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We study the process of decoherence induced by the presence of an environment in acoustic black

holes, using the open quantum system approach, thus extending previous work. We focus on the ion trap

model but the formalism is general to any experimental implementation. We compute the decoherence

time for that setup. We find that a quantum-to-classical transition occurs during the measurement and we

propose improved parameters to avoid such a feature. We provide analytic estimations for both zero and

finite temperature. We also study the entanglement between the Hawking-pair phonons for an acoustic

black hole while in contact with a reservoir, through the quantum correlations, showing that they remain

strongly correlated for small enough times and temperatures. We use the stochastic formalism and the

method of characteristic to solve the field wave equation.
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I. INTRODUCTION

The Hawking effect, i.e., the particle creation process
that gives rise to a thermal spectrum of radiation outgoing
from a black hole [1], is a prediction of quantum field
theory in curved space-time. This effect together with its
entropy complete the interpretation of black holes as ther-
mal objects. On the one hand, it is believed that the heart of
a theory that unifies quantum mechanics and gravity lies in
understanding the nature of this thermality. On the other
hand, it is also important to collect experimental evidence
in order to gain insight into this phenomenon, but this is
practically impossible since black holes’ temperatures are
less than nK. Since the phenomenon has not been observed
experimentally, it is of crucial importance that all the
assumptions underlying the Hawking effect be carefully
analyzed so as to try to understand the process.

W.G. Unruh proposed an analogue gravity hydrodynam-
ical model where phonons propagate in a fluid with a
subsonic and supersonic regime [2]. This model obeys
the dynamics of a massless scalar field near a black
hole and provides a possible experimental implementation
to study the Hawking effect. Subsequently, there have been
several, more realistic proposals that involved Bose-
Einstein condensate (BEC) [3], moving dielectrics [4],
waveguides [5], and slow light systems [6], among others.

On general grounds, an acoustic black hole is a system in
which phonons are unable to escape from a region in which
the background fluid is flowing more quickly than the local
speed of sound. Therefore, as we will see below, trapped
phonons are analogous to massless scalars in gravitational
black holes.

Returning to the experimental feasibility, the current
proposals do not provide conclusive evidence of the
Hawking effect (see, for example, Ref. [7]). Nevertheless,
we believe that a particular one developed by Horstmann

et al. [8] provides a promising setup. This system consists
of a circular ring of trapped ions moving with an inho-
mogeneous velocity profile emulating a black hole.
The signature of the quantum radiation coming from
the Hawking effect is the correlation between entangled
phonons near the horizon [9], which can be measured by
coupling the ions’ motional degrees of freedom to their
internal state [10].
Given that we are interested in the quantum nature of the

effect (since classically no particle can escape the horizon),
in the first sections of this paper we analyze the possibility
of having decoherence in an analogous black hole. This
decoherence, or quantum-to-classical transition, may be
caused by a variety of phenomena. In this work, we con-
centrate on the decoherence induced by an interaction of
the system with an environment.
As mentioned in the previous paragraph, the presence of

an environment can destroy all the traces of the quantum-
ness of a system. All real-world quantum systems interact
with their surrounding environment to a greater or lesser
extent. While the quantum system is in interaction with an
environment—defined as any degrees of freedom coupled
to the system which can entangle its states—a degradation
of pure states into mixtures takes place. No matter how
weak the coupling that prevents the system from being
isolated, the evolution of an open quantum system is
eventually plagued by nonunitary features, like decoher-
ence and dissipation. Decoherence, in particular, is a quan-
tum effect whereby the system loses its ability to exhibit
coherent behavior. E.g., nowadays decoherence stands as a
serious obstacle in quantum information processing. All in
all, it should be crucial to control decoherence in order to
plan a concrete setup for measuring the Hawking radiation
as a quantum feature of analogue gravity models. The time
scale when this effect takes place is called the decoherence
time.
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In this paper, we show a more detailed and deeper
treatment of the problem given in Ref. [11], and we present
new results concerning the evaluation of the decoherence
time and analytical expressions for correlation functions
of the quantum fields. We continue using the field-
theoretical description in order to present a derivation
applicable to any implementation of an acoustic black
hole. Nevertheless, given our interest in the ion trap we
provide numerical results corresponding to that particular
setup.

The article is organized as follows. In Sec. II we give a
brief description of the specific model we are using—the
ion trap. For the sake of completeness, we also use it to
give a presentation of the general features of an acoustic
black hole and, at the same time, give the details of the
specific model. In Sec. III we present the model of an
environment and show how to study systematically the
nonequilibrium dynamics of the system responsible for
the quantum-to-classical transition in an open system.
Following this approach, Sec. IV contains the estimation
of the decoherence time—the time it takes for the acoustic
black hole to become classical—calculated explicitly for
the case of the ion ring, but with a formalism applicable to
any implementation of an acoustic black hole. The ap-
proach of computing the decoherence time, while giving
the correct result, is not very transparent in explaining how
the measurement would be affected. To solve this, we study
in Sec. V the dynamics of the entanglement through the
analysis of correlations, which is the observable in the
actual experiment. As opposed to the previous section, in
this case we give a general description, without specifying
for the ion ring. Finally, we summarize our results in
Sec. VI.

II. A PARTICULAR ACOUSTIC BLACK HOLE:
THE ION RING

As stated above, we will work in the context of the
field-theoretical description, since it is common to every
acoustic black hole. Given that we are interested in the ion
ring model to calculate the decoherence time, and with the
purpose of introducing the subject of analogue gravity with
a specific example, we will explain this setup detail from
first principles. As in Ref. [8], we will begin with the
discrete description of N ions of mass m in a circular
trap of radius R to end with the description of a massless
scalar field in a curved background.

Following the study done in Ref. [8], the Hamiltonian
describing the ions of the circular trap is given by

H ¼ �XN
i¼1

ℏ2

2mR2

@2

@�2i
þXN

i¼1

Veð�i; tÞ þ Vcð�1; . . . ; �NÞ;

(1)

where Veð�i; tÞ is an external field potential corresponding
to an electric field that induces the classical trajectories

�0i ðtÞ and Vcð�1; . . . ; �NÞ is the Coulomb potential between
the ions. Those are such that the velocity profile is

vð�;tÞ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

vmin 0����H��1;

�þ�

�
���H
�1

�
��1�ð���HÞ��1;

vmax �Hþ�1���2���H��2;

���

�
��2�þ�H

�2

�
��2�ð��2�þ�HÞ��2;

vmin 2���Hþ�2���2�;

where � ¼ ðvmax þ vmin Þ=2 and � ¼ ðvmax � vmin Þ=2.
The minimum and maximum velocity are constrained by
the condition that each ion has to make one revolution
during a period T. It is important to notice that we use an
approximate velocity profile, as introduced in Ref. [11].
The real one—as explained in Ref. [8]—must be C3, but
ours is a good approximation appropriate to our calcula-
tions. Taking this into account, the parameters �i and �H
do not exactly match those of Horstmann et al. The system
may be prepared in an initial thermal state with tempera-
ture T0. An illustration of the setup and the velocity profile
can be found in Figs. 1 and 2 of Ref. [8].
Initially, the velocity profile is constant with

vmin ðt ¼ 0Þ ¼ vmax ðt ¼ 0Þ ¼ 2�=T, but during a time �
the profile changes such that vmin ðt � �Þ< 2�=T and
vmax ðt � �Þ> 2�=T in the following way:

vmin ðtÞ ¼ vmin þ
�
2�

T
� vmin

�
e�t2=�2 ; (2)

where we call � ¼ 0:05 � T the collapse time, which is
much smaller than T, and after that time the asymptotic
profile is given by the parameter vmin ðt � �Þ ¼ vmin . It is
important to notice that the measurement can only be
performed during one period T, since after that time the
system’s classical configuration loses its stability; see
Ref. [8]. Therefore, we assume that any possible measure-
ment ought to end after one revolution, but must last longer
than � in order for the acoustic black hole to form, as we
will see below.
The problem can be linearized for small perturbations of

the trajectories �i ¼ �0i þ ��i as

H � �XN
i¼1

ℏ2

2mR2

@2

@��2i
þm

2

X
i�j

FijðtÞ��i��j: (3)

We are interested in the continuous description of this
system, described by the field �ð� ¼ �0i ðtÞ; tÞ ¼ ��iðtÞ.
After diagonalizing the previous Hamiltonian and going
to the continuous limit we end up with the Lagrangian

L½�� ¼
Z 2�

0
d�

�ð�Þ
2

fð@t�þ vð�Þ@��Þ2

� ðDð�i@�Þ�ð�; tÞÞ2g; (4)
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where Dð�; kÞ ¼ cð�ÞkþOðk3Þ is the dispersion relation.
The speed of sound is given by

cð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nð�ÞQ2

mR3

s
; (5)

where n is the local density of the ions and Q their elec-
tric charge. The conformal factor is �ð�Þ ¼ mR2nð�Þ ¼
mR2ðN=ðvð�ÞTÞÞ.

In Ref. [12], Unruh has shown that the Hawking radia-
tion is robust against small deviations from a linear dis-
persion relation, so we simply take Dð�; kÞ ¼ cð�Þk.
Moreover, the conformal factor can be included to first
order in the definition of the field, redefined as 	 ¼ ffiffiffiffi

�
p

�.

Taking this into account, we can describe the field by
means of an action written in the suggestive form (this
description is also the starting point in Ref. [11])

S0½	� ¼ 1

2

Z
d2x

ffiffiffiffiffiffiffi�g
p

g
�@

	@�	; (6)

where x
 ¼ ðt; x ¼ �Þ and the effective metric is

ds2 ¼ ðc2 � v2Þdt2 þ 2vdxdt� dx2: (7)

In the action written above, there are some terms involving
spatial derivatives of � that are missing. This is due to the
fact that they are negligible with respect to S0, and do not
affect the dynamics of the system.

Of course, this system is nonrelativistic and it must be
thought of as an effective sigma-like model describing the
phonons in the ion trap. Nevertheless, this is indeed an
analogue black hole, since it presents an event horizon in
the points where v2 ¼ c2. This analogy can be clarified if
we change the variables

t ! ~t ¼ tþ
Z v

c2 � v2
dx:

Then the metric is

ds2 ¼ ðc2 � v2Þd~t2 � dx2

1� v2=c2
; (8)

and expanding linearly around the angle �H of the
event horizon where vð�HÞ ¼ cð�HÞ, we recover the
Schwarzschild metric. This field,	ðxÞ, describing the pho-
nonic excitation of the continuous array of ions can now be
quantized. Repeating the Hawking radiation derivation, the
Hawking temperature can be obtained,

TH ¼ ℏ
4�vkB

d

d�
ðv2 � c2ÞjH: (9)

Now that we have reproduced the Hawking radiation result
in this system,we turn to the observables thatwere proposed
as signatures of this effect. As suggested by Balbinot et al.
[9] and studied by Schützhold andUnruh [13], the signature
of the quantumHawking radiation is the peak present in the
correlation h�pLð�Þ�pLð�0Þi between two points inside and

outside the acoustic black hole. The magnitude �pL is the
left-moving component of the canonical momentum con-
jugate to ��.
Stimulated emission due to the thermal background T0 is

also present in the system, as opposed to the quantum
Hawking radiation (spontaneous emission). The signature
described above only accounts for the latter.
This feature reflects the entanglement between the

Hawking pair of phonons emitted near the event horizon.
Following the discussion in Ref. [9], this can be seen by
writing the ‘‘in’’ vacuum in terms of the ‘‘out’’ vacuum as a
squeezed state,

jini / exp

�X
!

e�ℏ!=2kBTHaðescÞy! aðtrÞy!

�
jouti; (10)

where aðescÞ;ðtrÞy are creation operators for, respectively, the
outgoing escaping and trapped modes.
This magnitude was calculated numerically and the

results are shown in Fig. 9 of Ref. [8]. When one increases
the initial temperature T0 of the system, the entanglement
is lost due to a quantum-to-classical transition induced by
thermal effects. In Ref. [8] they computed, as a measure of
the entanglement, the logarithmic negativity; see Fig. 14 of
Ref. [8]. On the one hand, for a fixed temperature, the
system needs a certain amount of time to generate the
entanglement through the creation of the Hawking pairs.
As the temperature increase above a threshold,�100 � TH,
the entanglement is lost and the system starts behaving
classically. This is also reflected in the correlation at the
same temperature scale. In this paper we will instead be
interested in the quantum-to-classical transition induced by
the nonequilibrium dynamics with an environment.
Another feature that can affect the measurement is the

presence of a noise in the force used to produce the
trajectories. This stochastic component of the force can
be described by the parameter � defined such that
ðnoiseÞ ¼ �� ðmean forceÞ. The requirement that the
peak in the correlation is distinguishable imposes the fol-
lowing bound:

� & 5� 10�6: (11)

Although the problem can be treated in a discrete fash-
ion, we choose to stick to the field description since the
action given in Eq. (6) is common to every realization of
acoustic black holes, and is not restricted to ion traps. For
example, in the case of a BEC acoustic black hole it
emerges from the Gross-Pitaevski equation or in the wave-
guide setup fromMaxwell’s equations, etc., but the point is
that the system must always be described with an action
like Eq. (6) in some regime. Therefore, it is important to
notice that the analysis carried out in the following sections
can be applied to any setup.
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III. CHARACTERIZATION OF BOSONIC
ENVIRONMENTS AND THE

NONEQUILIBRIUM DYNAMICS

A. Interaction model

Our aim in this paper is to study the behavior of this
system out of equilibrium while interacting with a quantum
environment, since this coupling acts as a mechanism that
induces decoherence and the system starts behaving
classically after the decoherence time. As is usual for this
kind of task, we use the Schwinger-Keldysh or ‘‘in-in’’
formalism.

As explained in the previous section, our system is
described with the action of a massless scalar field in a
dynamical background, given in Eq. (6). Following the
quantum Brownian motion (QBM) paradigm, the environ-
ment is described by a continuous array of bosonic quan-
tum harmonic oscillators distributed in each position of the
circular trap, following Ref. [11]. The bath is at rest with
respect to the laboratory and it will be represented by the
degrees of freedom q�ð�; tÞ with the action

SE½q�� ¼ 1

2

Z 1

0
d�Ið�Þ

Z
d2x½ _q2�ðx; tÞ � �2q2�ðx; tÞ�:

(12)

The function Ið�Þ corresponds to the mass of each
oscillator that composes the environment. The interaction
between the system and the environment is given by the
following term in the action:

Sint½	; q�� ¼ �
Z 1

0
d�

Z
�ð�Þd2x	ðxÞq�ðxÞ; (13)

in such a way that the total action is

S½	; q�� ¼ S0½	� þ SE½q�� þ Sint½	; q��: (14)

The nature of the environment depends strongly on the
specific model of black hole considered. For example, in
the ion ring proposal the velocity profile is generated by the
action of an electric field, which in turn is produced by
plane-parallel electrodes. The irregularities of its surface
produce fluctuations in the force they induce. The noiseless
component of this force is included in the effective action
of the system in Eq. (6), such that the analogue gravity
model is achieved. The pure-noise component due to the
fluctuations can be introduced as an environment and
the oscillators represent the corresponding modes of the
stochastic electric field. The details of the possible natures
of an environment was extensively discussed in Ref. [14].
The fact that we are thinking of an electric field coupled to
the ions’ coordinates justifies the bilinear coupling used
here. Nevertheless, in other analogue gravity models as
long as the environment is bosonic, this model is fairly
general. For example, if the field is coupled to the ions’
velocity instead of their position, then this amounts only to
a change Ið�Þ � Ið�Þ�2, as can be seen below. Therefore,

the information of each particular case is encoded in the
spectral density.
To simplify the analysis we take an ohmic environment,

although more general environments do not substantially
change the results, as can be seen in Ref. [15] in the context
of quantum Brownian motion.
In Ref. [16] it was shown that the presence of an environ-

ment with scales bigger than the Planck scale can generate
instabilities such as Miles-type instabilities that jeopardize
the detection of the Hawking radiation as a quantum in-
duced effect. The environment is at rest with respect to the
laboratory, and within the approximation used both the
environment and the ions are in the linear dispersion
relation regime—far from being in the Planckian regime,
where the correct description is the Coulomb chain ex-
pression. Therefore, the model used here does not present
any instability induced by the environment whatsoever.
In the following we will present the formalism used to

study the nonequilibrium dynamics of this composed
system.

B. Reduced density matrix

The dynamics of any system out of equilibrium is
described by its density matrix together with its evolution
in time. The matrix elements of this operator are given by

�ð	; q;	0; q0jtÞ ¼ h	; qj�̂ðtÞj	0; q0i: (15)

We use an uncorrelated initial state between the system and
environment, in such a way that

�̂ðtiÞ ¼ �̂SðtiÞ 	 �̂EðtiÞ: (16)

These initial density matrices correspond to a thermal
state with temperature T0 ¼ ðkB�Þ�1, i.e., �� e��H. In
principle the initial temperature of the system and the
environment can be different and the result we obtain
below for the decoherence depends only on the initial
environmental temperature. Nevertheless, it is more appro-
priate in the experiment to think of an initial equilibrium
state between the system and the bath.
More general states do not substantially change the

process of decoherence, as can be seen in Ref. [17].
The reduced density matrix—which represents the con-

cept of coarse graining the environmental degrees of free-
dom, which are of no interest to us—is defined in the usual
way as the partial trace over their degrees of freedom,

�rð	;	0jtÞ ¼ TrE�: (17)

The generalization of the nonequilibrium dynamics of a
quantum harmonic oscillator to the study of fields is
straightforward and can be found in Ref. [18]. The evolu-
tion in time of the reduced density matrix is given by the
following expression:
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�rð	;	0; tÞ ¼
Z

D	iD	0
iJ rð	;	0; tj	i;	

0
i; tiÞ

� �Sð	i;	
0
i; tiÞ; (18)

where we defined the evolution operator associated with
the reduced density matrix,

J rð	;	0; tj	i;	
0
i; tiÞ



Z 	

	i

D	
Z 	0

	0
i

D	0eiðS0½	��S0½	0�Þ=ℏF ½	;	0�: (19)

In this expression the influence functional is defined
following the Feynman-Vernon treatment,

F ½	;	0� 
 eiSIF½	;	0;t�=ℏ

¼
Z
CTP

Dq��Eðqi; q0iÞ exp fiðSE½q�� � SE½q0��
þ Sint½	; q� � Sint½	0; q�Þ=ℏg; (20)

where the prime and unprimed variables represent both
branches of the closed time path curve over which we
integrate; see Refs. [18,19].

Therefore, the evolution of the system is dictated by the
coarse-grained effective action

Seff½	;	0� ¼ S0½	� � S0½	0� þ SIF½	;	0�: (21)

The computation of the Feynman-Vernon influence action
is identical to the QBM case and the result can be cast into
the form

SIF½	;	0� ¼
Z

d2xd2x0	�ðxÞ
�
Dðx; x0Þ	þðx0Þ

þ i

2
Nðx; x0Þ	�ðx0Þ

�
; (22)

with the usual definitions 	� ¼ 	�	0 and 	þ ¼ ð	þ
	0Þ=2. The kernels Dðx; x0Þ and Nðx; x0Þ have the same
expression as in the QBM case regarding the temporal
behavior, and they are local in space,

D ðx; x0Þ ¼
Z 1

0
d�Jð�Þ sin�ðt� t0Þ�ðt� t0Þ�ðx� x0Þ;

(23)

N ðx; x0Þ ¼ 1

2

Z 1

0
d�Jð�Þ coth��

2
cos�ðt� t0Þ�ðx� x0Þ;

(24)

where the effective spectral density Jð�Þ is defined as

Jð�Þ ¼ �2ð�Þ
Ið�Þ� : (25)

As we stated previously, we consider an ohmic environ-
ment, and this translates into the following form of the
spectral density:

Jð�Þ ¼ ~�2�fð�Þ; (26)

where ~� plays the role of an effective coupling constant
and fð�Þ is a generic cutoff function whose effect is to
regularize the expression, and to this aim it must satisfy the
requirements

fð� ¼ 0Þ ¼ 1 and fð� � �Þ ! 0: (27)

Starting with the effective action Seff , we can write
the semiclassical equation of motion, analogous to the
stochastic Langevin equation for the field, i.e.,1

1ffiffiffi
g

p @

@x


� ffiffiffi
g

p
g
� @	

@x�

�
þ

Z
dsDðt; sÞ	ðs; xÞ ¼ 
ðx; tÞ:

The field 
 is a stochastic force with a Gaussian probability
distribution with zero mean h
i ¼ 0 and a two-point func-
tion given by

h
ðxÞ
ðx0Þi ¼ ℏNðx; x0Þ: (28)

This stochastic force can be identified as the noise
presented in the previous section, quantified with the
parameter �.

C. Estimation of the effective coupling constant

To make contact with the parameters used in Ref. [8]
we will calculate the relationship between the effective
coupling constant ~� coming from the environmental
spectral density and the parameter that characterizes the
noise—the fluctuations in the force applied to the ions—
introduced above as noise ¼ � �F.
Making a comparison between the equation that defines

� with Eq. (28), it is possible to identify the stochastic
force with the fluctuations � �F. Using the equation
h	þ . . .¼
 one can obtain mhðR��Þþ ...¼mR
=

ffiffiffiffi
�

p
,

and therefore

mRffiffiffiffi
�

p 
rms ¼ � �F; (29)

where 
rms ¼
ffiffiffiffiffiffiffiffiffiffih

ip

is the root-mean-square of the
stochastic force.
The mean force can be estimated as �F�mRðvmax �

vmin Þ=�. Therefore, coming back to the previous
expression,

1ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffi
h

i

p
¼ �

1

�
ðvmax � vmin Þ: (30)

The noise kernel is given by h

i ¼ ℏNð0Þ, and if one

uses a cutoff function of the form fð�Þ ¼ e��=� we obtain

N ¼ 1

2
~�2

Z 1

0
d��e��=� ¼ 1

2
~�2�2: (31)

1Details about the meaning of this equation can be found in
Sec. VA, specially Eqs. (61) and (63).
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Therefore 
rms ¼
ffiffiffiffiffiffiffiffi
ℏ=2

p
~��, and

~� ¼ �

ffiffiffiffi
�

p
ffiffiffiffiffiffiffiffi
ℏ=2

p
��

ðvmax � vmin Þ: (32)

If we assume that � is the minimum amount of time
during which the distribution changes appreciably (as we
did to compute the mean value of the force) and it is of the
same order as the magnitude of the time scale associated to
the environment, then the Lorentzian cutoff frequency
satisfies the relation �� � 1 and we finally arrive at the
desired expression,

~� ¼ �

ffiffiffiffiffiffi
2�

p
ffiffiffi
ℏ

p ðvmax � vmin Þ: (33)

In accordance with the results presented in Ref. [8] the
bound of the coupling constant originally proposed is
�ð~�Þ � 5� 10�6. As explained in the previous section,
this bound comes from the requirement that the fluctua-
tions in the trajectories due to the noise in the force do not
wash out the characteristic peak in the correlation.

In the following section we will learn that this bound is
not appropriate since in this range decoherence occurs even
before the acoustic black hole is formed, at a time of the
order of �. To increase the decoherence time to values
bigger than the measurement time, of order T, the magni-
tude of the noise present in the system, characterized by �,
must be appropriately reduced.

IV. DECOHERENCE TIME

A. Master equation for the reduced density matrix

To obtain the decoherence time one first has to obtain the
relevant coefficients included in the master equation; in
particular, those corresponding to diffusive effects. In order
to obtain this equation, the procedure consists of deriving
the evolution operator with respect to time to generate the
derivative of the reduced density matrix. The next step is to
multiplyJ r�rðtiÞ and finally integrate the initial conditions,
thus generating �rðtÞ instead of its initial value [18,19].

The derivative of J r is

iℏ
@

@t
J r½	f;	

0
f; tj	i;	

0
i; 0�

¼ J r½	f;	
0
f; tj	i;	

0
i; 0�

�
� @

@t
Seff½	cl; 	

0
cl; t�

�
; (34)

and using the following identity that comes from the
causality of the dissipation kernel,

SIF½	;	0; tþ dt� ¼ SIF½	;	0; t� þ dt
Z

dx	�ðx; tÞ

�
Z t

0
dsfDðt; sÞ	þðx; sÞ

þ iNðt; sÞ	�ðx; sÞg; (35)

one can obtain, after performing the functional integrals,

@

@t
�rð	;	0; tÞ

¼ � i

ℏ
h	j½ĤS ; �̂rðtÞ�j	0i � 1

ℏ

Z
dxð	ðxÞ �	0ðxÞÞ

�
Z t

0
dt0

�
Nðt; t0Þ½���0�ð	;	0; t0Þ

� i

2
Dðt; t0Þ½�þ�0�ð	;	0; tÞ

�
: (36)

The first term that comes from deriving the free part
of the effective action generates the usual Liouville–
von Neumann term. The second contribution was
defined as

�ð	;	0; t0Þ 

Z
	ðt;xÞ¼	ðxÞ;	0ðt;xÞ¼	0ðxÞ

DxDx0eiSeff=ℏ

� �rð	0; 	
0
0; 0Þ	ðx; t0Þ; (37)

and a similar expression for �0½	;	0; t0� with 	ðt0Þ �
	0ðt0Þ. In the case of weakly coupled environments,
�� 10�6, and since these terms are already beyond linear
order with respect to the coupling constant because of
the presence of the kernels, the expression above can be
approximated by Seff½	;	0� ’ S0½	� � S0½	0� in the
functional integral. This way, we can see that these
functions are the matrix elements of the operators

�ðx; t0Þ ¼ 	̂ðx; t0 � tÞ�rðtÞ and �0ðx;t0Þ¼�rðtÞ	̂ðx;t0�tÞ.
Using this expression we can finally obtain the master
equation from

ℏ
@

@t
�̂rðtÞ ¼ �i½Ĥs; �̂rðtÞ� �

Z t

0
d�dx

�
Nðt; t� �Þ

� ½	̂SðxÞ; ½	̂ðx;��Þ; �̂rðtÞ�� � i

2
Dðt; t� �Þ

� ½	̂SðxÞ; f	̂ðx;��Þ; �̂rðtÞg�
�
; (38)

where 	̂SðxÞ is the field operator in the Schrödinger picture
and 	̂ðx;��Þ corresponds to the Heisenberg one. To study
the decoherence, we are only interested in the term propor-
tional to the noise kernel since those are the ones that
generate the necessary diffusion terms in the master
equations. To achieve this, we need to replace the solution
of the Heisenberg equations of motion (EOM).
To continue, we will obtain the solutions of the

Heisenberg EOM, which coincide with the classical
EOM of the field. Since we are in 1þ 1 dimensions, the
solution can be cast in the following form:

	 ¼ fðuÞ þ gðvÞ; (39)

where we define the null coordinates associated with the
effective metric,
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u ¼ t�
Z dx

cðxÞ þ vðxÞ ¼ t� xu;

v ¼ tþ
Z dx

cðxÞ � vðxÞ ¼ t� xv:

Therefore, we can study the decoherence for each mode u
and each mode v separately

	̂ðx; tÞ ¼ 	̂u=v cos!ðt� xu=vÞ: (40)

The allowed frequencies ! can be found by requiring
the condition (since the spatial dimension is compact) x 

xþ 2n�, and one has to impose periodic boundary
conditions over the ring, cos!ðt� xu=vðxþ 2n�ÞÞ ¼
cos!ðt� xu=vðxÞÞ. We call !min the smaller solution of

this equation and we take the maximum allowed frequency
to be !max � N=T. The solution is continuous in the
subsonic-supersonic transition regions. The contribution

proportional to the canonically conjugate momentum �̂S

can be discarded since it does not generate a diffusive term.
Wewill study separately the decoherence present in each

mode of frequency! and both u and vmodes. By inserting
this solution of the EOM into Eq. (38), the relevant term is
given by Z t

0
d�dxNðt; t� �Þ½	̂u=v cos!xu=v;

½	̂u=v cos!ð�þ xu=vÞ; �̂rðtÞ��:
(41)

Taking the appropriate expectation value one obtains

ð	u=v �	0
u=vÞ2

Z t

0
d�dxNðt; t� �Þ cos!xu=v

� cos!ðxu=v þ �Þ�rð	;	0Þ
¼ ð	u=v �	0

u=vÞ2
Z t

0
d�dxNðt; t� �Þ

� cos!xu=vðcos!xu=v cos!�� sin!xu=v sin!�Þ
� �rð	;	0Þ:

To estimate the decoherence time we study trajectories
with ð	u=v �	0

u=vÞ2 � ��2, where � ¼ 2�=N—the

mean separation of the ions since it is the smallest length
scale of the system. We use the usual definition of the
normal and anomalous diffusion coefficients, respectively,

DðtÞ ¼
Z t

0
d�Nðt; t� �Þ cos!�;

fðtÞ ¼
Z t

0
d�Nðt; t� �Þ sin!�;

(42)

and we also define the following coefficients:

V1u=v ¼
Z 2�

0
dxðcos!xu=vÞ2;

V2u=v ¼
Z 2�

0
dx cos!xu=v sin!xu=v:

(43)

Therefore, the diffusion term we obtain is given by

ℏ _�r ����2fDðtÞV1u=v þ fðtÞV2u=vg�r: (44)

This term contributes in the following way to the solution
of the master equation:

�r � �U
r exp

�
� 1

ℏ
�
Z t

0
dt0ðDðt0ÞV1u=v þ fðt0ÞV2u=vÞ�2

�
;

(45)

where �U represents the unitary evolution of the reduced
density matrix. The decoherence time is defined based on
the following relation:

�

ℏ

Z tD

0
dt0ðDðt0ÞV1u=v þ fðt0ÞV2u=vÞ�2 � 1: (46)

This corresponds to the fact that for times t > tD the non-
diagonal elements of the density matrix that encompass the
quantum coherence effects are suppressed. In order to
compute it, we will need explicit expressions for DðtÞ
and fðtÞ.
Let us start with the normal diffusion coefficients at zero

temperature, T0 ¼ 0,

DðtÞ ¼ ~�2

2

Z 1

0
d�

Z t

0
ds

�

1þ ð��Þ2
cos�s cos!s; (47)

where the expression was written with a Lorentzian cutoff
to attenuate high frequencies. We choose this prescription
specially—although the choice is irrelevant—because it
makes the integrals realizable. According to Ref. [20],
the explicit calculation of this integral gives the following
result:

DðtÞ ¼ ~�2

2

!

1þð!�Þ2
�
Shið�tÞ

�
�

!
cos!tcosh�tþ sin!t sinh�t

�
�Chið�tÞ

�
�

!
cos!t sinh�tþ sin!tcosh�t

�
þSið!tÞ

�
;

where ShiðxÞ and ChiðxÞ are the hyperbolic sine and
cosine integral, respectively, and SiðxÞ is the sine
integral.

On the one hand, for times much larger than the fre-
quency cutoff scale, i.e., t � ��1, this expression can be
approximated as

DðtÞ � ~�2

2

!

1þ ð!�Þ2
Sið!tÞ: (48)

On the other hand, for times much larger than the scale
imposed by the field frequency, t � !�1, the sine integral
can be approximated as Sið!tÞ � �=2, and for frequencies
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much lower than the cutoff ! � �, 1=1þ ð!�Þ2 � 1.

Finally, one obtain the expression

DðtÞ � ~�2!
�

4
: (49)

Therefore, the integral of the coefficient is given byZ tD

0
dsDðsÞ � ~�2 �

4
!tD: (50)

The same analysis can be done for the anomalous
diffusion coefficient and can be found in Ref. [20]. The
result for t � !�1, ��1 is

fðtÞ � ~�2

2
�! log

�

!
: (51)

As in the previous section, we can estimate the charac-
teristic time of the environment as ��1 � �; then, after
performing the integral, the anomalous diffusion coeffi-
cient can be estimated as

Z tD

0
dsfðsÞ � ~�2

2
� log

1

!�
!tD: (52)

Putting the previous results together, for an initial state
with zero temperature T0 ¼ 0, the decoherence time is
given by the following expression:

tDðT0 ¼ 0Þ � 4ℏ

��2 ~�2�!ðV1u=v þ 2 log 1
!� V2u=vÞ

¼ 2ℏ2

�2�v�2!��2

�
�
V1u=v þ 2 log

1

!�
V2u=v

��1
; (53)

where �v 
 vmax � vmin . If we focus on the ions’ ring
and the experimental parameters proposed for the system,
then the expression can be simplified even more, since we
are in a position to approximate

2 log

�
1

!�

�
V2u=v � V1u=v and V1u ’ V2v 
 V; (54)

as can be verified in the plots shown in Fig. 1. Finally, we
obtain the following result for the decoherence time:

tDðT0 ¼ 0Þ ¼ 2ℏ2

�2�v�2!��2V
: (55)

In Fig. 2 the result for the decoherence time as a function of
the force-relative noise � is shown. The decoherence time
is much shorter that T for the bound presented in Ref. [8],
�� 5� 10�6. As explained in Sec. II, the period T is also
of the same order of magnitude as the time needed to
perform the measurement. For larger times the system
becomes classically unstable, and for smaller times the
black hole would have no time to develop. The system,
for the experimental parameters proposed in Ref. [8],
shows decoherence on a time scale that is too short, and

this would make impossible the measurement of the as-
pects of the Hawking effect, which is purely of a quantum
nature. Moreover, decoherence happens in a time of the
same order of magnitude as the collapse tD � �, and there-
fore there is no time for the acoustic black hole to form.
To find a solution for this issue, we impose a decoher-

ence time appropriate to the experiment; to be specific, no
shorter than the bound tD � 100 � T.
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FIG. 1. Plot of the functions (a) log ð!�Þ�2V2u=v � V1u=v,
showing that the anomalous component is negligible, and
(b) V1u=V2v with respect to the mode frequency !, showing
that the decoherence time is the same for both the u and vmodes.
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FIG. 2 (color online). Dependence of the decoherence time as
a function of the relative noise in the force �. The colored band
includes all the allowed frequency ranges of the solutions.
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For this to be satisfied and to avoid the quantum-to-
classical transition induced by the environment, the bound
for the coupling with the environment must be modified in
the following way:

� & 3� 10�8: (56)

We also study the dependence of the decoherence time
with the shape of the velocity profile. To do this we plot the
expression in Eq. (55) as a function of vmin . As explained
in Ref. [8], this magnitude must be near 0:8�32�=T to
perform the measurement. As observed in Fig. 3, the
decoherence time varies smoothly with the velocity, and
therefore small deviations over 0:8�3 � 2�=T do not present
an inconvenience with respect to decoherence as long as
� � 10�8 and T0 & 100 � TH.

B. Behavior of the decoherence time with temperature

In this section we will study how temperature influences
the previous results. To achieve this we need to calculate
the diffusion coefficients again, in the presence of nonzero
temperature,

DðtÞ ¼ ~�2

2

Z 1

0
d�

Z t

0
ds� coth

�ℏ�
2

cos�s cos!s: (57)

To calculate this integral in the low-temperature limit we
will use the following approximation:

coth
�ℏ�
2

�
� 2
�ℏ� if �ℏ�

2 � 1;

1 if �ℏ�
2 � 1;

(58)

and perform the integrals in the two regimes, both �ℏ�
2 � 1

and �ℏ�
2 � 1. The details of the calculation can be found in

Appendix A. The result for the integral of the diffusion
coefficient to lowest order in temperature is given by

Z tD

0
dtDðt; �Þ ¼ ~�2 !�

4
tD þ ~�2 2ð1� cos!tDÞ

2!2�2ℏ2

& ~�2 !�

4
tD þ 2~�2

!2�2ℏ2
: (59)

Using this expansion we can conclude that the decoherence
time at finite temperatures is

tDðT0Þ ¼ 2ℏ2

�2�v�2�!�2V
� 8k2BT

2
0

!3�ℏ2
þOðT3

0Þ: (60)

Taking advantage of the expression in Eq. (60), let us
also study the dependence of the decoherence time on the
initial temperature of the field, T0.

2 The result is plotted
in Fig. 4. One can observe in the figure that the decoher-
ence time does not change substantially with temperature
for small enough coupling, and therefore this makes
no restriction on the temperature. Decoherence aside,
taking into account the results obtained in Ref. [8], the
entanglement that one would wish to measure as a
signature for the Hawking effect is present only for
T0 & 100 � TH. It is also important to notice that the
low-temperature approximation is valid in the range
T & 100TH.
Here we have assumed that the system is initially in

thermal equilibrium with respect to the environment.
However, if the bath is at a higher temperature than
the system one would expect that the bath heats up the
system and so washes out the Hawking signal. This
feature is reflected in the fact that the decoherence
time decreases for an increase in temperature T0, which
must now be interpreted as the initial temperature of
the bath.
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FIG. 4 (color online). Dependence of the decoherence time for
different relative noises in the force as a function of temperature.
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FIG. 3 (color online). Dependence of the decoherence time as
a function of the minimum velocity vmin for �� 10�8.

2In general, T0 is the initial temperature of the environment.
Since we consider that initially the system is in thermal equilib-
rium, this is also the initial temperature of the system.
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V. DYNAMICS OF THE ENTANGLEMENT
THROUGH CORRELATIONS

As explained in the Introduction, the approach of com-
puting the decoherence time, while giving the correct result
for the quantum-to-classical transition, is not transparent as
to what to expect from the measurement as the system gets
from quantum to classical. To solve this, we study in this
section the signature of the Hawking effect through the
shape of the correlation for a generic acoustic black hole,
following the presentation given in Ref. [11].

To understand this entanglement as a signature it is useful
to recall the following interpretation of the Hawking effect.
Hawking radiation can be understood as a pair production
of virtual particles, one of which falls into the black hole
and the other, outgoing, becomes real, building up the
Hawking radiation [1], as can be seen from Eq. (10). The
role of the correlations between this pair of particles has
been studied as a signature of the quantum Hawking effect;
see, for example, Refs. [8,9,13]. It was found that the
entanglement between this pair is translated to a sharp
peak of h�Lðx1; tÞ�Lðx; tÞi as a function of x, where x1 is
inside the black hole and x is outside, � is the canonical
momentum conjugate to 	; the subscript L corresponds to
the left-moving modes. This magnitude was calculated
using the Israel-Hartle-Hawking state [13,21–23] (the cal-
culation with this procedure should be done in the Unruh
state, but, as explained in Ref. [13], in 1þ 1 it gives the
same result as the Israel-Hartle-Hawking state) and it was
also calculated numerically in the case of the circular ion
trap [8] and BEC [9]. The result is shown in Ref. [13],
Fig. 1.

The formalism used in Ref. [13] does not seem to be
useful in the case of an acoustic black hole as an open
quantum system. The presence of the environment does not
seem to be easily included. Moreover, in the computation a
model of an eternal black hole is used. Therefore, the
inclusion of an initial thermal state and the time evolution
of the correlation function cannot be obtained within
previous procedures.

In this section we want to resolve these issues to some
extent. We will analyze the complete evolution starting
from the flat background coupled to a massless scalar
particle, initially in a thermal state of temperature T0,
and ‘‘collapsing’’ toward an acoustic black hole back-
ground with an event horizon.

To find the correlation functions in the quantum regime,
we use the stochastic formalism developed byCalzetta et al.
in Ref. [24], reviewed in Ref. [19], and applied in Ref. [11]
to this problem. This procedure will allow us to find the
correlation functions through the semiclassical solutions of
the Langevin EOM.Wewill assume that we study a generic
acoustic black holewith a generic environment. The coarse-
grained effective action of a generic field—which emerges
for example from the presence of an environment—can be
cast into the form of Eq. (21), where the free action is given

by Eq. (6), the influence action by Eq. (22), and the kernels
Dðx; x0Þ and Nðx; x0Þ include all the relevant information
regarding the environment. In the case of harmonic oscil-
lators with a spectral density their expression was already
given in Eqs. (23) and (24).

A. Stochastic description

The purely imaginary term of the effective action can be
written in the following way:3Z

D
P½
�e�i	�
x 
x ¼ ei

i
2	

�
x Nx;x0	

�
x0 ; (61)

where, for example, 	x ¼ 	ðxÞ and repeated indexes are
integrated. The probability distribution is Gaussian,

P½
� 
 N
e
�1

2
xN
�1

x;x0
x0 ; (62)

where N
 is a normalization constant; see Refs. [18,19,24].

Therefore, the original action is the same as a stochastic
process described by an action of the following type:

S½	;	0� ¼ S0½	� � S0½	0� þ	�
x Dx;x0	

þ
x0 �	�

x 
x: (63)

We will start with general results regarding the correlation
function and later apply it to the particular case of acoustic
black holes.
To find the correlation functions we must solve the

semiclassical EOMs for a realization of the stochastic force

ðt; xÞ and then integrate over the possible solutions with a
weight imposed by the probability distribution P½
� and
also integrate over the initial conditions. It is in the latter
integration that the initial temperature of the field T0 makes
its appearance.
To start, we will make a distinction between the homo-

geneous and inhomogeneous part of the solution, i.e.,

	
ðx; tÞ ¼ 	Oðx; tÞ þ
Z t

0
dsdx0Gretðt; sjx; x0Þ
ðs; x0Þ; (64)

where 	Oðx; tÞ is the noiseless solution satisfying

h	Oðt; xÞ þ
Z t

0
dsDðt; sÞ	Oðs; xÞ ¼ 0; (65)

where h 
 r
r
 and Gret is the retarded Green function

associated with the equation, satisfying

hGret þ
Z t

0
dt0Dðt; t0ÞGretðt0; sÞ ¼ �ðt� sÞ�ðx0 � xÞ: (66)

We take the usual Painlevé-Gullstrand-Lemaı̂tre metric
associated to a generic acoustic black hole,

ds2 ¼ �dt2 þ ðdx� vðx; tÞdtÞ2
¼ �ð1� vðx; tÞ2Þdt2 � 2vðx; tÞdxdtþ dx2; (67)

3In this section, to simplify the calculation we use c ¼ ℏ ¼ 1.
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where vðx; tÞ is the velocity profile, which is in principle
arbitrary as long as it has a supersonic-subsonic transition,
i.e., an event horizon. In this section we now consider its
time dependence instead.

In this paper we work under the weak-coupling approxi-
mation, in such a way that we can estimate 	O beginning
with the zeroth-order limit of the EOM, h	O ’ 0, which
explicitly—replacing the metric of Eq. (67)—is given by

½ð@t þ @xvðx; tÞÞð@t þ vðx; tÞ@xÞ � @2x�	Oðx; tÞ ¼ 0; (68)

and moreover, we can approximate Gret from

hGretðt; sjx; x0Þ ’ �ðt� sÞ�ðx0 � xÞ: (69)

Therefore, to first order in the coupling with the environ-
ment we can consider the dissipation term in Eq. (65) as an
inhomogeneity, replacing the complete solution 	O by the
solution of Eq. (68),

h	
 ’ 
ðx; tÞ �
Z t

0
dt0Dðt; t0Þ	Oðx; t0Þ; (70)

which in turn has the solution

	
ðx; tÞ ’	Oðx; tÞþ
Z t

0
dsdx0Gretðt; sjx;x0Þ
fðs;x0Þ; (71)

where we define 
f as


fðt; xÞ ¼ 
ðt; xÞ �
Z t

0
dsDðt; sÞ	Oðx; sÞ: (72)

Assuming that we have these solutions, the correlation
function relevant to the study of the entanglement between
the Hawking pair phonons can be obtained from

h	1	2i 
 hh	ðx1; t1Þ	ðx2; t2Þi
iin; (73)

where h. . .iin represents the mean value integrated over the
initial conditions weighted with the thermal distribution
with T0. To obtain the correlation function between the
conjugate momenta one simply has to derive the equation
above following the definition

�ðx; tÞ ¼ @	

@t
þ vðx; tÞ@	

@x
: (74)

Therefore, following the formalism presented in Ref. [24],

h	1	2i ¼ hð	O1 þG1x

f
xÞð	O2 þG2x


f
xÞi
;in

¼ h	O1	O2iin �G1x0Dx0xh	Ox	O2iin
�G2x0Dx0xh	Ox	O1iin þG1x0 h
x0
xi
;inG2x:

(75)

Using the properties of the stochastic force probability
distribution we get

h	1	2i ¼ h	O1	O2iin �G1x0Dx0xh	Ox	O2iin
�G2x0Dx0xh	Ox	O1iin þG1x0Nx0xG2x: (76)

In the case without an environment, where the field 	
represents particles in an acoustic black hole background,
the previous formalism can be used, but only the first term
contributes. Therefore, in the general case one can write

h	1	2iO ¼ h	1	2iC þOð�Þ; (77)

where � is the coupling constant with the environment. The
subindices C and O mean that it corresponds to the closed
and open system, respectively. This simple case [dropping
the Oð�Þ terms] already presents the main difficulties
inherent with the calculation and we will develop a
technique to deal with the equations in the following
sections.

B. Modes for the wave equation

To solve the EOM for the field we will use the method
of characteristics, well known from the mechanics of
compressible fluids; see Ref. [25]. If one has a general
differential equation of the form

aðx; tÞ @u
@x

þ bðx; tÞ@u
@t

þ cðx; tÞu ¼ 0 (78)

with the initial condition uðx; 0Þ ¼ fðxÞ, then it can be
solved in the following way. First find the characteristic
curves, defined as

dx

ds
¼ aðx; tÞ and

dt

ds
¼ bðx; tÞ: (79)

Then find the evolution of uðx; tÞ along the characteristic
curves, finding the solution for the following ordinary
differential equation:

du

ds
ðxðsÞ; tðsÞÞ þ cðxðsÞ; tðsÞÞuðxðsÞ; tðsÞÞ ¼ 0: (80)

Finally, having the congruence of characteristic curves, to
know uðx; tÞ one must invert ðx; tÞ � ðx0; sÞ, where x0 is the
initial condition and s the parameter along the character-
istic that goes through ðx; tÞ. Then, uðx; tÞ ¼ fðx0Þ.
In the rest of this section we will use this method to find

the solution of the EOM for the field.
Before attempting to solve for the modes we have to give

a specific velocity profile,

vðx; tÞ ¼ �ðtÞ �
8><
>:
vmin for �1< x <�a;

1þ �x for �a < x < a;

vmax for a < x <1;

(81)

where �ðtÞ is a function that must satisfy �ð0Þ ¼ 0, to
guaranty that at t ¼ 0 the metric is flat, and �ðt � �Þ ¼ 1,
in order for the background to ‘‘collapse’’ into a stable
acoustic black hole after the time interval �. A particular
function that satisfies this requirement and is easy to
manipulate is

�ðtÞ ¼ tanh
t

�
: (82)
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Wewill solve the equations first for the region�a < x < a
without taking into account the rest of the space. These
solutions are the same in the other regions upon the
changes � ¼ 0 and � � vmax =min�. After this, we will

see how to introduce them properly and thus obtain the full
solution.

Nevertheless, the problem that the presence of different
regions introduce are the interfaces. For example, a char-
acteristic curve that starts in �a < x0 < a eventually
reaches the point xðsiÞ ¼ a, and for s > si the charac-
teristic to use is the one corresponding to the region
a < x <1. In this section we will see that the solutions
that do not go through these boundaries do not present the
characteristic peak associated with the entanglement of
the Hawking pair. In the following section we will study
the full solution and we will learn how the entanglement is
developed and its relationship to this issues.

The equation we have to solve is Eq. (68), which can be
cast into the following form:

ð@t þ @xvðx; tÞ þ @xÞð@t þ vðx; tÞ@x � @xÞ	Oðx; tÞ ¼ 0:

(83)

By defining the operators

@L ¼ @

@t
þ vðx; tÞ @

@x
� @

@x
; (84)

@R ¼ @

@t
þ @

@x
vðx; tÞ þ @

@x
; (85)

the equation can be written as @R@L	 ¼ 0. One can first

solve @L	L ¼ 0. Then one has to solve @R ~	R ¼ 0 and

finally @L	R ¼ ~	R in order to obtain 	R. This way, the
more general solution is 	O ¼ 	L þ	R. Both the left-
and right-moving components cannot be solved separately,
since ½@L; @R� � 0.
The procedure to find the solution with the characteristic

curves is developed in Appendix B. For example, the char-
acteristic curves for the left-moving modes are given by

xðtÞ ¼ exp

�
�
Z t

0
�ðsÞds

�

�
�
x0 �

Z t

0
ð1� �ðtÞÞe��

R
s

0
�ðs0Þds0ds

�
: (86)

To make contact with the usual expansion in flat field theory
we cast the solution into the following form:

	ðxÞ ¼
Z

dkðukðxÞak þ H:c:Þ; (87)

where H.c. means taking the Hermitian conjugate of the
expression and the modes are given by

ukðxÞ ¼ 1ffiffiffiffiffiffiffiffi
2jkjp eikxe

��

R
t

0
�ðsÞdsþik

R
t

0
ð1��ðsÞÞe��

R
s

0
�ðs0 Þds0

ds
�
1��ðkÞ2ijkj

Z t

0
dse�2ik

R
s

0
e
��

R
s0
0

�ðs00Þds00
ds0��

R
s

0
�ðs0Þds0

�
: (88)

The coefficients ak and ayk correspond at early times to

the creation and annihilation operators upon quantization
and they would carry the subindex ‘‘in.’’

To compute the correlation function when an
environment is added we need the retarded Green
function, which we compute as Gretðt; t0jx; x0Þ ¼ ½	ðx; tÞ;
	ðx0; t0Þ��ðt� t0Þ.

C. Entanglement: Closed system

In this section we study the behavior of the two-point
function of the left-moving part of the momentum, �L.
Using the expansion given in Eq. (87) and the definition of
the left-moving part of the momentum, Eq. (74), we can
obtain the correlation function after integrating over the
initial conditions,

h�Lðx1; tÞ�Lðx2; tÞi ¼
Z 1

0

dkffiffiffiffiffi
2k

p k2

� e�ikðx1�x2Þe��

R
t

0
�ðsÞds��

R
t

0
�ðsÞds

� coth
�k

2
; (89)

with the usual definition � ¼ ðkBT0Þ�1.

Either for the region �a < x < a where the velocity
changes with position, or the regions where the velocity
is homogeneous (as stated, upon the replacements � � 0
and � � v�), the expression above depends only on
(x1 � x2). Therefore, this expression cannot present the
characteristic peak discussed. Accordingly, the regions
where this solution is valid do not present the signature
of the quantum Hawking effect, as explained in previous
sections.
The correct way of getting the solutions of different

regions is matching the characteristic curves, as shown in
Fig. 5. For example, if x > a and different regions share the
characteristic then x0 is obtained by matching the charac-
teristic for constant vðx; tÞwith the characteristic for x < a,
and finally finding the x0 corresponding to the latter. The
signature of the entanglement between the Hawking pair
was shown to be present in the left component of the
correlation, so we are only interested in the curves asso-
ciated with these modes.
To carry on with this procedure, we approximate for

long times (t � �) the characteristic for jxj< a as xðtÞ ’
x0e

�t. In the region x > a, the characteristic is

xðtÞ ¼ A� tþ fðtÞvmax ; (90)
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where A is a constant of integration, fðtÞ 
 R
t
0 ds�ðsÞ, and

vmax � 1þ �a. The relationship between A and x0 can be
found by recalling that

xðtaÞ ¼ a ) ta ¼ ��1 log a=x0 (91)

because the jxj< a characteristic reaches x ¼ a at ta, and

A� ta þ fðtaÞvmax ¼ a (92)

because the x > a characteristic must match the previous
one at xðtaÞ ¼ a.

From these two equations, for times t � �, we can
obtain A as a function of x0 and then use x0 as a function
of x, t and put it into the eikx0 factor, finding

x0 ¼ aeðxþt�fðtÞvmax�aÞ=a for x > a and (93)

x0 ¼ �ae�ðxþt�fðtÞvmin�aÞ=a for x <�a: (94)

Therefore the left-moving modes are given by

uLkðxÞ ¼ 1ffiffiffiffiffiffiffiffi
2jkjp eikae

ðxþt�fðtÞvmax �aÞ=a
for x > a;

uLkðxÞ ¼ 1ffiffiffiffiffiffiffiffi
2jkjp e�ikaeð�x�tþfðtÞvmin þaÞ=a

for x <�a:

Finally, we calculate h	Lðx1; tÞ	Lðx2; tÞi for an initial
thermal state at temperature � ¼ ðkBT0Þ�1, and deriving
with respect to x, t according to Eq. (74) in order to obtain
the momentum two-point function. The final result is

h�Lðx1;tÞ�Lðx2;tÞi¼��2

�2
e
x1�x2

a

�
cosh

�
t

�

����v�
a

�
cosech

�
a�

�
e�

aþtþx2
a

�
cosh

�
t

�

��vmax �
a

�
e
2tþx1þx2

a þe2
�
cosh

�
t

�

���v�
a

���
2
; (95)

where �=�v 
 vmax �=þ vmin . This dependence of the
correlation function between y ¼ �x1 ¼ 4, 6 and x2 ¼ x is
shown in Fig. 6. If y is far from the event horizon—placed at
x ¼ 0—the peak in the correlation will be far from the
event horizon too, in the inverse direction. Even though the
peak does not seem to change with increasing y, it disap-
pears for big enough values of y, as we will see below. This
can be concluded directly from the characteristic curves. If
one follows the characteristic with x0 ¼ a then everything
to the right will not be aware that there is an event horizon
in the space; therefore, there should not be entanglement
(peak in correlation), and indeed there is none. This is
because in this region we have to use the solutions given
by Eq. (89), which was shown not to present the signature.

Moreover, we can compare Fig. 6 of this paper with
Fig. 1 of Ref. [13]. We can conclude that for long times
t � � (when reaching stationarity), the one calculated for
the black hole with the Israel-Hartle-Hawking coincide
with the calculation in the present paper and in Ref. [11],

which includes the collapse. Their behavior is the same,
but little differences may arise from the fact that the
velocity profile as a function of x is different, since they
use a smooth tanh ðx=aÞ profile.
Nonetheless, this formalism allows us also to study the

evolution of the correlation function. As we explained,
there are two special characteristic curves, which start at
x0 ¼ 
a, and they separate two regions: one that presents
the peak that reflects the entanglement and another one that
does not. Therefore, the interface that separates both re-
gions, which is shown in Fig. 7, is given by

x
ðtÞ ¼ 
a

�
1þ �

Z t

0
�ðtÞds

�
¼ 
a

�
1þ �� ln cosh

t

�

�
:

(96)

As can be seen in Fig. 7(b), if we study the correlation at a
fixed position x a definite time tE exists such that for t < tE
there is no entanglement. This time is found by solving the

a x

t

x0

FIG. 5. Schematic illustration of a characteristic curve that
intersects the interface in x ¼ a and starts at x0.
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FIG. 6. Plot of the absolute value of the left-moving compo-
nent of the correlation function for long times t ¼ 100�. The
maximum velocity is 1.1, the minimum 0.9, and the initial
temperature is zero, T0 ¼ 0.
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equation xþðtEÞ ¼ x. The time tE would be interpreted as
the time needed to generate the entanglement, which is
present for t > tE.

In turn, if we study the correlation at a fixed time t, then
there exists a position xE such that if a < x < xE there is no
peak in the correlation and for x > xE it is present. This
feature is due to the fact that the Hawking pair is created
near the horizon. If the horizon had a finite life, there is
only a finite distance the phonons could have traveled due
to their finite speed.

For example, for a fixed time t ¼ 100�with the parame-
ters of Fig. 6 one has the presence of the correlation peak
only for jxj & 11, and therefore it is correct to use the
expression in Eq. (95) and not that of Eq. (89) to make the
plot in Fig. 6. The fact that these transitions are not smooth is
due to the abrupt changes at x ¼ 
a in the velocity profile.

These two features of the solution can be compared with
the numerical simulations done for the ion ring [8]. The
fact that the correlation peak has a finite spatial extension
can be clearly seen in Fig. 9 of Ref. [8], where this
magnitude is calculated numerically. The fact that the
entanglement needs a definite time to develop is also
observed in Fig. 14 of Ref. [8] through the numerical
computation of the logarithmic negativity.

This formalism also allows us to study how the correla-
tion, and therefore the entanglement, depends on the initial

temperature of the field T0, as can be seen in Eq. (95). In
particular, our results should reproduce the behavior shown
in Fig. 14 of Ref. [8] and the loss of entanglement of the
Hawking pair at high temperatures. First we compute the
Hawking temperature, given by (see Ref. [12])

TH ¼ 1

2�

jvmax � vmin j
2a

: (97)

In Fig. 8 we plot the dependence of the peak in the
correlation as a function of the temperature in units of
the Hawking temperature. We observe how the peak is
diluted and therefore how the Hawking pair entanglement
is lost for high enough initial temperatures.
What we are denoting as the peak in the correlation is

what we are interested in as a measure of the spontaneous
emission. Of course, correlations remain present even at
high temperatures. Nevertheless, as we observe from our
results, the peak disappears, signaling that spontaneous
Hawking radiation gets washed out. In Ref. [8] the authors
showed that the correlation remains at high temperatures
(due to stimulated-like emission), but they do not mean
that the characteristic peak is still present. On the contrary,
they showed evidence that the peak disappears; see, for
instance, Fig. 10 in Ref. [8].

D. Entanglement: Open system

In this last section, we will try to estimate the correction
introduced by the presence of an environment in the corre-
lation function. Therefore, we will use the expression
presented previously,

h	1	2i ¼ h	O1	O2iin �G1x0Dx0xh	Ox	O2iin
�G2x0Dx0xh	Ox	O1iin þG1x0Nx0xG2x; (98)

together with the solution for the modes found in the
previous sections. Regarding the environment, we will

11
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FIG. 7 (color online). (a) Illustration of the regions where the
peak of the correlation function is present—and therefore the
entanglement between the Hawking pair particles—and those
that are not. (b) Behavior for fixed time or position. Red (below
the curve): no correlation peak. Blue (above the curve): presence
of correlation peak.
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FIG. 8. Plot of the absolute value of the correlation function of
the momentum for long times t ¼ 100�. The maximum velocity
is 1.1, the minimum is 0.9, and the initial temperatures are
T0 ¼ 0, 20 � TH, 60 � TH .
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use an ohmic bosonic bath with bilinear coupling.
The dissipation kernel is given by

D ðs; s0Þ ¼ ��2 @

@s
�ðs� s0Þ: (99)

In this case, obtaining an analytic expression for
h�L�Li is more involved since the integrals must be
performed over all possible regions, and the final depen-
dence of k makes the integrals more complicated. To solve
the second inconvenience we will study each mode sepa-
rately, characterized by k. We will use the expression in
Eq. (99) to eliminate the integrals in s0, after integrating the
Dirac delta function by parts. The remaining integrals can
be approximated by the main contribution in the coinci-
dence limit. Regarding the last term, for high temperatures
the noise kernel is Nðs1; s2Þ ¼ �2T0�ðs1 � s2Þ and the
resulting integral is done using basic properties of Green
functions. After performing the derivatives necessary to
obtain h�L�Li we can estimate the correlation function at
high temperatures. Figure 9 shows erðtÞ—the relative
contribution to the correlation due to the noise and
dissipation—with respect to the vacuum-state contribution
(it should not be interpreted as the correlation itself). We
define it as

er 

��������h�L1�L2iCðkÞ � h�L1�L2iOðkÞ

h�L1�L2iCðkÞ
��������; (100)

where the k dependence means that

h�L1�L2i ¼
Z

dkh�L1�L2iðkÞ: (101)

This magnitude was computed for small k since it de-
creases with increasing k.

For small times the influence of the environment is
negligible and the vacuum contribution calculated in
previous sections dominates. For later times the relative
contribution begins to grow, showing a sharp transition at

�1500�. Thereafter, the correlation is dominated by noise
and dissipation.
We expect that this abrupt increase of the environment’s

influence produces decoherence, and we take it as a sig-
nature of the loss of correlation and, therefore, the entan-
glement between the Hawking pair particles. It should be
stressed that er should not be interpreted as the correlation
itself. If computed explicitly as a function of ðx; x0; tÞ, it
will reach a steady state for long enough times and we
expect that after the decoherence time (for which 1500�
would be a good candidate) the peak due to the quantum
Hawking radiation washes out.

VI. CLOSING REMARKS

In this paper we studied the influence of an environment
in acoustic black holes as an open quantum system. We
used the circular ion trap setup but the analysis can be
applied to any acoustic black hole—only details relevant to
the environment could change. We paid attention to the
process of decoherence induced by this environment as
opposed to the quantum-to-classical transition considered
in previous works, induced by thermal equilibrium effects
[8]. As we explained in the Introduction, since the
Hawking effect is purely quantum mechanical, then a
quantum-to-classical transition would jeopardize the pos-
sible measurement of the radiation, and therefore decoher-
ence must be controlled in the experiment.
We used the open quantum system approach to calculate

the decoherence time of an acoustic black hole in the
presence of an environment for both zero and finite
(but small) temperatures [11]. Taking into account that
the decoherence time is smaller than the approximate
measurement time and—even worse—the ‘‘collapse’’
time, improved parameters are needed and provided here
to make the measurement possible. This analysis could be
easily extended to other realizations of acoustic black holes
such as BEC, moving dielectrics, waveguides, etc.
In order to achieve generality so that this work is

interesting for any acoustic black hole, we made certain
approximations. It would be interesting for future works to
perform this derivation numerically, taking as a starting
point the exact dynamics of the particular acoustic black
hole’s setup. Moreover, regarding the environment one
could consider more involved bosonic reservoirs that for
example get dragged to some extent by the moving ions
instead of being fixed with respect to the laboratory.
To make the study of this system more transparent, we

also provide a derivation of the correlation between the
Hawking phonons as a function of time and temperature.
The derivation included the transient due to the ‘‘collapse’’
of the acoustic black hole and could be applied to the usual
Schwarzschild black hole, as in Ref. [22]. When we in-
clude the environment, we check that its relative contribu-
tion to this magnitude is irrelevant until a sharp transition
takes place and noise and dissipation begin to dominate.

er

t

0 500 1000 1500
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FIG. 9. Relative contribution er for high temperatures, T �
100 � TH, evaluated on the position of the peak in the correlation
function and for coupling �� 10�7.
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After that transition we expect decoherence—and there-
fore a quantum-to-classical transition—to take place.

The main technical complication in this approach is the
presence of boundaries between different velocity profiles,
since the overall is not continuously differentiable. For
future works, it would be interesting to find a smooth
spatial velocity profile that presents an event horizon and
allows one to carry an analytic treatment to the end,4 in
order to obtain the correlation in the presence of an envi-
ronment as a function of t and x instead of Fig. 9.

Finally, another interesting extension of this work would
be to study the quantum-to-classical transition due to the
nonlinearities in the original Hamiltonian, Eq. (1). The
nonequilibrium self-interaction of the degrees of freedom
in this case (as opposed to the thermal equilibrium situation
considered in Ref. [8]) also introduces dissipation and
noise in the same fashion as an environment and also
induces decoherence. The decoherence time associated
with this effect depends on intrinsic parameters of the
system—such as the mass, electric charge of the ions,
etc.—as opposed to the external parameter � considered
here. Therefore, this study would impose critical bounds on
the realizability of the measurement of the Hawking radia-
tion with any setup.
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APPENDIX A: DIFFUSION COEFFICIENT AT
FINITE TEMPERATURE

The dissipation kernel for finite temperature is
defined as

DðtÞ ¼ ~�2

2

Z 1

0
d�

Z t

0
ds� coth

�ℏ�
2

cos�s cos!s: (A1)

As stated in Sec. IVB, we will use the following approxi-
mation:

coth
�ℏ�
2

�
8<
:

2
�ℏ� si �ℏ�2 � 1;

1 si �ℏ�2 � 1:
(A2)

Having this in mind, the coefficient can be approximated
by integrating separately over the regions where the differ-
ent approximations are valid, i.e.,

2~��2Dðt; �Þ ¼
�Z 2ð�ℏÞ�1

0
d�þ

Z 1

2ð�ℏÞ�1
d�

�
� coth

�ℏ�
2

�
Z t

0
ds cos!s cos�s

�
Z 2ð�ℏÞ�1

0
d�

2

�ℏ

Z t

0
ds cos!s cos�s

þ
Z 1

2ð�ℏÞ�1
d��

Z t

0
ds cos!s cos�s:

The first integral is

Z 2ð�ℏÞ�1

0
d�

2

�ℏ

Z t

0
ds cos!s cos�s

¼ �Si½tð� 2
�ℏ þ!Þ� þ Si½tð 2

�ℏ þ!Þ�
�ℏ

: (A3)

For small 2ð�ℏÞ�1 we can approximate

�Si

�
t

�
� 2

�ℏ
þ!

��
þ Si

�
t

�
2

�ℏ
þ!

��

� dSiðxÞ
dx

��������x¼!t

4t

�ℏ
¼ 4 sin!t

!�ℏ
;

and therefore

Z 2ð�ℏÞ�1

0
d�

2

�ℏ

Z t

0
ds cos!s cos�s � 4 sin!t

!�2ℏ2
: (A4)

Regarding the second term, we will use the following:

Z 1

2ð�ℏÞ�1
d��

Z t

0
ds cos!s cos�s

¼
Z 1

0
d��

Z t

0
ds cos!s cos�s

�
Z 2ð�ℏÞ�1

0
d��

Z t

0
ds cos!s cos�s: (A5)

The first term was calculated for the T0 ¼ 0 case and with
the result !Sið!tÞ. The second term is

Z 2ð�ℏÞ�1

0
d��

Z t

0
ds cos!s cos�s � 2 sin!t

!�2ℏ2
: (A6)

Finally, the new diffusion coefficient is given by

2~��2Dðt; �Þ ¼ !Sið!tÞ þ 2 sin!t

!�2ℏ2
þOð��3Þ: (A7)

When one takes ! ¼ 0 and t ¼ 0 the correction to order
�OðT2

0Þ vanishes. Therefore, a thermal state of finite

temperature does not affect the relationship between the
parameters ~� and �.
The next step is just to integrate Eq. (A7) in order to

obtain the relevant diffusion coefficient.

4For example, we tried to use a tanh x=a profile but exact
analytical expressions for the characteristic curves could not be
found.
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APPENDIX B: MODES OF THE WAVE EQUATION

The equation we have to solve is Eq. (68) which, as
noted above, can be written as @R@L	 ¼ 0. This way, the
more general solution is in terms of the left- and right-
moving modes, 	O ¼ 	L þ	R.

The first equation to solve is @L	L ¼ 0,

@	L

@t
þ ðvðx; tÞ � 1Þ@	L

@x
¼ 0: (B1)

This equation is of the same form as Eq. (78) with bðx; tÞ ¼
1, aðx;tÞ¼vðx;tÞ�1¼�ðtÞ�xþ�ðtÞ�1, and cðx; tÞ ¼ 0.

The definition of the characteristic curves is

dx

ds
¼ �ðtÞ�xþ �ðtÞ � 1 and

dt

ds
¼ 1: (B2)

From the second equation one obtains t ¼ s, where we
impose that tð0Þ ¼ 0. Using this relationship in the first
equation we get

dx

dt
� �ðtÞ�x ¼ �ðtÞ � 1: (B3)

The solution of this equation is

xðtÞ ¼ e�
R

t

0
�ðsÞds

�
x0 �

Z t

0
ð1� �ðtÞÞe��

R
s

0
�ðs0Þds0ds

�
;

(B4)

where we used the condition xð0Þ ¼ x0. Then, tðx0; sÞ ¼
t ¼ s and inverting to get x0ðx; tÞ we obtain

x0ðx; tÞ ¼ xe��
R

t

0
�ðsÞds þ

Z t

0
ð1� �ðtÞÞe��

R
s

0
�ðs0Þds0ds:

(B5)

The differential equation to solve for the evolution of the
field along the curve is simply

d	

ds
¼ 0 ) 	ðxðx0; sÞ; tðx0; sÞÞ ¼ 	ðx0; 0Þ: (B6)

Finally, the solution is

	Lðx; tÞ ¼ 	

�
xe��

R
t

0
�ðsÞds

þ
Z t

0
ð1� �ðtÞÞe��

R
s

0
�ðs0Þds0ds; 0

�
: (B7)

To rewrite it in a useful way, taking into account that we
will have to eventually integrate over the initial conditions,
we expand in modes 	ðx; 0Þ ¼ R

dk=2�eikx	k; then, the
solution for the field is

	Lðx; tÞ ¼
Z dk

2�
	k exp

�
ik

�
xe��

R
t

0
�ðsÞds

þ
Z t

0
ð1� �ðtÞÞe��

R
s

0
�ðs0Þds0ds

��
: (B8)

Having an expression for the left-moving modes, we
now have to solve the equation for the right modes,

@R ~	R ¼ 0,

�
@

@t
þ @

@x
vðx; tÞ þ @

@x

�
~	R ¼ 0;

�
@

@t
þ �ðtÞ�þ �ðtÞð1þ �xÞ @

@x
þ @

@x

�
~	R ¼ 0;

�
@

@t
þ �ðtÞ�þ ð�ðtÞ þ �ðtÞ�xþ 1Þ @

@x

�
~	R ¼ 0:

(B9)

Again, t ¼ s, but the spatial part of the characteristic is

xðtÞ ¼ e�
R

t

0
�ðsÞds

�
x0 þ

Z t

0
ð�ðsÞ þ 1Þe��

R
s

0
�ðs0Þds0ds

�
;

(B10)

and after taking the inverse x0,

x0ðx; tÞ ¼ xe��
R

t

0
�ðsÞds �

Z t

0
ð1þ �ðsÞÞe��

R
s

0
�ðs0Þds0ds:

(B11)

Now the equation for the value 	R along the character-
istics is

d	

dt
¼ ��ðtÞ�	; (B12)

then

	ðxðx0; sÞ; tðx0; sÞÞ ¼ 	ðx0; 0Þe��
R

s

0
�ðs0Þds0 : (B13)

Therefore, expanding again in modes,

~	Rðx; tÞ ¼
Z dk

2�
~	k exp

�
ik

�
xe��

R
t

0
�ðsÞds

�
Z t

0
ð1þ�ðtÞÞe��

R
s

0
�ðs0Þds0ds

�
��

Z t

0
�ðsÞds

�
:

(B14)

Taking advantage of this result for ~	R, the right-moving

mode can be found from ð@t þ vðx; tÞ@x � @xÞ	R ¼ ~	R.
To solve this equation we propose a solution of the form

	Rðx; tÞ ¼
Z dk

2�
	kðx; tÞ exp

�
ik

�
xe��

R
t

0
�ðsÞds

þ
Z t

0
ð1� �ðsÞÞe��

R
s

0
�ðs0Þds0ds

��
: (B15)

If we use this result in the equation and use the fact that the
exponential is a solution of the homogeneous equation of
the left-moving modes, we obtain

@L	R ¼
Z dk

2�
@L	kðx; tÞ exp

�
ik

�
xe��

R
t

0
�ðsÞds

þ
Z t

0
ð1� �ðsÞÞe��

R
s

0
�ðs0Þds0ds

��
: (B16)

On the other hand, the solution ~	R can be rewritten as

DYNAMICS OF AN ACOUSTIC BLACK HOLE AS AN OPEN . . . PHYSICAL REVIEW D 87, 084028 (2013)

084028-17



~	Rðx;tÞ¼
Z dk

2�
~	k exp

�
�2ik

Z t

0
e��

R
s

0
�ðs0Þds0ds��

Z t

0
�ðsÞds

�
eikðxe

��

R
t

0
�ðsÞdsþ

R
t

0
ð1��ðsÞÞe��

R
s

0
�ðs0 Þds0

dsÞ: (B17)

Equating both sides of this equation gives

@L	kðx; tÞ ¼ ~	ke
�2ik

R
t

0
e
��

R
s

0
�ðs0 Þds0

ds��
R

t

0
�ðsÞds: (B18)

To find the particular solution we can use a 	k such that 	kðx; tÞ ¼ �kðtÞ, and therefore

@t	kðtÞ ¼ ~	ke
�2ik

R
t

0
e
��

R
s

0
�ðs0Þds0

ds��
R

t

0
�ðsÞds: (B19)

Integrating in time, the solution is

	Rðx; tÞ ¼
Z dk

2�
�ke

ikðxe��

R
t

0
�ðsÞdsþ

R
t

0
ð1��ðsÞÞe��

R
s

0
�ðs0 Þds0

dsÞ Z t

0
dse�2ik

R
s

0
e
��

R
s0
0

�ðs00Þds00
ds0��

R
s

0
�ðs0Þds0 : (B20)

The remaining steps are just to write down the full solution and cast it into the usual mode expansion form. To do this one
has to write	kL and	kR in terms of the Fourier transform of the initial condition of the field and the conjugate momentum
	kðt ¼ 0Þ and �kðt ¼ 0Þ.
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Schützhold, Phys. Rev. Lett. 97, 190405 (2006).

[11] F. C. Lombardo and G. J. Turiaci, Phys. Rev. Lett. 108,
261301 (2012).

[12] W.G. Unruh, Phys. Rev. D 51, 2827 (1995).
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