar
field minimally (and conformally) coupled to Einstein-
Maxwell gravity all spacetime solutions might be gener-
ated by the set of generalized Kinnersley transformations
ðIÞ–ðVIÞ. The biggest issue we are concerned about is
the suitability of the conformally rescaled Lewis-Weyl-
Papapetrou metric for describing the most general station-
ary, axisymmetric spacetimes for the Einsten-Maxwell
theory with a conformally coupled scalar field.

It is worth noticing that in this paper we have only taken
advantage of the duality between the minimally and con-
formally coupled scalar fields, but Ernst’s solution-
generating technique considered here can be applied to
many other theories connected with the minimally coupled
scalar matter, such as some classes of Brans-Dicke or F(R)
gravities.

Furthermore, the same procedure can also be directly
extended to more general matter, such as harmonic map
coupling—which consists of a collection of scalar fields
arranged in a nonlinear sigma-model fashion—and all
conformally related theories. Generally, in that case the
symmetry group is enlarged.

So the mechanism developed here is able to generate an
infinite number of physically inequivalent axisymmetric

stationary solutions for a wide range of gravitational theo-
ries related to the scalar coupling (and eventually to
Maxwell electromagnetism).
For future perspectives, we would like to explore the

possibility of exploiting the integrability and the symme-
tries of the system directly in the conformally coupled
system7 without passing through the minimally coupled
one, and to try to also apply this formalism for a possible
generalization of the BBMB metrics, including the Kerr
family. Work in this direction, and in magnetizing the
accelerating BBMB black hole, is in progress. Also, a
better understanding of the causal structure and eventually
the thermodynamic properties of magnetized BBMB
spacetimes might be interesting.
For people interested in higher-dimensional gravity, the

generalization of the present work to five dimensions is
straightforward by following the lines of Refs. [27,28],
where Ernst’s formalism, without scalar fields, was ex-
tended to five dimensions.
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